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Subtype and prognostic
analysis of immunogenic cell
death-related gene signature
in prostate cancer

Zhen Kang1,2†, Jiang-Bo Sun1,2†, Fei Lin1,2†, Xu-Yun Huang1,2†,
Qi Huang1,2, Dong-Ning Chen1,2, Qing-Shui Zheng1,2,
Xue-Yi Xue1,2,3, Ning Xu1,2,3* and Yong Wei1,2*

1Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical
University, Fuzhou, China, 2Department of Urology, National Region Medical Centre, The First
Affiliated Hospital, Fujian Medical University, Fuzhou, China, 3Fujian Key Laboratory of Precision
Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
Background: Immunogenic cell death (ICD) plays a vital role in tumor

progression and immune response. However, the integrative role of ICD-

related genes and subtypes in the tumor microenvironment (TME) in prostate

cancer (PCa) remains unknown.

Materials andmethods: The sample datawere obtained fromTheCancer Genome

Atlas (TCGA), Gene Expression Omnibus (GEO), and Memorial Sloan Kettering

Cancer Center (MSKCC) prostate cancer-related databases. We first divided the

subtypes based on ICD genes from 901 PCa patients and then identified the

prognosis- related genes (PRGs) between different ICD subtypes. Subsequently, all

the patients were randomly split into the training and test groups. We developed a

risk signature in the training set by least absolute shrinkage and selection operator

(LASSO)–Cox regression. Following this, we verified this prognostic signature in both

the training test and external test sets. The relationships between the different

subgroups and clinical pathological characteristics, immune infiltration

characteristics, and mutation status of the TME were examined. Finally, the

artificial neural network (ANN) and fundamental experiment study were

constructed to verify the accuracy of the prognostic signature.

Results: We identified two ICD clusters with immunological features and three

gene clusters composed of PRGs. Additionally, we demonstrated that the risk

signature can be used to evaluate tumor immune cell infiltration, prognostic

status, and an immune checkpoint inhibitor. The low-risk group, which has a high

overlap with group C of the gene cluster, is characterized by high ICD levels,

immunocompetence, and favorable survival probability. Furthermore, the tumor

progression genes selected by the ANN also exhibit potential associations with

risk signature genes.
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Conclusion: This study identified individuals with high ICD levels in prostate

cancer who may have more abundant immune infiltration and revealed the

potential effects of risk signature on the TME, immune checkpoint inhibitor, and

prognosis of PCa.
KEYWORDS

immunogenic cell death, prostate cancer, immune infiltration, cancer subtype,
prognostic signature
1 Introduction

Prostate cancer (PCa) ranks as the second most common male

cancer worldwide, with approximately 1.3 million new cases

diagnosed each year (1). As PCa is an androgen-dependent tumor

in men, the combination of androgens and androgen receptors can

promote tumor development. Consequently, androgen deprivation

therapy (ADT) has become the primary drug therapy for PCa,

effectively improving the 5-year survival rate of patients to nearly

100% (2). However, when a patient experiences tumor metastasis or

uncontrolled prostate-specific antigen (PSA) levels, the tumor may

develop hormone resistance, resulting in resistance to ADT agents

and a decline in the 5-year survival rate to approximately 30%.

Therefore, exploring new treatment approaches for advanced

prostate cancer is crucial to address unmet clinical needs (3).

The progression, metastasis, and deterioration of tumors are

closely related to immune responses. The immune system can

eliminate tumors through various mechanisms, exerting a certain

level of control. In recent years, immunotherapy has made

significant advancements. Immune checkpoint inhibitors (ICPIs)

have transformed the treatment landscape for most malignant

tumors, but their positive therapeutic effects have yet to be

identified in advanced prostate cancer (4).

In prostate cancer, sipuleucel-T is currently the only cancer

vaccine approved by the US Food and Drug Administration for

castration-resistant prostate cancer (CRPC). The IMPACT study

results demonstrated that sipuleucel-T increased the overall survival

of patients by 4.1 months (5). However, many immunotherapy

trials have reported unsatisfactory results. In a phase I clinical trial

of the CTLA-4 antibody ipilimumab, only 2 out of 14 advanced PCa

patients experienced a PSA decline of ≥50% (6). Another phase II

trial, CheckMate 650, investigated the combination of ipilimumab

and nivolumab (7), which yielded a mere 25% objective response

rate. In a phase III trial, the 1-year survival rate for PCa patients

treated with ipilimumab was 46.5%, compared to 40.8% in the

placebo group (8), a difference that was not statistically significant.

These results suggest that the outcomes of immunotherapy in the

treatment of PCa are inconsistent and deserve further exploration.

One reason for this phenomenon is that most prostate cancers

are “cold” tumors with low T- cell infiltration (9), leading to an

insufficient number of immune cells in the tumor immune

microenvironment and, consequently, an unstable therapeutic

effect of ICPIs. Some researchers have proposed developing new
02
biomarkers based on the existing multiple immune activation

pathways and stratifying the population according to immune

response (10–12). This approach aims to explore the

immunological characteristics of different population levels,

ul t imate ly achieving personal ized immunotherapy in

prostate cancer.

Immunogenic cell death (ICD) is a form of regulated cell death

that can mediate the activation of innate and adaptive immune

responses by coordinating a complex information exchange

between dead cancer cells (DCCs) and immune cells (13).

