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Objectives: This study aimed to explore the value of conventional ultrasound

(CUS) and contrast-enhanced ultrasound (CEUS) radiomics to diagnose breast

cancer and predict its molecular subtype.

Method: A total of 170 lesions (121 malignant, 49 benign) were selected from

March 2019 to January 2022. Malignant lesions were further divided into six

categories of molecular subtype: (non-)Luminal A, (non-)Luminal B, (non-)

human epidermal growth factor receptor 2 (HER2) overexpression, (non-)

triple-negative breast cancer (TNBC), hormone receptor (HR) positivity/

negativity, and HER2 positivity/negativity. Participants were examined using

CUS and CEUS before surgery. Regions of interest images were manually

segmented. The pyradiomics toolkit and the maximum relevance minimum

redundancy algorithm were utilized to extract and select features, multivariate

logistic regression models of CUS, CEUS, and CUS combined with CEUS

radiomics were then constructed and evaluated by fivefold cross-validation.

Results: The accuracy of the CUS combined with CEUS model was superior to

CUS model (85.4% vs. 81.3%, p<0.01). The accuracy of the CUS radiomics model

in predicting the six categories of breast cancer is 68.2% (82/120), 69.3% (83/

120), 83.7% (100/120), 86.7% (104/120), 73.5% (88/120), and 70.8% (85/120),

respectively. In predicting breast cancer of Luminal A, HER2 overexpression, HR-

positivity, and HER2 positivity, CEUS video improved the predictive performance

of CUS radiomics model [accuracy=70.2% (84/120), 84.0% (101/120), 74.5% (89/

120), and 72.5% (87/120), p<0.01].
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Conclusion: CUS radiomics has the potential to diagnose breast cancer and

predict its molecular subtype. Moreover, CEUS video has auxiliary predictive

value for CUS radiomics.
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1 Introduction

Breast cancer is the most common malignant tumor worldwide

and is the leading cause of cancer-related death in women (1). In

2011, according to the immunohistochemical detection of estrogen

receptor (ER) and progesterone receptor (PR), as well as human

epidermal growth factor receptor 2 (HER2) and Ki-67 labeling

index, St. Gallen’s expert panel proposed the classification of breast

cancer into four subtypes: Luminal A, Luminal B, HER2

overexpression, and basal-like subtypes (2). The treatment plan

and the prognosis of patients with different subtypes are different (3,

4). Therefore, the accurate diagnosis of breast cancer molecular

subtypes is of great significance for guiding doctors to develop

individualized treatment plans.

Medical imaging examination is a repeatable and non-invasive

method to obtain comprehensive tumor information (5). Radiomics is

an effective imaging analysis method that utilizes computer algorithms

to extract quantitative features from medical images (computed

tomography [CT], magnetic resonance imaging [MRI], ultrasound

[US], etc.) in a high-throughput way and transform traditional images

into mineable high-dimensional data (6). Radiomics can deeply

excavate image information that cannot be distinguished by visual

analysis, and combine this information with the clinical pathological

information of patients to develop a model to improve the diagnostic

accuracy and evaluate the prognosis of diseases (7–9). Radiomics

assumes that the extracted data are the product of tumor

development at the genetic and molecular levels and may be related

to the biological behavior of the tumor and the prognosis of patients

(10, 11), which provides a research basis for radiomics in the study of

molecular subtype of breast cancer. Radiomics provides a noninvasive

and comprehensive evaluation of tumors compared to puncture.

Conventional ultrasound (CUS) is one of the main examination

methods for the diagnosis of breast cancer. Compared to CUS,

contrast-enhanced ultrasound (CEUS) can not only reflect the

morphological characteristics of the tumor but also reveal the

perfusion of tumor microcirculation continuously and

dynamically which can provide more extra information (12, 13).

Studies have shown that CEUS performance in breast cancer has a

certain correlation with its prognostic factors, and the visualized

structure of tumor microcirculation provides valuable information

for predicting the molecular subtype of breast cancer (14).

