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Background: Cancers arising within the gastrointestinal tract are complex

disorders involving genetic events that cause the conversion of normal tissue

to premalignant lesions and malignancy. Shared genetic features are reported in

epithelial-based gastrointestinal cancers which indicate common susceptibility

among this group of malignancies. In addition, the contribution of rare variants

may constitute parts of genetic susceptibility.

Methods: A cross-cancer analysis of 38,171 shared rare genetic variants from

genome-wide association assays was conducted, which included data from

3,194 cases and 1,455 controls across three cancer sites (esophageal, gastric

and colorectal). The SNP-level association was performed bymultivariate logistic

regression analyses for single cancer, followed by association analysis for

SubSETs (ASSET) to adjust the bias of overlapping controls. Gene-level

analyses were conducted by SKAT-O, with multiple comparison adjustments

by false discovery rate (FDR). Based on the significant genes indicated by SKATO

analysis, pathways analysis was conducted using Gene Ontology (GO), the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Reactome databases.

Results: Meta-analysis in three gastrointestinal (GI) cancers identified 13 novel

susceptibility loci that reached genome-wide significance (PASSET< 5×10-8).

SKAT-O analysis revealed EXOC6, LRP5L and MIR1263/LINC01324 to be

significant genes shared by GI cancers (Padj<0.05, PFDR<0.05). Furthermore,
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GO pathway analysis identified significant enrichment of synaptic transmission

and neuron development pathways shared by all three cancer types.

Conclusion: Rare variants and the corresponding genes potentially contribute to

shared susceptibility in different GI cancer types. The discovery of these novel

variants and genes offers new insights for the carcinogenic mechanisms and

missing heritability of GI cancers.
KEYWORDS

gastrointestinal cancer, rare variants, cross-cancer susceptibility, ASSET analysis,
pathway analysis
1 Introduction

Gastrointestinal (GI) cancers represent the most commonly

diagnosed cancer types globally, a group of cancers exhibiting the

highest incidence burden (1). According to GLOBOCAN 2020, GI

cancers account for approximately 18.8% of cancer incidents and

22.6% of cancer deaths worldwide, and contributing to major public

health burdens (2). The incidence of GI cancers also varies by

country and region. China has far more new cases of GI cancers

than the rest of the world, accounting for 29.7% and 32.0% of all

cancer cases and deaths in the region in 2020 (2, 3). The particular

high incidents were seen in esophageal and gastric cancer; both

accounted for about half of the new cases in the world in 2020

(esophageal cancer: 53.7%, gastric cancer: 44.0%) (2). Although the

incidence of colorectal cancer in China is moderate comparing to

high-incidence country, it is still higher than global average along

with a rising trend over the past few years (4). It is established that

genetic and lifestyle factors play vital roles in the risk of cancer.

Family studies and population-based studies also revealed genetic

components contributing to cancer susceptibility, possibly by

modifying risk factors induced by environmental carcinogens or

altering the functions of critical regulatory pathways (5).

It is estimated that approximately 5% of GI cancers incidents

are attributed to inherited genetic mutations with familial

aggregation characteristics (6), and an additional 20-25% are

estimated to have hereditary components which yet to be

established. Most of these cancers develop from sporadic events,

with diverse arrays of genetic variations contributing to cancer

susceptibility. Tremendous efforts have been done in the search for

missing heritability; in particular genome-wide association studies
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(GWAS) and next-generation sequencing (NGS) technology have

been performed to identify the effects of common and rare variants

across various cancer types (6). GWASs have been instrumental in

deciphering the effects of common variants (Minor Allele

Frequency (MAF) > 1%) on the carcinogenesis of single cancer

(7–9). However, the confirmed candidate causal variants so far only

explain for a small proportion of the heritability. The effects of rare

variants (MAF<1%) have been relatively less investigated. Based on

the established heritability for GI cancers, more evidence suggests

that rare variants exhibiting large effect sizes still remain to be

discovered. These variants displaying high penetrance may have

more profound clinical manifestations (10). The aggregation of rare

variants in predisposition genes can lead to changes in gene

expression or function (11), and altered functions in biological

pathways may be pivotal in the carcinogenetic process of

GI cancers.

Discerning the molecular mechanisms of sporadic GI cancers is

complex. In addition to the effort in single cancer research, shared

genetic risk factors have been reported in various cancer groups,

and target genes with potential cross-cancer roles have been

identified at specific genetic loci. For instance, shared mechanisms

of carcinogenesis were reported in hormone-sensitive and obesity-

related cancers (12, 13). Common variants in epigenetic and

vitamin D metabolism genes were reported for the susceptibility

of a subset of GI cancer (14, 15). A pan-cancer study suggested

common genes were shared between 12 cancer types, including

gastric cancer (16). The 9p21 region have been associated with

multiple tumors including esophageal squamous cell carcinoma

(ESCC) and endometrial cancer (17, 18). However, the effects of

shared rare variants have been scarcely investigated in the literature.