However, it remains unclear whether different ICD levels exist in

prostate cancer. In theory, dead tumor cells are typically immune-

tolerant or non-immunogenic, and under ICD induction, DCCs

recruit antigen-presenting cells (APCs) and effector CD4+ and

CD8+ T cells by releasing tumor-associated antigens and cytokines

through damage-associated molecular patterns (DAMPs). ICD

facilitates a transition in the tumor microenvironment from a non-

inflammatory “cold” state to an inflammatory “hot” state (14),

enhancing T- cell activation, which ultimately results in more

effective immune-mediated tumor cell killing.

To thoroughly evaluate the association between prostate cancer

and ICD response, we identified subgroups with different ICD levels

in the prostate cancer population based on ICD-related genes. We

used the differentially expressed genes (DEGs) between ICD groups

to establish prognostic risk models to analyze the differences in

prognosis and immune microenvironment among patients with

various ICD levels. The results indicate that this new ICD-related

risk model can be employed to predict the prognosis of prostate

cancer and evaluate the immune environment.
2 Materials and methods

2.1 Data acquisition

We downloaded the fragments per kilobase per million (FPKM)

data, clinical survival data, and tumor gene mutation-related data

for 554 prostate cancer patients from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). In addition, we

downloaded the “GSE70770”, “GSE46602”, and “MSKCC” datasets

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) and The Fudan Data Portal for

Cancer Genomics (https://data.3steps.cn/cdataportal/), which
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included a total of 454 second-generation sequencing data and

matched clinical data for prostate cancer. All the specimens in the

database were collected after radical prostatectomy. We accessed

the Molecular Signatures Database (MSigDB) through the msigdb

package in R and downloaded the “c2.cp.kegg.v7.4.symbols. gmt”

file. More importantly, 33 human ICD-related genes were derived

from the documentation of Garg AD et al. (15).
2.2 Processing of genetic data

After converting TCGA-PRAD FPKM data to TPM format, we

used the “sva” package to merge the gene expression data of

GSE70770, Memorial Sloan Kettering Cancer Center (MSKCC),

and TCGA-PRAD, which was named “co-matrix”; the horizontal

axis represents the patient ID of 901 cases, and the vertical axis

represents gene names.
2.3 Processing of clinical data

Our clinical data were obtained from the TCGA-PRAD

database , which was updated in Apr i l 2022 , where

“b iochemica l_ r e cu r r ence ” was us ed a s the d i s e a s e

progression status and “days_to_first_biochemical_recurrence”

was used as the disease progression time. For patients

without recorded “days_to_first_biochemical_recurrence”,

“days_to_last_followup” was used as the disease progression

time and “has_new_tumor_events_information” as the disease

progression status.

In GSE70770, “biochemical relapse” was used as the disease

progression status, and “time to bcr” was used as the disease

progression time. In GSE46602, “bcr” was used as the

disease progression status and “bcr_free_time” was used as the

disease progression time. In the MSKCC cohort, “Disease Free

Status” was used as the indicator of disease progression and

“Disease Free” was used as the time of tumor occurrence

and progression.
2.4 ICD genes in PCa

The “maftools” package in R was utilized to process TCGA

mutant gene data to obtain the mutation status of ICD gene in

TCGA-PRAD. In addition, the copy number variation (CNV)

profile in PCa was analyzed in “Perl” to delineate the ICD gene

CNV situation in TCGA-PRAD. Finally, the “limma” package was

used to analyze the ICD gene expression difference between normal

and tumor tissues.
2.5 The first consensus clustering

The “ConsensusClusterPlus” package (16) in R was used to

perform consensus clustering on the “co-matrix” described in

Section 2.2, with clustering based on ICD genes. The main
Frontiers in Oncology 03
parameter set t ings were as fol lows: c lusterAlg=pam;

Short=spearman; seed=123456. In this study, the optimal number

of clusters was evaluated between k = 2 and k = 9, and the process

was replicated 1,000 times to ensure reliable results.
2.6 Compare different ICD clusters

The “survival” package was used to compare the clinical

progression-free survival (PFS) of different ICD clusters, while

gene set variation analysis (GSVA) was used to identify functional

differences in pathways between the two clusters. The “limma”

package was used to screen for ICD-related differentially expressed

genes (ICD-DEGs) between the two ICD clusters, using a

significance threshold of adjusted p< 0.05 and a log2 fold-

change< 0.585. Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis was also performed on the identified

ICD-DEGs. The single-sample gene set enrichment analysis

(ssGSEA) approach was used to compare the infiltration

composition of 23 immune cells in each TCGA-PRAD sample.

Univariate Cox regression analysis was performed to identify

prognosis- related ICD-DEGs (PRGs), and the PRGs were further

analyzed to determine their potential as prognostic biomarkers

for PCa.
2.7 The second consensus clustering

1) After extraction of the PRG expression profiles from the co-

matrix, consensus clustering was performed using the

“ConsensusClusterPlus” package in R, with the adjusted number

of clusters set to 2–10. The key parameter settings were

“clusterAlg=km; distance=euclidean, seed=123456”, and 1,000

iterations were performed. The most appropriate clustering

number was determined based on the silhouette coefficient and

discrimination between different subtypes. To distinguish the ICD

cluster in “2.5”, it is referred to here as a gene cluster. 2) The

“survival” package was used to investigate patient PFS between

different gene clusters, and the “heatmap” package was utilized to

compare clinical characteristics. 3) After clinical survival data and

PRGs of all patients were combined, they were randomly divided

into the training group and the testing group at a ratio of 7:3. In the

training group, least absolute shrinkage and selection operator

(LASSO) regression analysis was employed to minimize

overfitting and to choose relevant variables among the PRGs.