Currently, MRI, mammography (MG), and positron emission

tomography-CT (PET-CT) radiomics have been proven to be

significant in the diagnosis and molecular subtype prediction of
02
breast cancer (15–18). However, based on CUS image and CEUS

video radiomics, there are rare studies on the diagnosis of breast

cancer and a lack of research on the prediction of molecular subtype

of breast cancer. We aimed to explore the value of CUS combined

with CEUS radiomics in diagnosing breast cancer and predicting

the molecular subtype of breast cancer.
2 Materials and methods

2.1 Study participants

This prospective study was approved by the Institutional Ethics

Board (NCC2019C-178) and all patients signed informed consent

forms. FromMarch 2019 to January 2022, 166 patients (170 lesions)

with complete pathological results, no core needle biopsy, and any

treatment before the examination, completion of CUS and CEUS

examinations were selected into the diagnostic group. Among them,

119 participants (120 lesions) with postoperative pathological

results were finally selected for the prediction group (Figure 1).

The participants were examined by CUS and CEUS before

the operation.
2.2 CUS of breast

Two senior sonographers used Philips EPIQ5 ultrasonic

diagnostic equipment (Philips, Bothell, WA), selected high-

frequency linear array probes, focused on the center of the tumor,

and collected all images containing the CUS characteristics of

the tumor.
2.3 CEUS of breast

Using the same ultrasonic diagnostic equipment, adjusted the

image to show the larger section of the tumor clearly, switched to

the real-time imaging condition of the double-frame CEUS mode,

and made the single point focus on the deepest part of the image.

Then, 4.8 mL of the contrast agent (SonoVue) was drawn and

injected into the patient’s pre-established peripheral venous

channel, followed by 5 mL of saline. Meanwhile, started the timer

and image storage function, and observed the perfusion of tumor

microcirculation for 3 minutes.
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2.4 Pathological examination

All breast tumors were surgically removed. According to

immunohistochemistry analysis results and expert consensus on the

molecular subtype of breast cancer at the St. Gallen’s meeting in 2013

(19), lesions of breast cancer were first classified into four categories of

Luminal A and non-Luminal A, Luminal B and non-Luminal B, HER2

overexpression and non-HER2 overexpression, and triple-negative

breast cancer (TNBC) and non-TNBC. Extra two categories of HR

positivity/negativity and HER2 positivity/negativity were added to this

study due to their high guiding value in clinical treatment.
2.5 Image/video segmentation

There were 967 images of CUS, and 170 videos of CEUS in total.

The region of interest (ROI) sketch was drawn manually by two

senior physicians and areas with disagreement were jointly assessed.

The ROI of CUS images was outlined around the tumor, including

the hyperechoic halo. For the ROI of CEUS videos, it was first

outlined with a rectangular box in the frame that the tumor

displayed clearly (Figure 2), and then, a computer vision

algorithm was used to track and draw all the ROI sketches across

all the frames in the video (20).
2.6 Radiomics feature extraction
and analysis

Shape features, first-order statistical features, and texture

features were extracted using the pyradiomics toolkit (https://
Frontiers in Oncology 03
github.com/Radiomics/pyradiomics) from original images and 14

transformed images, respectively. The transformed images were

generated by performing 2D discrete wavelet decomposition and

reconstruction or filtering by the Laplacian of Gaussian method

with different sigma parameters. Shape features of CEUS images

were removed during feature selection because the usage of the

rectangular box could not delineate the ROI with correct shape

information. For multiple images of each lesion, the maximum

value of the feature was taken as the final characteristic value.
2.7 Construction of the diagnostic and
prediction model

The mRMR algorithm was used to select the most effective

feature subsets, out of the diagnostic group and six categories of

breast cancer (21). Then, based on the selected feature subset,

multivariate logistic regression models of CUS, CEUS, and CUS

combined with CEUS were constructed in the diagnostic group and

six categories of breast cancer.

The performance of models was evaluated by fivefold cross-

validation. The data were divided into five independent data sets

equally, four of which were used to train the model, and the other

one was used as an independent validation set to obtain predictive

results. Finally, in a round of fivefold training, all the samples were

used once to validate the model performance. The aforementioned

experiment was conducted 100 times with different random seeds to

further enhance the reliability of the model’s prediction results. The

average value of the corresponding indicators was used as the final

prediction result. The receiver operator characteristic (ROC) curve,

the area under the curve (AUC), 95% confidence interval (CI),
FIGURE 1

The inclusion/exclusion flow chart. n = number of lesions. Luminal A: ER and/or PR+, HER2-, Ki-67<14%; Luminal B (HER2-): ER and/or PR+, HER2-,
Ki-67≥14%; Luminal B (HER2+): ER and/or PR+, HER2+, any Ki-67; HER2 overexpression: ER and/or PR-, HER2+. TNBC: ER-, PR-, HER2-. CUS,
conventional ultrasound; CEUS, contrast-enhanced ultrasound; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth
factor receptor 2; TNBC, triple-negative breast cancer; HR, hormone receptor.
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Youden index (YI), and the corresponding cut-off values were used

for training evaluation. Sensitivity (SE), specificity (SP), accuracy

(ACC), positive predictive value (PPV), and negative predictive

value (NPV) of the model were presented to describe the

model performance.
2.8 Statistical analysis

SPSS 23.0 software (SPSS Inc., Chicago, IL, USA) and Python3.6

software (http://www.python.org) were used for data analyses.