Based on this background, we conducted a cross-cancer study of

rare variants by performing meta-analysis on the genotyping data

from genome-wide association arrays on esophageal, gastric and

colorectal cancers, and assess the aggregate effects of significant

variants on the gene level. We hypothesize that these rare genetic

variants may facilitate identification, at genome-wide significance,

of risk loci shared among GI cancer, leading to the identification of

novel susceptibility genes and pathways contributing to

carcinogenesis, which may in turn explain part of the

missing heritability.
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2 Materials and methods

2.1 Study population

The ESCC, GC, and CRC patients from Fudan University

Shanghai Cancer Center (FUSCC) were derived from published

studies (19), which were newly diagnosed and histopathologically

confirmed between 2009 and 2011. The control population was

enrolled at the same time from a cancer-free healthy Han

individuals (n=1455) in Taizhou Longitudinal cohort (TZL) study

from Eastern China (20). The inclusion criteria and exclusion

criteria of patients and controls were described in detail

previously (21–23), and patients of each cancer type were

matched with the cancer-free controls by sex and age ( ± 5 years).

After matching, 1,066 cases and 1,122 controls, 1,069 cases and

1,109 controls, and 1,065 cases and 1,096 controls were included in

the ESCC, GC and CRC datasets, respectively (Figure 1). Blood

samples from ESCC, GC, CRC patients and cancer-free controls

were provided by the tissue banks of FUSCC and TZL studies,

respectively. Each participant donated approximately 10 mL of

peripheral blood, from which genomic DNA was extracted. For

validation, three independent datasets were recruited, which

included Beijing ESCC GWAS dataset (cases/controls:2,031/

2,044), Chinese GC meta-GWAS (cases/controls:10,254/10,914),

Nanjing CRC GWAS (cases/controls: 1,316/2,207). The details of

the external validation population have been described in previous

studies (8, 24, 25). All participants provided written informed
Frontiers in Oncology 03
consent for scientific research use of their biological samples and

demographic information, including age, sex and smoking. The

study protocol was approved by the Institutional Ethics Review

Board of FUSCC.
2.2 Genome-wide association scanning
and quality control

Genomic DNA was extracted from the blood samples of

patients and controls, and genome-wide genotyping was

performed by the Infinium® Global Screening Array-24 v1.0

Beadchip (Illumina, US). Quality control (QC) of the raw

genotyping results was conducted in the case-control dataset of

each cancer type. The exclusion criteria of SNPs were set as follows:

1) Duplicated variants; 2) Missing rate over 5% between cases and

controls; 3) MAF ≥ 1%; 4) SNPs not mapped to autosomal

chromosomes; 5) SNPs with genotyping frequency = 0; 6)

Deviation from Hardy-Weinberg Equilibrium (HWE) test (P<

1x10-4). The exclusion criteria of ineligible individuals are

described as follows: 1) Inconsistent sex between determined

genotypes and clinically derived information; 2) First-degree

relatives (IBD< 0.5); 3) Missing genotype type > 5%. After QC,

2,158 individuals (1,061 cases/1,097 controls) and 112,413 variants

in ESCC dataset, 2,172 individuals (1,068 cases/1,104 controls) and

109,771 variants in GC dataset, 2,114 individuals (1,065 cases/1,049

controls) and 113,867 variants in CRC dataset were retained and
FIGURE 1

Schematic overview of cross-cancer analysis and quality control process.
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subjected to further analysis. The details of the QC process are

illustrated in the study flow chart (Figure 1).
2.3 Variant classification and annotation

After QC, 38,171 genetic variants (MAF< 0.01) were found to be

shared among the 3 cancer types. ANNOVAR software was used to

annotate these rare variants by their location and characteristics (26).

Overall, 35,923 of 38,171 shared variants in three cancer types were

successfully annotated and classified by ANNOVAR. We divided the

variants into nine categories: missense mutation, nonsense/nonstop

mutation, intergenic region mutation, intronic mutation, ribonucleic

acid (RNA) mutation, 3’ untranslated region (3’UTR) mutation, 5’

untranslated region (5’UTR)mutation, splice site mutation, in-frame/

frame-shift insertion/deletion mutation. All variants were genotyped

by GSA BeadChip array, which is comprised of SNPs or indels. The

results of rare variant classification determined by ANNOVAR are

presented in Supplementary Figure 1.
2.4 Single variant association analysis

First, logistic regression models were applied in 3 cancer

datasets separately to assess the association between single variant

and the risk of ESCC, GC and CRC. Odds ratio (OR) with 95%

confidence interval (CI) and P-values were calculated by additive

model adjusted for sex and age. Then meta-analysis of the

individual cancer results was conducted to determine the pooled

association across these three cancer types, with the significance

criteria of genome-wide threshold (P<5×10-8), consistency in risk

alleles and odds ratio. The fixed effect model was applied if SNPs

passed Cochran’s Q test (Q > 0.1), otherwise random effect models

were considered. The association results of individual cancer and

meta-analysis were presented by Manhattan plot. Genomic inflation

statistics (l) were calculated and visualized by quantile-quantile (Q-
Q) plot to evaluate population stratification in each dataset. To

account for the correlation between datasets due to overlapping

controls, we applied Association analysis for SubSETs test (ASSET),

which is a subset-based approach to determine the best subset of

subjects with maximized test statistics for meta-analysis (27). In our

study, all significant SNPs passed Cochran’s Q test and showed

consistent direction of association in each cancer; therefore, one-

sided ASSET analysis was conducted with a fixed-effect model (28).