Multivariate Cox proportional hazards regression analysis was

conducted to identify a risk signature (RS). The formula was as

follows: riskScore = on
i=1bi ∗RGi, where bi represents the

expression of the risk gene (RG) and RGi represents the gene

expression coefficient calculated from multivariate Cox regression.

With the use of the median risk score as the cutoff, patients were

divided into high- and low-risk groups in the training group, and

the PFS of the two groups was compared to verify the accuracy of

the RS. The RS accuracy was also confirmed in the testing group and

external test set GSE46602. The “ROC” package was used for risk

score analysis and receiver operating characteristic curve analysis.
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4) Considering age, stage, Gleason score (GS), and risk score as

survival-related factors, a nomogram was assembled based on these

factors from samples in all patients. This nomogram provides

clinicians with a quantitative approach to predict the survival of

PCa patients. The calibration curve was drawn to verify the

accuracy of the nomogram. 5) The “cor.test” function of the

“psych” package was used to test the statistical significance of the

correlation coefficient between ICD gene and RG in the co-matrix.

6) The pathological picture of the risk gene was obtained from the

Human Protein Atlas (HPA) (https://www.proteinatlas.org/).
2.8 Risk signature and immune effect

1) The tumor immune microenvironment variations in low-

and high-risk subtypes were analyzed by computing the immune

score and tumor purity of each PCa sample using transcriptome

data and the “estimate” package. 2) Based on the risk score

calculated by RS, “reshape” and “corrplot” packages were used to

evaluate the correlation between the risk score and immune

checkpoint molecules and tumor mutational burden (TMB).
2.9 Artificial neural network

The mRNA expression matrix and platform sequencing data,

recorded with hormone-sensitive prostate cancer (HSPC) and

CRPC, were downloaded from the GEO database. A simple

random sampling method without repetition was used to divide

the dataset into two groups: the training set and the testing set, and

note that this should be distinguished from the concepts in Section

2.7. The “limma” package was used to analyze the differential genes

of CRPC and HSPC in the training set. Then, multiple decision trees

of the random forest were trained on the PCa samples using the

“randomForest” package. The different genes in the training set

were processed to perform the random forest operation, with the

parameters set as “seed=123456, ntree=500, MeanDecreaseGini=2”.

Based on the selected random forest-related genes (RFGs), an

artificial neural network (ANN) prediction model was established

using the “neuralnet” package, and the receiver operating

characteristic (ROC) curve was drawn using the “pROC” package.

The prediction accuracy of the ANN model was analyzed and

demonstrated in both the test set and the training set. Lastly, the

“psych” package was used to test whether the correlation coefficient

between RFGs and RG in co-matrix was statistically significant.
2.10 RNA extraction and qRT-PCR

RNAwas extracted from RWPE-1/PC-3/C4-2/LNCaP cells using a

TRIzol kit (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s specifications. After detection of the RNA

concentration using a nanospectrophotometer, the extracted RNA

was converted into cDNA using a reverse transcription kit

(TransGen Biotech, Beijing, China). Specific primers for the target

gene were designed in NCBI (Supplementary Table 1) and synthesized
Frontiers in Oncology 04
by Shangya Biotechnology Co., Ltd. (Fuzhou, China). Appropriate

amounts of cDNA, gene-specific primers, ddH2O, and 2× Taq Pro

Universal SYBR qPCRMaster Mix were mixed and transferred to PCR

tubes. All qPCRs were set up in quadruplicate, with each tube

containing a 20-ml reaction system. The reaction conditions were as

follows: 95°C for 30 s, 95°C for 5 s, and 60°C for 30 s, for a total of 40

cycles. To calculate the gene expression levels, the following steps were

taken: 1) the Ct mean for each gene of each sample was calculated. 2)

The Ct value of the target gene in each sample was subtracted from the

Ct value of the internal reference molecule (GAPDH) in the same

sample to obtain the DCt value of the target molecule for each sample

in each group. 3) The DCt arithmetic mean of the target gene in all

samples was calculated separately. 4) The DCt value of the target

molecule in each sample of each group (Step 2) was subtracted from

the mean DCt value of the target molecule in all samples (Step 3) to

obtain the DDCt value of the target gene in each sample of each group.

5) After the calculation of 2−DDCt, the relative expression of the target

gene in each sample of each group was finally obtained. In RWPE-1

and C4-2, radioimmunoprecipitation assay (RIPA) buffer and the

addition of appropriate protease inhibitors were used to extract total

proteins from each cell type. After the protein concentration was

measured using a bicinchoninic acid (BCA) protein concentration

assay kit, the normal electrophoresis, membrane transfer, blocking, and

the corresponding protein concentration were determined. The protein

level was detected by incubating the antibody, which was purchased

from ImmunoWay Biotechnology Company (Plano, TX, USA).
2.11 The tools

R version 4.1.1 was used for analysis in this study and the

complete raw data and relevant code are provided in the

Supplementary Data 1. A significance level of p< 0.05 was used to

determine statistical significance (* p< 0.05; ** p< 0.01; *** p<

0.001). The procedure of this study is summarized in Table 1.
3 Results

3.1 ICD and PCa

We identified 33 human ICD-related genes through a

comprehensive literature review, all of which can function as

ICD-related danger signals or regulatory molecules. In TCGA-

PRAD samples, 19 ICD genes exhibited varying degrees of

mutation, with the majority being missense mutations, and an

overall mutation frequency of 5.57% (Figure 1A). Among these,

PIK3CA had the highest mutation frequency. Concurrently, we

observed different degrees of DNA copy number variation in these

ICD genes (Figure 1B). HMGB1, HSP90, IL17RA, CD8A, CALR,

IL1B, IL17A, IFNB1, etc. displayed extensive CNV deletions, while

32 genes also demonstrated CNV on chromosomes (Figure 1C).