Enumeration data were expressed in percentage (%), and the

difference between groups was compared with a chi-square test.

Measurement data are expressed as mean ± standard deviation. The

difference between groups was first analyzed using the K-S test to
Frontiers in Oncology 04
analyze the normality of the data distribution. Then, for normally

distributed data, an independent-samples t-test was adopted, while

the Mann-Whitney U test was used for non-normally distributed

data. P < 0.05 was used as the significant standard for all the above

statistical tests.
3 Results

3.1 Clinicopathological data

In the diagnostic group, 166 women were enrolled, and most of

the participants were diagnosed with a breast mass (90.96%, 151/

166), followed by nipple discharge (6.03%, 10/166) and breast

calcification (3.01%, 5/166). A total of 170 lesions were included
A B

FIGURE 2

Image segmentation. (A) Schematic diagram of CUS images. (B) Schematic diagram of corresponding CEUS images with the peak intensity. CUS,
conventional ultrasound; CEUS, contrast-enhanced ultrasound; ROI, region of interest; HER2, human epidermal growth factor receptor 2; TNBC,
triple-negative breast cancer; HR, hormone receptor.
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(49 benign lesions and 121 malignant lesions). Benign lesions had

19 cases of fibroadenoma, 15 cases of intraductal papilloma, 12

cases of adenopathy, 2 cases of ductal epithelial hyperplasia, and 1

case of fat necrosis with abscess formation. Malignant lesions had 85

cases of invasive carcinoma with no specific type, 17 cases of ductal

carcinoma in situ with partial invasive carcinoma, 11 cases of ductal

carcinoma in situ, 3 cases of papillary carcinoma, 2 cases of invasive

lobular carcinoma, 2 cases of mucinous carcinoma and 1 case of

phyllodes tumor. The average age of patients with benign lesions

was 44.26 ± 8.94 years (range 23–64 years), and the average age of

patients with malignant lesions was 51.48 ± 10.41 years (range 32–

85 years).

In the prediction group, 119 women were enrolled, with an

average age of 51.56 ± 10.33 years (range 32–85 years). Most of the

participants were diagnosed with a breast mass (94.1%, 112/119),

followed by nipple discharge (3.4%, 4/119) and breast calcification

(2.5%, 3/119). Because of the lack of immunohistochemistry results

for one case of a phyllodes tumor, a total of 120 lesions of cancer

were finally selected, including 33 cases of Luminal A, 56 cases of

Luminal B (16 cases of HER2-positivity and 40 cases of HER2-

negativity), 15 cases of HER2 overexpression, and 16 cases of

TNBC. In addition, there were 89 cases of HR-positivity breast

cancer and 31 cases of HER2-positivity breast cancer.
Frontiers in Oncology 05
A comparison of clinicopathological data of benign and

malignant breast tumors was presented in Table 1. The mean age

of patients in the malignant group was higher than that in the

benign group, the maximum and minimum diameters of breast

cancer were larger than that of the benign tumor (p<0.05). A

comparison of clinicopathological data in different categories of

breast cancer was presented in Table 2. The maximum and

minimum diameters in the Luminal A group were smaller than

those in the non-Luminal A group (p=0.002 and p=0.004).

Additionally, the maximum diameter in the HER2-overexpression

group was larger than that in the non-HER2-overexpression group

(p=0.023), and the maximum diameter in the HR-negativity group

was larger than that in the HR-positivity group (p=0.009).
3.2 Evaluation of diagnostic models

The performance of diagnostic models was shown in Table 3,

and one round training ROC curve was shown in Figure 3.

CUS radiomics model achieved an AUC of 0.919 (95% CI:

0.896, 0.937) in the training set. In the validation set, the ACC of the

model was 81.3% (138/170), SE was 84.4% (102/121), SP was 73.7%

(36/49), PPV was 88.8% (102/115), and NPV was 65.7% (36/55).
TABLE 1 Comparison of clinicopathological data of benign and malignant breast tumor.