In order to identify the effects of gender, age, and smoking on the

results of the single variant, we further stratified the population by

men, women, age ≤60, age > 60, never smoking and ever smoking,

and performed logistic regression analysis in each subgroup. The

significant variants identified by meta-analysis were further

validated in external datasets from previous reported GWAS.
2.5 Gene-based association analysis

Due to the fact that the MAF of rare variants in the population

is very low, affected individuals may have different mutation sites or
Frontiers in Oncology 04
frequencies in a particular genetic region of interest. To account for

the low efficiency that traditional single variants association analysis

may incur, rare variants can be collapsed or compressed into a set

and then examined for inter-set frequency differences between case

and control groups (29). A few statistical tests have been developed,

including the burden test and Sequence Kernel Association Test

(SKAT) (30). The method selection depends on the number of rare

mutations with the same direction of action. However, since the

genetic model in complex diseases is unknown in practice, it is

challenging to select the optimal application method. The optimal

sequence kernel association test (SKAT-O) overcomes this problem

by including the correlation matrix of the relationship structure of

rare variants in the SKAT test (31), with the formula listed as

follows:

Qr = rQb + (1 − r)Qs, 0 ≤ r ≤ 1

Qb and Qs are the score statistics of the burden test and SKAT

test under the null model. The correlation matrix contains a

parameter r, and mimics the burden test (when r= 1) or general

SKAT (when r= 0). Different genetic structures of different traits

correspond to different optimal r values. In practical application, r
is obtained through the test procedure, and the weighted average

value of SKAT and burden test statistics is calculated. In this study,

the SKAT-O test was applied for gene-based association analysis by

using the R package ‘SKAT’ (V2.0.1). For the loci shared by three

cancer types, two or more loci located in the same genetic region

were combined into a SET (genes) (32). Additionally, the obtained

SKAT-O P-value was adjusted by FDR to control the type I error.

Genes with FDR-adjusted P-values (Padj) of less than 0.05 were

considered significant.
2.6 Pathway enrichment analysis

In order to determine the underlying biological pathways

affected by the significant genes identified by SKAT-O analysis,

enrichment analysis was performed by Gene Ontology (GO), the

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome

databases by R package ‘clusterProfiler’ (V4.4.4). For intergenic

variants, both annotated genes were included in pathway analysis

with subsequent FDR correction. The total gene lists contained 961,

959 and 1,011 genes in ESCC, GC and CRC dataset, respectively.

Due to the presence of overlapping genes in common pathways, P-

values were adjusted by FDR to control for a low proportion of false

positives with the threshold of 0.05. In addition, we calculated Fold

Enrichment (FE) by dividing Gene Ratio by Background Ratio to

normalize the size of gene set. The shared pathways were identified

after pooling the pathway enrichment results of these three GI

cancers. Within the shared pathways, we discarded the ‘integral

component of postsynaptic density membrane’ and ‘intrinsic

component of postsynaptic density membrane’ because they

represent protein topology, not a cellular component, and were

already obsoleted by the newest vision of the database. For pathways

which are subsets of larger pathways, only the larger pathways were

retained in our results, the subset pathways were discussed when we
frontiersin.org
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explored potential mechanisms of association between shared

pathways and GI cancer risk.
2.7 Statistical analysis

The comparison of demographic characteristics between the

case and control groups was performed by Chi-square test or two

independent sample Wilcoxon rank sum test. Variant filtering and

quality control were conducted by PLINK (V1.9) and R software

(V4.2.0). For single variant association analysis, multivariate logistic

analyses were performed by PLINK 1.9 adjusted for sex and age,

followed by one-sided ASSET using R package ‘ASSET’ (V2.14.0).

Meta-analysis was performed using fixed-effect model followed by

Cochran’s Q test. Genome-wide statistical significance was set at P-

value of 5x10-8. Manhattan plots and Q-Q plots of each dataset were

carried out by R package ‘qqman’ (V0.1.8). Functional annotation

of variants was carried out by ANNOVAR based on human genome

hg19 coordinates.
3 Results

3.1 Population characteristics of
study subjects

After quality control of the recruited individuals and genetic

data, three case-control datasets of esophageal squamous cell

carcinoma (ESCC), gastric cancer (GC) and colorectal cancer

(CRC) were included in the study (Figure 1). Table 1 summarizes

the general demographic characteristics of the study samples

included in the three cancer types. The age and sex distribution

of cases and controls in the three cancer types were comparable (P >

0.05). In the ESCC and GC datasets, over half of the subjects were

under 60 years of age, whereas over 50% of the subjects in CRC

dataset were over 60 years old. All three datasets showed a higher
Frontiers in Oncology 05
percentage of male. The distribution of smoking status was

significantly different between cases and controls in all three

datasets (P< 0.001). More cases in the ESCC dataset were current

smokers (57.7%) compared to the control group (36.6%). The

majority of the GC and CRC samples were non-smokers, and

38.5% of the patients in the GC’s case group were either smokers

or ever-smokers compared to 36.6% in the control group. In the

CRC dataset, only 16.2% of the patients were smokers, whereas

32.3% of control samples have smoking history.
3.2 Meta-analysis of single variant
across GI cancers

Multivariate logistic regression analysis in ESCC, GC and CRC

datasets was performed separately with adjustment for sex and age.