Moreover, 23 ICD genes exhibited significant differential expression

between benign tumors (n = 52) and prostate cancer (n = 501)

(Figure 1D). These results may suggest a potential association

between ICD and prostate cancer.
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FIGURE 1

ICD- related gene mutation and CNV analysis in PCa. (A) Mutation frequency of 33 ICD genes in TCGA-PRAD samples. The number on the right
indicates the mutation frequency of each gene. The bar chart on the right shows the proportion of mutations. The stacked bar chart on the bottom
shows the fraction of conversions. (B) The frequency of CNV of ICD genes in human chromosomes. (C) CNV gain and loss pattern of ICD gene.
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normal and tumor tissues. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical p-value
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3.2 ICD subtypes in PCa

The co-matrix incorporated nearly 18,000 gene expression data

from 901 patients, from which we extracted 33 ICD genes to generate

an ICD gene expression profile (Supplementary Table 2). In this

dataset, consensus clustering divided the 901 patients into two

subgroups (Supplementary Table 3), designated as ICD-H and

ICD-L (Figure 2A). Kaplan–Meier (K-M) analysis results

demonstrated a significant difference in PFS between the ICD-H

and ICD-L groups (p = 0.002) (Figure 2B). The immune tumor

microenvironment (TME) of ICD-H exhibited a more abundant

infiltration of T cells, B cells, and dendritic cells (Figure 2C). To

explain the phenomenon of population stratification from an ICD-
Frontiers in Oncology 06
level perspective, we analyzed the distribution of clinical information

and ICD genes in different populations (Figure 2D). We identified

general differences between the ICD-H and ICD-L subtypes, such as

higher expression of IL6, IL1B, IL10, and other interleukins in ICD-

H. In contrast, HMGB1 was more active in ICD-L. GSVA revealed

that the main functional pathways in ICD-H included the T- cell

receptor signaling pathway, MAPK signaling pathway, and JAK–

STAT signaling pathway, indirectly indicating an active immune

function in ICD-H. Meanwhile, ICD-L was primarily involved in

DNA synthesis, base excision repair, and unsaturated fatty acid

synthesis (Figure 2E). For further comparative analysis, we

screened 120 ICD-DEGs (p< 0.05, LogFC > 0.585) between ICD-H

and ICD-L by combining whole-genome data from the 901 patients
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Comparison of the clinical traits, survival status, and tumor immune microenvironment between different cluster subtypes obtained by consensus
clustering. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) Kaplan–Meier curve shows that there were
significant survival differences between ICD-L and ICD-H (p = 0.002). (C) The abundance of each TME infiltrating cell in two clusters. The upper and
lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent the median value, and black dots show outliers.
The asterisks represent the statistical p- value (*p< 0.05; **p< 0.01; ***p< 0.001). (D) Differences in clinicopathologic features and expression levels
of ICD genes between the two distinct subtypes. (E) GSVA of biological pathways between two distinct subtypes, in which red and blue represent
activated and inhibited pathways, respectively. (F) 120 DEGs between ICD-L and ICD-H. (G) KEGG pathways of differentially expressed genes. ICD,
immunogenic cell death; TME, tumor microenvironment; GSVA, gene set variation analysis; DEGs, differentially expressed genes; KEGG, Kyoto
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frontiersin.org

https://doi.org/10.3389/fonc.2023.1160972
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kang et al. 10.3389/fonc.2023.1160972
(Figure 2F). The functions of these DEGs were mainly concentrated

in the TNF signaling pathway, NF-kappa B signaling pathway, IL17

signaling pathway, and other related pathways (Figure 2G).
3.3 Gene subtypes in PCa

Univariate Cox regression analysis was performed on the 120

DEG dataset, yielding a total of 70 prognosis-related genes (PRGs).

Based on PRGs (Supplementary Table 4), consensus clustering of

the 901 patients was conducted, dividing the population into three

groups (A, B, and C) (Figure 3A). K-M survival analysis

demonstrated significant survival differences among the three

groups (p< 0.001) (Figure 3B), with group C exhibiting the best

survival prognosis. Differences in gene expression among the three

groups were also observed in the heatmap, as well as a high overlap

between group C and the ICD-H group (Figure 3C), indicating

more abundant immune cell infiltration (Figure 3D). In this study,

the cohort of patients with complete survival information (survival

time, survival status, and PRG expression) in the co-matrix was

divided into a 7:3 ratio, randomly assigning them to a training set (n

= 579) (Supplementary Table 5) and a test set (n = 248)

(Supplementary Table 6). With the use of the LASSO regression
Frontiers in Oncology 07
method in the training set, and setting a 10-fold cross-validation,

the optimal model was obtained (Figures 3E, F, G).
3.4 Risk signature

After screening the four risk genes (TIPARP, SERPINA3,

MT1M, and CST2), each sample acquired a risk score according

to the following formula: risk_score = exp(CST2) * 0.1095 − exp

(TIPARP) * 0.2893 − exp(SERPINA3) * 0.2235 − exp(MT1M) *

0.1915. The median risk score (−3.9943) in the training set was set

as the cutoff risk score to distinguish patients’ risk levels as high or

low. Subsequently, survival analysis in the training and test groups

suggested that the risk stratification determined by this signature

could help predict PFS (Figures 4A, B). ROC curves were used to

assess the sensitivity and specificity of the risk scores. The results

were evaluated according to the area under the curve (AUC). The

1-, 3-, and 5-year AUC values of the training group were 0.749,

0.688, and 0.652, respectively (Figure 4C), while those of the test set

were 0.742, 0.731, and 0.704, respectively (Figure 4D). As further

validation of the risk signature, notably, the results in the external

set (GSE46602) were consistent with those in the training group;

patients with high risk had shorter PFS (Figure 4E).
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FIGURE 3