Benign Malignancy z/c2 value p value

Age (years) 44.26 ± 8.94 51.48 ± 10.41 -4.18 <0.05*

Clinical manifestation 5.13 0.08

Breast mass 39 (82.98%) 112 (94.12%)

Nipple discharge 6 (12.77%) 4 (3.36%)

Breast calcification 2 (4.25%) 3 (2.52%)

Pathological result

Fibroadenoma 19 (38.78%) \

Intraductal papilloma 15 (30.61%) \

Adenopathy 12 (24.49%) \

Ductal epithelial hyperplasia 2 (4.08%) \

Fat necrosis with abscess formation 1 (2.04%) \

Invasive carcinoma with no specific type \ 85 (70.25%)

Ductal carcinoma in situ with partial invasive carcinoma \ 17 (14.05%)

Ductal carcinoma in situ \ 11 (70.25%)

Papillary carcinoma \ 3 (9.09%)

Invasive lobular carcinoma \ 2 (1.65%)

Mucinous carcinoma \ 2 (1.65%)

Phyllodes tumor \ 1 (0.83%)

Maximum diameter (cm) 1.31 ± 0.78 2.17 ± 1.15 <0.05*

Minimum diameter (cm) 0.86 ± 0.48 1.43 ± 0.94 <0.05*
fron
* The difference was statistically significant(p<0.05)
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CEUS radiomics model achieved an AUC of 0.872 (95% CI:

0.844, 0.895) in the training set. In the validation set, the ACC of the

model was 78.6% (134/170), SE was 81.3% (98/121), SP was 72.1%

(35/49), PPV was 87.8% (98/112), and NPV was 60.9% (35/58).

CUS combined with CEUS radiomics model achieved an AUC

of 0.953 (95% CI: 0.935, 0.967) in the training set. In the validation

set, the ACC of the model was 85.4% (145/170), SE was 87.5% (106/

121), SP was 80.2% (39/49), PPV was 91.6% (106/116), and NPV

was 72.2% (39/54). The diagnostic ACC of the combined model was

significantly higher than that of the CUS model (p<0.001).
Frontiers in Oncology 06
3.3 Evaluation of prediction models

The performance of prediction models in the six categories was

shown in Table 4, and one round training ROC curve was shown

in Figure 4.

The ACCs of CUS radiomics model for predicting the 6

categories of breast cancer were 68.2% (82/120), 69.3% (83/120),

83.7% (100/120), 86.7% (104/120), 73.5% (88/120), and 70.8% (85/

120), respectively. The ACCs of CUS combined with CEUS

radiomics model were 70.2% (84/120), 69.7% (83/120), 84.0%
TABLE 2 Comparison of clinicopathological data in different categories of breast cancer.