A total of 29, 28 and 10 variants were significantly associated with

ESCC, GC and CRC risk, respectively (P< 5x10-4) (Supplementary

Figure 2). The Q-Q plots of each cancer type showed modest

deviations of observed P-value from expected P-value

(Supplementary Figure 3). (lESCC=1.029, lGC=1.068 and

lCRC=1.069). In order to assess the shared susceptibility loci

across GI cancers, we conducted a meta-analysis to combine the

association results of three cancers. Based on one-sided Association

analysis based on SubSET (ASSET) analysis (Table 2; Figure 2;

Supplementary Table 1), 13 novel rare variants were found to reach

the genome-wide significance threshold (PASSET< 5×10-8), with no

pleiotropy or high homogeneity across three cancer types (same

direction of effect and Q > 0.1). Of the 13 variants, 8 were likely to

be risk alleles (OR >1), while 5 may confer protective effects

(OR<1). The most significant variant was LRP5L/rs78345670

(A→G) (19), which was also the top hit variant in GC (OR (95%

CI) = 11.13 (3.32-37.32), P = 9.50×10-5) and CRC dataset [OR (95%

CI) = 6.73 (2.62-17.30), P = 7.67×10-5]. Exonic variant TMEM119/

rs112991728 (G→A) [OR (95% CI) = 0.09 (0.04-0.19), PASSET=

3.29×10-9) was identified as the most significant protective variant.
TABLE 1 Characteristics of the study population.

Variables
ESCC GC CRC

Cases Controls Pa Cases Controls Pa Cases Controls Pa

No. of Patients 1061 1097 1068 1104 1065 1049

Age ≤60 533(50.2%) 495(45.1%) 0.09 573(53.7%) 580(52.5%) 0.46 510(47.9%) 495(47.2%) 0.55

>60 528(49.8%) 602(54.9%) 495(46.3%) 524(47.5%) 555(52.1%) 554(52.8%)

Sex Male 868(81.8%) 864(78.8%) 0.08 758(71.0%) 778(70.5%) 0.8 670(62.9%) 671(64.0%) 0.39

Female 193(18.2%) 233(21.2%) 310(29.0%) 326(29.5%) 395(37.1%) 378(36.0%)

Smoking
Statusb

Non-smoker 358(33.7%) 587(53.5%) <0.001 651(61.0%) 683(61.9%) <0.001 892(83.8%) 613(58.4%) <0.001

Smoker 612(57.7%) 402(36.6%) 68(6.4%) 392(35.5%) 173(16.2%) 304(29.0%)

Ever-smoker 4(0.4%) 23(2.1%) 343(32.1%) 12(1.1%) 0(0.0%) 33(3.2%)

Missing 87(8.2%) 85(7.8%) 6(0.6%) 17(1.5%) 0(0.0%) 99(9.4%)
frontie
Two independent sample Wilcoxon rank sum test was used for age variables in ESCC, GC and CRC datasets. a c2 test was used for gender and smoking status variables. b Non-smoker: never
smoke; Smoker: Smoking, and still smoking; Ever-smoker: used to smoke, but quitted.
ESCC, Esophageal Squamous Cell Carcinoma; GC, Gastric Cancer; CRC, Colorectal Cancer.
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TABLE 2 Meta-analysis and one-sided ASSET analysis of ESCC, GC and CRC datasets.

ESCC GC CRC Meta-analysis One-sided ASSET Analysis

OR(95% CI)d Pd OR(95% CI)d Pd OR(95% CI)d Pd OR (95%CI) PMeta OR (95%CI) PASSET

0.46 (3.18-34.46) 1.14E-04 11.13 (3.32-37.32) 9.50E-05 6.73 (2.62-17.30) 7.67E-05 8.73 (4.64-16.42) 1.75E-11 8.63 (4.46-16.71) 1.54E-10

8.38 (2.95-23.79) 6.53E-05 3.42 (1.59-7.37) 1.68E-03 3.35 (1.64-6.82) 9.03E-04 4.05 (2.54-6.47) 4.26E-09 4.45 (2.74-7.24) 1.83E-09

0.10 (0.03-0.32) 1.15E-04 0.10 (0.03-0.32) 1.66E-04 0.10 (0.03-0.34) 1.99E-04 0.10 (0.05-0.20) 5.83E-11 0.09 (0.04-0.19) 3.29E-09

0.09 (0.03-0.28) 5.00E-05 0.07 (0.02-0.31) 3.84E-04 0.25 (0.10-0.61) 2.22E-03 0.14 (0.08-0.27) 2.64E-09 0.15 (0.08-0.28) 6.67E-09

5.74 (1.97-16.71) 1.36E-03 15.72 (3.71-66.67) 1.86E-04 5.84 (2.01-16.97) 1.18E-03 7.17 (3.67-14.01) 7.89E-09 7.65 (3.84-15.27) 7.75E-09

0.13 (0.05-0.36) 9.52E-05 0.14 (0.04-0.48) 1.70E-03 0.11 (0.03-0.36) 2.81E-04 0.13 (0.07-0.24) 6.38E-10 0.12 (0.06-0.25) 1.28E-08

6.83 (2.65-17.61) 7.00E-05 6.57 (2.24-19.26) 6.05E-04 3.53 (1.60-7.78) 1.78E-03 5.04 (2.97-8.54) 2.05E-09 5.02 (2.87-8.76) 1.45E-08

5.83 (2.24-15.15) 3.02E-04 4.33 (1.96-9.57) 3.00E-04 3.31 (1.57-7.01) 1.75E-03 4.18 (2.61-6.72) 3.15E-09 4.20 (2.55-6.93) 1.81E-08