Consensus clustering and LASSO analysis were performed according to PRGs. (A) Univariate Cox regression screened 70 PRGs. (B) Consensus matrix
heatmap defining three clusters (k = 3) and their correlation area. (C) Kaplan–Meier curve shows that there were significant survival differences
between gene clusters A, B, and C (p< 0.001). (D) Differences in clinicopathologic features and expression levels of PRGs between the three gene
clusters. (E) The abundance of each TME infiltrating cell in three gene clusters. (F) LASSO coefficient curves were selected with simulation
parameters set to 1,000. (G) Tenfold cross-validation of selecting tuning parameter in the LASSO model, and there were four variables (risk gene)
left. LASSO, least absolute shrinkage and selection operator; PRGs, prognosis-related genes; TME, tumor microenvironment. (*** p<0.001).
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The clinical data and risk scores of the entire data (training

group and test group) were combined to construct a nomogram

that could predict disease progression (Figure 4F). The ROC

curve showed that the nomogram had good predictive ability for

PFS, with high accuracy, and the AUC values of 1-, 3-, and 5-year

survival were 0.760, 0.780, and 0.704, respectively (Figure 4G).

The prediction ability of the nomogram for 1, 3, and 5 years was

highly coincident with that of the ideal model (Figure 4H), and

the C-index of the model was 0.73, indicating that the accuracy of

the model was commendable. For the risk genes, TIPARP,

SERPINA3, and MT1M were more actively expressed in the

low-risk group in both the training set (Figure 4I) and the test

set (Figure 4J), while CST2 was the only high-expression gene in

the high-risk group. Combined with ICD gene analysis, it was

found that CST2, as a high-risk factor, had a significant negative

correlation with IL6, while TIPARP, SERPINA3, and MT1M had

a significant positive correlation with IFNGR1, HSP90AA1, and

HMGB1 (Figure 4K). The ICD level was strongly correlated with

dendritic cell (DC) activity, and by combining analysis with

immune cells, it was found that CST2 was significantly

positively correlated with resting DC activity, while SERTAD3

was significantly positively correlated with activated DC activity.
Frontiers in Oncology 08
TIPARP and MT1M were also associated with macrophage and

CD4+ T- cell activity (Figure 4L).
3.5 Association between different sets

The ICD-L group had a lower risk score than the ICD-H group

(p< 0.001) (Figure 5A). There were also significant differences in

risk scores between groups A, B, and C, with group C having the

lowest risk score (p< 0.001) (Figure 5B). The “low-risk group C-

ICD-H” population showed a high overlap (Figure 5C). Regarding

the differences in the immune microenvironment between the high-

risk and low-risk scores, the low-risk group had a higher immune

cell infiltration score (Figure 5D) but a lower TMB (Figure 5E), as

calculated by Estimate. The “ICD-H” (Figure 5F) and “group C”

(Figure 5G) populations also had lower TMB levels, which

corresponded to better survival prognosis (Figure 5H).

The combined analysis of risk scores and TMB found that

patients in the “high-risk group-high TMB group” had the worst

prognosis, with no significant difference in PFS between the other

three combinations (Figure 5I). Higher expression of PD-L1

(CD274), IDO1, and LAG3 was observed in the low-risk group
A B C D

E F G H

I J K L

FIGURE 4

Prognosis value of the risk model in the training, test, and external test sets. (A, B) Kaplan–Meier survival curves of survival probability of patients
between low- and high-risk groups in the training and test sets, respectively. (C, D) ROC curves to predict the sensitivity and specificity of 1-, 3-, and
5-year survival according to the risk score in the training and test sets, respectively. (E) Kaplan–Meier survival curves of survival probability of patients
between low- and high-risk groups in the external test set. (F) Prognostic nomogram assembled from entire sets to predict 1-, 3-, and 5-year
survival rates for PCa patients. (G) The calibration chart of the nomogram for entire set. (H) ROC curves of the prognostic nomogram for 1, 3, and 5
years in the entire set. (I, J) Distribution pattern of the expression levels of the four risk genes in the training and test sets. (K) Interaction between
ICD genes and risk genes in PCa. The line connecting ICD genes and risk genes indicates their interaction, and the thickness of the line indicates the
correlation strength between every gene. Purple and green represent negative and positive correlations, respectively. (L) Correlations between the
abundance of immune cells and four risk genes in the risk signature model. ROC, receiver operating characteristic; PCa, prostate cancer; ICD,
immunogenic cell death.
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(Figure 5J) and also in the ICD-H group (Figure 5K), whereas

higher expression of PD-1, PD-L1, CTLA4, IDO1, and LAG3 was

observed in group C (Figure 5L). However, the high-risk population

had a higher number of CNV levels (Figures 5M, N) and poorly

differentiated stem cells (Figure 5O).
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In conclusion, there may be a group of prostate cancer patients