0.03 (0.00-0.25) 8.53E-04 0.11 (0.04-0.37) 2.87E-04 0.19 (0.07-0.48) 4.73E-04 0.13 (0.06-0.26) 5.09E-09 0.13 (0.06-0.27) 1.94E-08

0.10 (0.03-0.33) 1.57E-04 0.19 (0.08-0.48) 4.23E-04 0.27 (0.12-0.61) 1.88E-03 0.19 (0.11-0.34) 3.93E-09 0.17 (0.09-0.32) 2.29E-08

4.73 (1.94-11.52) 6.15E-04 4.81 (2.07-11.15) 2.55E-04 3.51 (1.51-8.18) 3.65E-03 4.29 (2.62-7.05) 8.25E-09 4.43 (2.61-7.49) 3.10E-08

5.25 (2.00-13.76) 7.57E-04 5.09 (2.08-12.47) 3.69E-04 3.82 (1.66-8.83) 1.69E-03 4.60 (2.75-7.72) 6.83E-09 4.69 (2.71-8.12) 3.34E-08

4.60 (1.74-12.21) 2.16E-03 4.10 (1.74-9.66) 1.25E-03 3.88 (1.77-8.47) 6.87E-04 4.13 (2.51-6.79) 2.23E-08 4.48 (2.62-7.64) 4.02E-08

ewly identified loci reaching genome-wide significance (P<5x10-8). P-values of meta-analysis were derived from fixed-effects models. One-sided ASSET analysis was used to
AF of cases in all datasets; c MAF of controls in all datasets; d Multivariate logistic regression in additive models adjusted for sex and age.
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Chr. rsID Nearest Gene Location Allelea MAFb MAFc

22 rs78345670 LRP5L intronic G 0.014 0.002

5 rs141018877 FAM170A intergenic G 0.015 0.004

12 rs112991728 TMEM119 exonic A 0.001 0.012

3 rs117472184 NSUN3 intergenic A 0.002 0.015

10 rs1339820 EXOC6 3’-UTR A 0.012 0.002

6 rs186150479 GRIK2 intergenic A 0.002 0.014

5 rs118010155 ARRDC3-AS1 intergenic G 0.013 0.003

4 rs138911213 CCSER1 intronic A 0.014 0.004

5 rs143025350 LINC01194 intergenic A 0.001 0.014

7 rs143566843 OR2A14 intergenic A 0.002 0.014

4 rs147972672 SLIT2 intronic C 0.013 0.003

17 rs144335589 GRN intergenic A 0.013 0.003

3 rs73832011 RBMS3-AS3 ncRNA_intronic A 0.012 0.004

The table presents the meta-analysis and ASSET analysis results of ESCC, GC and CRC dataset for
correct the false positive rate caused by overlapping controls in three datasets. a Effect Allele; b M
Chr, chromosome; MAF, minor allele frequency; OR, odds ratio; ASSET, Association analysis b
1

n

a
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In the ESCC dataset, intergenic variant rs117472184 in NSUN3

(G→A) showed the most significant association with ESCC risk [OR

(95% CI) = 0.09 (0.03-0.28), P = 5.00×10-5].

The significant loci in the meta-analysis were further validated

in three external datasets (Supplementary Table 5). Three variants

were successfully replicated in the ESCC dataset, and 2 variants

were found significantly associated with GC and CRC risks,

respectively (P<0.05). However, no common variant passed the

significant threshold (set as 0.05) in all three validation datasets.

Two variants were replicated in two validation populations.

EXOC6/rs1339820 – a significant SNP in GC validation [OR

(95% CI) = 1.28 (1.03-1.60), P = 0.03], was also significantly

associated with CRC in validation [OR (95% CI) = 0.44 (0.24-

0.81), P = 0.01]. ABCC11/rs75797074 A allele showed protective

effect with GI cancer risk in ESCC and CRC validation datasets

while the results of ASSET meta-analysis indicated that it was a risk

allele for GI cancer initiation [OR (95% CI) = 4.51 (2.62-7.77),

PASSET = 5.23×10-8].
3.3 Stratified analysis of single variant

The results of stratified analysis showed consistent effects in

most subgroups in each cancer type, although the P-values of some

variants were not significant due to insufficient number of samples

(Supplementary Tables 2–4). After stratifying the population by

gender, age and smoking status, the effects of some GI cancer-

associated variants seem to differ across different cancers. Age

seems to have a specific effect on the ESCC and GC for two
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variants. For holders of risk allele LRP5L/rs78345670-G, people

under age of 60 may have a higher risk for ESCC [OR (95% CI)

=13.50 (1.77-103.10), P=0.012], whereas older people (>60 years

old) may be more susceptible to GC [OR (95% CI) =18.54 (2.46-

139.90), P=0.005]. The opposite effect of age is seen in EXOC6/

rs1339820-A holders and risk of ESCC and GC. For holders of the

SLIT2/rs147972672-C allele, females have a 2.5-fold increased risk

of ESCC compared to males, whereas males are at higher risk for

GC. For bearers of RBMS3-AS3/rs73832011-A, the risk for all three

GI cancers is only significant in non-smokers. The modifying effect

of demographic or lifestyle factors found above is based on the

assumption of holding a single variant, for people holding more

than one risk variants, this modifying effect may change.
3.4 Gene-based rare variant analysis

Based on the principle of the Optimal Sequence Kernel Association

Test (SKAT-O) analysis, 38,171 shared cross-cancer loci were merged

into SETs (genes), whereas two or more loci located in the same gene

region were merged into a set, and 6,741 sets spanning 28,152 loci were

constructed. After FDR correction, 48, 31 and 25 genes were found to

be significant in ESCC, GC and CRC, respectively, of which 20 were

significant in at least two cancer types (Table 3). Among which three

genes, EXOC6 (Padj|ESCC=7.30×10
-3, Padj|GC=6.00×10

-4, Padj|

CRC=2.6×10
-2), LRP5L (Padj|ESCC=2.70×10

-3, Padj|GC=5.70×10
-3, Padj|

CRC=1.65×10
-2), MIR1263/LINC01324(Padj|ESCC=3.22×10

-2, Padj|

GC=4.36×10
-2, Padj|CRC=3.26×10

-2) were statistically significant in all

three cancer types. In addition, two included SNPs EXOC6/rs1339820
FIGURE 2

Manhattan plot for cross-cancer meta-analysis. The meta-analysis revealed 13 shared variants passed the genome-wide threshold of 5×10-8in ESCC,
GC and CRC. The x-axis denotes the chromosome location of the variants; the y-axis represents the -log10(Pmeta) value of each variant. The rsID of
the significant SNPs and the corresponding genes are annotated.
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TABLE 3 Significant genes associated with GI cancers by SKAT-O analysis.

GC CRC
Significance in cancerc

lue FDR P-value FDR

E-06 5.70E-03 8.10E-06 1.65E-02 1

E-07 6.00E-04 2.19E-05 2.46E-02 1

E-05 4.36E-02 5.32E-05 3.26E-02 1

E-06 7.80E-03 1.70E-02 3.34E-01 2

E-04 4.77E-02 8.96E-04 9.74E-02 2

E-04 4.36E-02 1.54E-03 1.24E-01 2

E-04 4.78E-02 6.49E-03 2.40E-01 2

E-04 4.78E-02 1.87E-01 6.84E-01 2

E-04 4.77E-02 1.05E-03 1.09E-01 2

E-07 6.00E-04 7.54E-04 9.08E-02 2

E-04 4.74E-02 2.48E-03 1.59E-01 2

E-04 4.36E-02 1.26E-02 3.04E-01 2

E-05 3.92E-02 1.65E-01 6.67E-01 2

E-06 8.50E-03 4.68E-04 7.69E-02 2

E-04 4.78E-02 2.49E-01 7.42E-01 2

E-05 3.92E-02 2.03E-03 1.46E-01 2

E-04 4.77E-02 3.29E-05 2.46E-02 3

E-04 4.84E-02 1.50E-04 4.74E-02 3

E-03 1.24E-01 2.83E-05 2.46E-02 4

E-04 7.57E-02 2.42E-05 2.46E-02 4
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Gene region Chr.
positiona cMAF No. SNPsb

ESCC

P-value FDR P-v

LRP5L 22q11.23 0.005 2 3.65E-06 2.70E-03 3.36

EXOC6 10q23.33 0.005 3 1.76E-05 7.30E-03 1.01

MIR1263/LINC01324 3q26.1 0.028 5 2.10E-04 3.22E-02 9.13

EPDR1/STARD3NL 7p14.1 0.005 2 1.41E-04 2.57E-02 6.91

LINC01288/UNC5D 8p12 0.023 4 1.86E-04 3.05E-02 1.83

LINC01683/LINC02573 21q21.1 0.041 6 1.72E-05 7.30E-03 1.15

LINC02156/RPAP3 12q13.11 0.007 4 2.49E-05 7.30E-03 2.13

LRP3 19q13.11 0.016 2 3.68E-07 8.00E-04 2.10

MIR548XHG/LINC01683 21q21.1 0.044 13 5.10E-07 8.00E-04 1.90

NAALADL2 3q26.31 0.053 13 7.48E-07 8.00E-04 1.75

NETO1 18;18 E4 0.010 2 4.56E-05 1.14E-02 1.52

NSUN3/MIR6730 3q11.2 0.039 8 8.76E-07 8.00E-04 1.16

SEPTIN9 17q25.3 0.023 4 1.01E-05 5.70E-03 6.98

TASP1 20p12.1 0.026 6 8.24E-07 8.00E-04 8.78

TPSD1/UBE2I 16p13.3 0.013 2 4.56E-06 3.00E-03 2.07

ZNF737 19p12 0.003 2 8.14E-05 1.58E-02 6.86

ABCC11 16q12.1 0.023 8 6.61E-04 6.55E-02 1.91

MYCBP2 13q22.3 0.013 3 1.99E-02 3.48E-01 2.23

FAM170A/PRR16 5q23.1 0.038 12 4.88E-06 3.00E-03 1.38

SLC22A2 6q25.3 0.012 2 1.50E-05 7.20E-03 5.66

aChromosome Build GRCh37;
bNo. SNPs =Total number of SNPs binned in the gene;
c1= significant genes in three cancers; 2= significant genes in ESCC and GC; 3= significant genes in GC and CRC; 4= significant genes in ESCC and CR
cMAF, cumulative minor allele frequency.
a

C
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and LRP5L/rs78345670 were also significant in the single variant meta-

analysis. ABCC11 showed significant in GC and CRC dataset (Padj|

GC=4.77×10
-2, Padj|CRC=2.46×10

-2) while the variant rs75797074 located

inABCC11 nearly passed ASSET analysis with the P-value of 5.23×10-8

(Supplementary Table 1). Detailed information of the SNPs included in

these 20 genes is summarized in the Supplementary Table 6.
3.5 Pathway enrichment analysis

Significant genes in each cancer type identified by SKAT-O

were subjected to pathway enrichment analysis based on GO,

KEGG and Reactome databases. FDR test was conducted in

pathway analysis rather than SKAT-O to avoid over-adjustment.