with a good prognosis and high ICD levels, represented by group C,

which can be identified by the risk prognosis model presented in this

study. This group may potentially benefit from immunotherapy, as

they display higher expression of immune checkpoint genes, lower
B C D

E F G H

I J K

L

M N O

A

FIGURE 5

Associations and distinctions between every subgroup. (A, B) Comparison of risk scores between every group in the ICD cluster and gene cluster.
(C) Alluvial diagram of every subtype distribution in groups with different risk groups and survival outcomes. (D) Correlations between risk score and
both immune and stromal scores. (E) Comparison of TMB between high-risk and low-risk groups. (F, G) The association between risk score and TMB
in the ICD cluster and gene cluster. (H) Kaplan–Meier survival analysis of the TMB in TCGA-PRAD cohort. (I) Kaplan–Meier survival analysis of four
groups stratified by combining the TMB and the risk signature in the TCGA-PRAD cohort. (J–L) The association between ICPI and every subtype.
The asterisks represent the statistical p-value (*p< 0.05; **p< 0.01; ***p< 0.001). (M, N) Waterfall plot of tumor somatic mutation established for
those with high- and low-risk groups. (O) The association between risk score and RNAs. ICD, immunogenic cell death; TMB, tumor mutational
burden; ICPI, immune checkpoint inhibitor.
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TMB, and more abundant immune cell infiltration. Identifying these

patients may help tailor personalized treatment approaches,

ultimately improving outcomes for prostate cancer patients.
3.6 Verified with ANN

We aimed to improve the predictive power of prostate cancer

progression by utilizing the GEO platform to acquire datasets. Due

to the limited availability of complete survival data, we decided to

combine datasets that recorded state changes to create a larger

dataset for analysis. Nine datasets were obtained from the GEO

platform. These datasets were randomly assigned to create five

training sets (GSE2443, GSE5377, GSE5803, GSE29650, and

GSE32269) with a total of 154 samples, which were later reduced

to 144 samples after removing normal prostate and incomplete data

samples. These samples included 60 HSPC samples and 84 CRPC

samples. Four test sets (GSE74685, GSE6811, GSE46002, and

GSE60329) were also created, containing 370 PCa samples,

including 118 HSPC samples and 196 CRPC samples. The

remaining 56 samples had no clear information recorded or

belonged to normal prostate tissue.

Following the pre-set screening conditions (p< 0.05, log2 FC< 1.5),

eight differentially expressed genes (MYLK, SPP1, ACTG2, PCaP4,

MSMB, KLK3, HBB, and AZGP1) were identified based on the

training group (Supplementary Table 7) (Figures 6A, B). SPP1 and

HBB were upregulated genes in CRPC, while the others were

downregulated genes. Random forest tree analysis was used to screen

genes from DEGs that could effectively distinguish PCa types (HSPC/
Frontiers in Oncology 10
CRPC). The optimal number of decision trees was found to be 68

(Figures 6C, D). All eight DEGs were included in the RFG for

subsequent model construction. The neural network algorithm was

used to optimize the weight value of each RFG, and the final ANN

model was obtained (Figure 6F). In the control group (HSPC), 53 of 60

samples were accurately predicted, while in the experimental group

(CRPC), 81 of 84 samples were accurately predicted. The AUC of the

ANN model was found to be 0.983 (Figure 6F).

The accuracy of the ANN model was tested in the test sets, and

it was found that 83 out of 118 control samples were accurately

predicted, and 123 out of 196 samples in the experimental group

were accurately predicted, with an AUC of 0.718 (Figure 6G). These

results confirmed that the eight selected genes were effective in

predicting the progression of prostate cancer. Finally, the potential

association between RFGs and risk scores (RS) was analyzed,

finding that SPP1 and HBB, two CRPC upregulated genes, were

significantly positively correlated with the risk gene CST2. TIPARP,

SERPINA3, and MT1M, the three “protective” factors, were

significantly positively correlated with CRPC downregulated

genes (Figure 6H). This suggests a close association between the

four prognostic model genes and the clinical progression of prostate

cancer patients.
3.7 Experimental verification

We used qRT-PCR to measure the relative mRNA expression

levels of four risk genes (TIPARP, SERPINA3, MT1M, and CST2)

in the normal prostate tissue cell RWPE-1 and in different tumor
FIGURE 6

(A) Distribution pattern of the expression levels of the eight DEGs between CRPC and HSPC in the training set. (B) Volcanic map of differential genes
between CRPC and HSPC. (C) Influence of the number of decision trees on the error rate. The x-axis is the number of decision trees and the y-axis
is the error rate. (D) Ranking of input variables in the random forest model to classify CRPC and HSPC samples; RFGs are listed from the most
important ones to the least ones based on MeanDecreaseAccuracy and MeanDecreaseGini. (E) Neural network topology of microarray training set*
with eight input layers, five hidden layers, and two output layers. (F, G) In training set*, the ANN model achieved superior performance (AUC: 0.983).
In test set*, the ANN model achieved an AUC of 0.718. The optimal threshold values are labeled at inflection points, and the sensitivities and
specificities are in brackets. (H) Interaction between risk genes and CRPC genes in entire set. DEGs, differentially expressed genes; CRPC, castration-
resistant prostate cancer; HSPC, hormone-sensitive prostate cancer; RFGs, random forest-related genes; ANN, artificial neural network; AUC, area
under the curve.
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cell states such as LNCaP and C4-2 cell lines. As the results show,

the mRNA expression levels of CST2 were increased as the cell

status changed from normal to tumor. Levels of MT1M and

TIPARP were prominently lower in LNCaP and C4-2 cells

compared with RWPE-1. The SERPINA3 level was significantly

increased in the LNCaP cell line but was lower in C4-2 and RWPE-1

cell lines (Figures 7A–D); the relevant raw data are available in

Supplementary Table 8. Moreover, after searching the

immunohistochemistry (IHC) staining results, the pictures for

CST2 and SERPINA3 in normal and tumor tissues in the HPA

database were similar. The relative protein expression levels of

CST2 in the tissue of PCa were remarkably higher in comparison

with those in the normal tissue (Figure 7E), and there were similar

results for SERPINA3 in the corresponding tissues (Figure 7F).