As a result, GO enrichment analysis identified 180, 168, 115

pathways in ESCC, GC and CRC datasets, in which 24 were

common across cancers (Supplementary Tables 7–10). In

contrast, no significant pathways passed FDR tests in the KEGG

and Reactome databases. After filtrating 7 subset pathways and 2

obsoleted pathways, we found 15 pathways which were shared in 3

cancers (Figure 3), 7 pathways were fallen under the categories of

biological process (BP) and 8 pathways belonged to cellular

components (CC). The majority of the pathways represent

neurological functions and structures, indicating the potential

association between neurogenesis and cancer risks. Among the BP

pathways, ‘glutamatergic synaptic transmission’ showed the largest

fold enrichment (FE) in all three cancers, while ‘axonogenesis’ had

the most significant adjusted P-value and most enriched genes in

ESCC and CRC datasets. According to the GO database,

‘axonogenesis’ is a subset of the pathway ‘axon development’, in
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that case, we included the larger pathways in the bubble diagram.

Within the CC category, ‘catenin complex’ presented the largest FE

in all three cancers (FEERCC = 4.96, FEGC = 5.18, FECRC = 8.48),

which was also the most significant pathway in CRC dataset.
4 Discussion

Most of the GI cancers share similar multistep carcinogenic

processes, therefore exploring shared genetic susceptibility factors

can broaden our understanding of the underlying mechanisms in

GI cancers. Previous genome-wide association studies focusing on

common variants (MAF > 0.01) revealed a handful of loci which

associated with individual types of cancer, leaving a considerable

proportion of genetic susceptibility remain to be discovered. We

hypothesized that parts of the susceptibility may be explained by

rare variants with larger effect sizes, and the cross-cancer design

may increase the statistical power to detect shared genetic features.

This analytical strategy was implemented through meta-analysis

along with ASSETmethod of single variants and supplemented with

combined gene-based approach. The biological significance of the

identified genes was further explored by pathway enrichment

analysis. As a result, we identified 13 novel independent genetic

variants associated with GI cancer susceptibility, 20 potential

susceptibility genes shared by at least two GI cancers by SKAT-O

analysis (3 genes shared by all three cancer types), and 15 pathways

that were significantly enriched within three GI cancers.

In the single variant cross-cancer meta-analysis, the most

significant SNP rs78345670 resides in the intronic region of LRP5L,

which is also one of the most significant genes in SKAT-O analysis
B

C D

A

FIGURE 3

Enrichment analysis of common GI pathways in ESCC, GC and CRC. (A) The Venn diagram showed the numbers of potential susceptibility genes
included in pathway enrichment analysis in ESCC, GC and CRC datasets. Overall, 202 genes were common in 3 cancer type, additionally, 143 genes
were common in ESCC and GC, 121 genes were common in ESCC and CRC, and 145 genes were common in GC and CRC; (B–D) Bubble plots of
pathway enrichment in ESCC, GC and CRC. Among 15 common pathways, 7 pathways were under the categories of biological process (BP), and 8
pathways belonged to cellular components (CC).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1161639
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2023.1161639
shared by all three cancers. Another variant rs1339820 located in the

3’-UTR region of EXOC6 which was also a member of shared

associated genes in GI cancers. This variant was also significant in

GC and CRC validation datasets, although only the OR orientation in

GC was consistent with the original meta-analysis. ABCC11/

rs75797074, a significant SNP associated with risk of all three

cancers (yet not passed the ASSET testing threshold), was

successfully validated in the CRC and ESCC datasets

(Supplementary Table 5). These three variants or SNPs in their

corresponding LD blocks were not previously associated with GI

cancer risk. EXOC6 has been shown to be a predictor of breast cancer

in previous study (33), but its role in GI cancers has not been

reported. Taken together, EXOC6/rs1339820 and ABCC11/

rs75797074 showed some cross-cancer susceptibility in CG and

CRC, and LRP5Lmaybe a potential susceptibility gene in GI cancers.

Furthermore, gene-based association analysis revealed 20 genes

that were shared by at least two GI cancers by SKAT-O analysis.

Among them three genes were implicated in all three cancer types,

two of which correspond to the significant SNPs in the single

variant analysis. LDL Receptor Related Protein 5 Like (LRP5L) is a

key gene involved in the regulation of Wnt signaling pathway,

which plays an important role in tumor progression (34). Abnormal

Wnt signaling pathway has been identified in various types of

cancer, and it has been reported to be involved in maintaining

abnormal proliferation of gastric cancer (35). It is also reported that

TMEM119 that encode membrane proteins may regulate Wnt

signaling pathway according to previous studies (36, 37).

However the potential role of these genes in GI cancers were not

thoroughly studied. We have conducted intersection search on

Pubmed for all significant genes found in our study, and found

LPR5L, TMEM119 and SLIT2 have been reported in other non-GI

cancer types. TMEM119 was observed to be overexpressed in

ovarian cancer (OV) tissues and associated with poor survival in

OV patients. Overexpression of this gene also promoted

proliferation, invasion, and migration in OV cells (38). Similarly

in osteosarcoma, TMEM119 was connected with tumor size, clinical

stage and overall survival time, and associated with cell cycle,

metastasis, apoptosis as well as TGF-b signaling in osteosarcoma

cell lines (39). SLIT2 was reported to regulate breast tumor growth

and metastasis by blocking the expansion of tumor vasculature (40),

and was also reported to be a predictive marker for thyroid cancer

(41). Abnormal expression of LPR5L has been reported in breast

cancer and pancreatic cancer (42, 43). Therefore, LPR5L,

TMEM119 and SLIT2 may confer some universal onco-

susceptibility, while other identified genes were mainly related to

GI cancer susceptibilities based on our results.

Pathway enrichment analysis indicated major pathways related

to synaptic transmission, axon development, catenin complex and

regulation of ion transmembrane transport in the carcinogenesis of

three GI cancers. Different groups of metabotropic glutamate

receptors (mGluRs) modulate part of GI tract selectively (44),

among which group III mGluRs was implicated in CRC risk and

considered as a prognostic marker in CRC (45). Our findings may

extend its involvement in the carcinogenic process of GI cancers

other than CRC. GRIK2 (glutamate ionotropic receptor kainate type

subunit 2) – one of the susceptibility genes indicated by single
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variant analysis, acts as a member of glutamatergic synaptic

transmission pathway which may contribute to GI cancers

carcinogenesis by regulating glutamate receptor in synapse (46).

Based on literature search, LRRN4 and NLGN1 in the nerve or

glutamatergic synapses complex were found to promote CRC

progression. The transmembrane protein Neuroligin 1 (NLGN1)

is reported to interact at the synapse with the tumor suppressor

Adenomatous Polyposis Coli (APC), which is intensively involved

in the pathogenesis of CRC and is a key player in the WNT/b-
catenin pathway (47). As for the potential correlation between

synapse and carcinogenesis, several researchers found that tumor

cells can form pseudo-tripartite synapses with neurons to increase

tumor growth (48–50). Genetic alterations in non-neural/neural

synapse systems were reported to contribute to the development of

ESCC (51). The synaptic adhesion-like molecule (SALM) was found

to be a potential prognostic biomarker in GC patients (52). Former

study showed that the hypermethylation silencing of GRIK2 results

in decreased colony formation and invasion, in gastric cancer cells

(46). Their research indicated that ionotropic glutamate receptors

were related to the development and progression of some GI

cancers. In the pathway analysis, a total of 29 and 27 genes

identified by SKAT-O were enriched in glutamatergic synapse

pathway in ESCC and CRC (Supplementary Tables 7–9). Taken

together it is plausible that these genes may contribute to GI cancers

carcinogenesis by regulating glutamate receptor in synapse.

According to the results of our pathway enrichment analysis,

GRIK2 participate in the ‘cation channel complex’ and ‘regulation

of trans-synaptic signaling’ pathway. Therefore, we speculate that

glutamate receptors may contribute to GI cancer risks mediated by

crosstalk of various pathways related to synaptic transmission,

organization and trans-membrane transport. Taken together, our

research may provide the evidence of the association between these

signaling pathways and GI cancer risks.

Neuron density is generally regarded higher in tumor tissues

than normal tissues (53), and neuron development is considered as

a common characteristic in tumor microenvironment; hence

cancer-specific neurogenesis may promote cancer growth (54).

SLIT2 might mediate the process of axon guidance by attracting

or repelling developing axons and migrating neurons (55). In our

research, ‘axon development’, and its subgroups ‘axonogenesis’ and

‘axon guidance’ were significantly enriched in all three GI cancers.

Consistent with our findings, a miRNAs-based study suggested that

axon guidance, targeted by dysregulation of miRNAs, may mediate

the effects of oncogenes in gastric, colorectal and liver cancers (56).

Moreover, the interaction between axon guidance and the

corresponding receptors plays a vital role in the formation of

malignancies by regulating vascularization, cell survival, apoptosis

and cell migration (57). To this end, we provide further evidence for

the potential relationship between neuron development and the

carcinogenic progress of GI cancers.

There are several limitations to our study. First, due to the

retrospective nature of our patient cohort, missing information may

affect the accuracy of ourmultivariate logistic regression analysis, which

only adjusted for age and sex. Important lifestyle factors such as

drinking cannot be assessed. Second, the sample size of each cancer

type was relatively small, with the overlapping control population.
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Although we tried to address this potential issue by using the ASSET

test, this may still result in limited statistical power. However, the

research interest of cross-cancer susceptibility has allowed us to focus

only on the shared association through the meta-analysis. Last, our

study population come from the eastern China, while the validation

dataset included subjects from the northern and central China. No

single SNP was validated in all three validation datasets suggests

potential population stratification hence extrapolation of the result

needs cautious implementation.
5 Conclusions

Based on a sequential investigation of single variant, gene-based

and pathways enrichment analysis, we uncovered novel rare

variants and genes that may contribute to the susceptibility of GI

cancers. Further studies are warranted to look into the underlying

mechanism of the association between these susceptibility markers

and GI cancers.
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