Western blotting (WB) results also showed that the expression of

CST2 (Figure 7G) and SERPINA3 (Figure 7H) in the C4-2 cell line

was significantly higher than that in prostate cell RWPE-1. The

complete WB picture is displayed in the Supplementary Data 2.
4 Discussion

Currently, the standard of care (SOC) for hormone-sensitive

prostate cancer mainly involves the combination of an androgen
Frontiers in Oncology 11
deprivation drug with endocrine drugs such as ADT combined with

abiraterone or apalutamide. Other treatments such as ADT

combined with paclitaxel or radiotherapy can also be used in

conjunction with SOC. However, when the tumor develops bone

metastasis or late-stage biochemical recurrence, i.e., progressing to

the CRPC stage, the efficacy of SOC rapidly declines. Even with

aggressive intervention, the median survival is only 2–3 years or

even shorter. Although differentiated therapies such as PARP (poly

ADP-ribose polymerase) inhibitors and immunosuppressants have

been actively explored in CRPC, they have limitations in the

application population and overall unstable effects. Therefore, the

development of new biomarkers to identify patients who would

benefit from ICPIs is a significant focus in prostate cancer research.

Prostate cancer is often considered a “cold” tumor with relatively

few somatic mutations and a lack of T- cell infiltration, which

results in the unstable effect of ICPIs. This has been verified in

numerous clinical trials. The “one-size-fits-all” treatment regimen

for all patients is unlikely to be successful, and it is crucial to find

new biomarkers to screen the ICPI benefit population. Current

influencing factors for prostate cancer ICPI include TMB,

microsatellite instability/mismatch repair (MSI/MMR), and

cyclin-dependent kinase 12 gene, but more biomarkers affecting

ICPI are still being studied and explored. So far, there has been no

study on the ICD subtype. A recent study by Vinay Sagar et al. (17)
FIGURE 7

(A–D) Expression levels of mRNA between normal prostatic epithelial cells and PCa cells of CST2, MT1M, TIPARP, and SERPINA3. Protein expression
levels of CST2 and SERPINA3 (E–H). PCa, prostate cancer.
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found that EPHB4 can change the prostate TME by regulating the

ICD response and improving the ICPI effect. This discovery

inspired the researchers to combine the ICD gene found in

previous studies and to explore the potential link between the

development of prostate cancer and ICD. The integration of the

ICD gene in the research could help identify new biomarkers and

potential therapeutic targets for prostate cancer patients. This

research may lead to a better understanding of the relationship

between ICD and prostate cancer progression and may contribute

to the development of more personalized treatment strategies for

patients who would benefit from ICPI therapy.

This study found a significant difference in the rate of disease

progression between two subgroups of patients classified according to

ICD genes. The ICD-H group, which had a more active adaptive

immune response, showed better survival benefits when compared to

the ICD-L group. The DCs, T cells, and B cells were more abundant in

this group, and the patients demonstrated more active cell functions in

pathways essential for immune activities, such as T- cell receptors,

NOD-like receptors, and Toll-like receptors. To better identify the

ICD-H population, a prognostic risk model was developed to divide

patients into high- and low-risk groups. High-risk patients had more

rapid disease progression and a high overlap with the ICD-L group.

Among the four critical signatures in the RS model, CST2 was the only

gene that increased the risk of patient prognosis. CST2 is a cysteine

protease inhibitor found in various human body fluids and secretions.

Previous studies by Xiaohan Ren, Anqi Cheng, and others also

identified CST2 as a risk factor for prostate cancer.

In this study, CST2 was found to be highly expressed in high-

risk individuals in both the training and test groups. Combined with

ICD genes, CST2 significantly negatively regulated the expression of

IL6, which may indirectly inhibit T- cell proliferation and cytotoxic

T-lymphocyte (CTL) activation. Regarding immune cells, CST2 was

significantly negatively correlated with DC, T cells, and dendritic

cells. To further explore the association between CST2 and prostate

cancer development, machine learning was used to screen two

CRPC highly expressed genes, SPP1 and HBB, which showed a

significant positive correlation with CST2. Factors involved in the

recognition of ICD-H subsets, affecting the activity of immune cells,

and participating in the progression of CRPC are worthy of

continued attention. Identifying and understanding these factors

could lead to more effective and personalized treatment strategies

for prostate cancer patients, potentially improving survival rates

and overall patient outcomes.

According to the PRGs, patients were divided into three gene

clusters (A, B, and C). Group C patients were similar to those in

ICD-H, with lower risk scores and favorable survival prognoses. In

ICD-L, however, two groups emerged (A and B), with group B

patients having a better prognosis than group A. This finding

indicates that population classification can be further improved.

Group B may be a group of ICD “resistant” tumors between high

and low levels of ICD, which can recruit immune cells but cannot

successfully trigger an immune response, which is similar to the

characteristics of immunosuppressive tumors. Tumors can be

divided into four groups based on immune status and response to

immunotherapy: hot tumors, immunomodulatory excluded

tumors, immunomodulatory immunosuppressed tumors, and
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cold tumors. Different types may have the potential to transform

into one another (18, 19). T-cell infiltration is abundant in hot

tumors and immune-excluded tumors (20), but in the latter, T cells

are sequestered in the tumor’s peripheral regions (21). We speculate

that the ICD responses elicited by group Bmay be sequestered at the

periphery of the tumor. This is reflected by the level of the TMB,

PFS, and risk score in population B, which falls between groups A

and C. It is possible that the immune responses generated by this

population may not cause significant damage to tumor cells. The

ideal ICD-induced response would involve more individuals in

group B producing a rich immune microenvironment that works in

conjunction with immunosuppressive therapy. As such, the

differences between group B and group C warrant further

investigation to better understand their distinct immunological

responses and potential therapeutic implications.

The prognosis of the “high-risk + high TMB” group was the

worst. As TMB increased in this research, patient risk scores also

increased, while immune levels decreased. There was no ideal result

in which high TMB would stimulate a high-level immune response.

Some TMB is associated with a response to immunotherapy, and

data show that high TMB tumors (e.g., melanoma and NSCLC)

have an ICPI response rate of at least more than 15% (22). However,

the TMB of all primary prostate cancers was low, which may be a

factor for poor response to ICPI (23). Based on these results, we

suggest that even in patients with high TMB, due to the scarcity of

immune cells in prostate cancer itself, the “compensatory” immune

response triggered by TMB cannot suppress the growth rate of the

tumor itself. Therefore, only after changing the TME should we

consider whether patients with high TMB prostate cancer can

benefit from ICPI. By modulating four risk genes, especially

CST2, it is possible to alter the level of tumor immunity, affecting

the ICPI response rate.

PD-1/PD-L1 expression level is not considered equivalent to the

ICI response level but is an important measure. The results of

previous studies on the correlation between PD-1/PD-L1

expression levels and the efficacy of ICPI in prostate cancer are

inconsistent. For example, in the phase II clinical trial KEYNOTE-

199 (24), pembrolizumab monotherapy was compared with placebo

treatment in 258 metastatic CRPC (mCRPC) patients, with response

rates of only 5% and 3% in PD-L1-positive and PD-L1-negative

cohorts, respectively. In the subsequent phase III clinical trial

KEYNOTE-641 (25), pembrolizumab did not show improvement

in PFS or OS compared to the placebo group. The phase II clinical

trial CheckMate 650 investigated the combined treatment effect of

ipilimumab and nivolumab, with the combination producing only a

25% objective response rate, and the study was stopped in the

population due to disease progression and increased side effects. In

the phase III trial (NCT00861614), the 1-year survival rate for PCa

patients treated with ipilimumab was 46.5%, compared to 40.8% in

the placebo group, a difference that was not as significant as expected.

These results suggest that immunotherapy is not yet mature in the

treatment of PCa. These results highlight the need for careful patient

selection for ICPI to identify subgroups of patients who may benefit

from this treatment approach. Some studies have shown that the

expression level of PD-L1 will also increase in CRPC treated with

enzalutamide, suggesting that ADT may activate adaptive immunity
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(26). Another study has shown that ADT combined with abiraterone

and prednisone does not increase the expression level of PD-L1 in

PCa, and the response to ICPI is not ideal (27). Therefore, more

studies are needed to improve the association between ADT and PD-

1/PD-L1 expression levels. The results of higher PD-L1 expression in

the “ICD-H- group C-low risk” group are consistent with our

hypothesis that “ICD response alters the PCa immune

microenvironment to attract more T cells”. In addition, we noted

that although there was no difference in PD-1 expression between the

ICD-H and ICD-L, the group C population had a significantly higher

PD-1 expression, suggesting that group C may benefit from anti-PD-

1 and anti-CTLA-4 therapies. This indicates that the PCa population

needs to be further subdivided, which should not stop at ICD-H and

ICD-L. ICD response will bring a high level of immune response and

improve the prognosis of patients, which is also the logic of ICD-H as

a high level of ICD response. Therefore, in the end, for the eight

CRPC progression-related factors found by machine learning, in

addition to being used to assist in judging the progression of the

patient’s disease state, the most important thing is that these factors

are closely related to the four risk genes, which indicates the accuracy

of risk genes.

There are some limitations in our research. On the one hand,

the prognosis models are acquired from TCGA, GEO, and MSKCC.

To confirm the predictive significance of this prognostic signature,

large-scale prospective clinical research is required. On the other

hand, we revealed a four-risk-gene prognostic signature for PCa,

but this is only a bioinformatics analysis, which lacks relevant

experimental verification. Lastly, the level of ICD response in PCa

still needs to be further verified by laboratory work, and the most

direct evidence of ICD is the activation of DAMPs. Although we

also found a potential association between CST2 and DAMPs, it is

not the most direct evidence.
5 Conclusion

In summary, we successfully separated 901 samples into two

subtypes (ICD-H and ICD-L) on the basis of the expression of the

ICD-related genes and developed a prognostic RS involving four

genes derived from the DEGs between the two subtypes. The RS can

potentially be applied to determine prognosis, dendritic cell

infiltration, expression levels of CRPC genes and ICD-related

genes, and the function of immune-related pathways in prostate

cancer. The ICD-H population may have a better response to ICPIs,

and according to the RS calculation, this group has a lower risk. We

further constructed a survival-predicting nomogram that combines

this signature with other commonly used clinicopathological

characteristics. These results can provide clinicians with a more

quantitative approach to objectively predict survival rates for

patients with prostate cancer.
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