Group z/t value p value

Category 1 Luminal A non-Luminal A

Number of lesions 33 87

Age 51.697 ± 11.246 51.506 ± 10.023 0.187a 0.852

Maximum diameter (cm) 1.667 ± 0.859 2.320 ± 1.151 -3.109 0.002*

Minimum diameter (cm) 1.133 ± 0.773 1.505 ± 0.928 -2.09 0.004*

Category 2 Luminal B non-Luminal B

Number of lesions 56 64

Age 51.857 ± 10.721 51.297 ± 10.044 0.295a 0.768

Maximum diameter (cm) 2.107 ± 0.896 2.169 ± 1.281 -0.506 0.613

Minimum diameter (cm) 1.423 ± 0.806 1.384 ± 0.982 -1.015 0.310

Category 3 HER2-overexpression non-HER2-overexpression

Number of lesions 15 105

Age 50.200 ± 7.282 51.752 ± 10.703 0.543a 0.588

Maximum diameter (cm) 2.660 ± 1.151 2.066 ± 1.094 -2.266 0.023*

Minimum diameter (cm) 1.547 ± 0.808 1.382 ± 0.915 -1.312 0.190

Category 4 TNBC non-TNBC

Number of lesions 16 104

Age 51.500 ± 10.139 51.567 ± 10.402 0.024a 0.981

Maximum diameter (cm) 2.743 ± 1.713 2.047 ± 0.970 -1.137 0.256

Minimum diameter (cm) 1.750 ± 1.362 1.349 ± 0.803 -1.055 0.291

Category 5 HR+ HR-

Number of lesions 89 31

Age 51.798 ± 10.856 50.871 ± 8.751 -0.429a 0.669

Maximum diameter (cm) 1.944 ± 0.903 2.703 ± 1.445 -2.595 0.009*

Minimum diameter (cm) 1.316 ± 0.802 1.652 ± 1.115 -1.810 0.070

Category 6 HER2+ HER2-

Number of lesions 31 89

Age 50.710 ± 7.493 51.854 ± 11.167 -0.638a 0.525

Maximum diameter (cm) 2.245 ± 0.966 2.103 ± 1.164 -1.174 0.242

Minimum diameter (cm) 1.436 ± 0.695 1.391 ± 0.965 -1.341 0.128
fron
a: t value; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; HR, hormone receptor; * The difference was statistically significant(p<0.05).
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(101/120), 86.9% (104/120), 74.5% (89/120), and 72.5% (87/120),

respectively. CEUS radiomics significantly improved the

performance of CUS radiomics in predicting Luminal A, HER2-

overexpression, HR-positivity, and HER2-positivity breast cancers

subtype (p=0.000013, 0.003, 0.004, and 0.000145).
4 Discussion

To our knowledge, this is the first time that CEUS videos were

combined with CUS images to construct the radiomics model to

diagnose breast cancer and also predict its molecular subtype. We

found that CEUS videos that contained tumor microcirculation

perfusion can improve the performance of CUS radiomics models,

the combined model achieved excellent diagnostic results
Frontiers in Oncology 07
(AUC=0.953, ACC=85.4%). Further, we revealed the feasibility of

CUS combined with CEUS radiomics model in predicting

molecular subtype of breast cancer before surgery, which has

important guiding value for clinical treatment.

Studies have shown that CUS radiomics has diagnostic value in

the differentiation of benign and malignant breast tumors (8, 22,

23). Li et al. selected the features of 181 breast lesions (67 malignant

and 114 benign) and found that the ACC of CUS combined with

CEUS radiomics model was 75.0% (AUC=0.873), higher than that

in the CUS radiomics model (ACC=67.6%, AUC=0.767) (24). In

our study, the constructed CUS combined with CEUS model was

also better than the CUS model. The reason could be that the extra

dynamic blood perfusion information of the tumor in CEUS videos

contributed to diagnosing breast cancer. Besides, because of the

difference in ROI delineation methods, the CEUS features had
FIGURE 3

Training ROC curves of diagnostic group. Extracted from one round of fivefold cross training. As shown, CUS combined with CEUS radiomics model
performed the best, and all the 3 constructed models were better than the single feature. CUS, conventional ultrasound; CEUS, contrast-enhanced
ultrasound.
TABLE 3 Results of constructed radiomics models in diagnosing breast cancer.

Diagnostic model AUC (95%CI) YI Cut-off SE (95%CI) SP (95%CI) ACC (95%CI) PPV (95%CI) NPV (95%CI)

CUS 0.919 0.732 0.625 84.4% 73.7% 81.3% 88.8% 65.7%

(0.896,0.937) (76.9%,89.8%) (59.9%,83.9%) (74.8%,86.5%) (81.7%,93.3%) (52.5%,76.9%)

CEUS 0.872 0.631 0.674 81.3% 72.1% 78.6% 87.8% 60.9%

(0.844,0.895) (73.4%,87.2%) (58.3%,82.7%) (71.8%,84.1%) (80.4%,92.6%) (48.0%,72.4%)

CUS+CEUS 0.953 0.814 0.605 87.5% 80.2% 85.4% 91.6% 72.2%

(0.935,0.967) (80.4%,92.3%) (67.1%,89.0%) (79.3%,89.9%) (85.1%,95.4%) (59.1%,82.3%)
CUS, conventional ultrasound; CEUS, contrast-enhanced ultrasound; AUC, area under the curve; YI, Youden index; CI, confidence interval; SE, sensitivity; SP, specificity; ACC, accuracy; PPV,
positive predictive value; NPV, negative predictive value.
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https://doi.org/10.3389/fonc.2023.1158736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gong et al. 10.3389/fonc.2023.1158736
TABLE 4 Results of constructed radiomics models in predicting different categories of breast cancer.

Predictive model AUC (95%CI) YI Cut-off SE (95%CI) SP (95%CI) ACC (95%CI) PPV (95%CI) NPV (95%CI)

Category 1

CUS 0.726 0.436 0.300 53.2% 73.8% 68.2% 43.6% 80.6%

(0.685,0.764) (36.8%,69.0%) (63.7%,81.9%) (59.4%,75.8%) (29.5%,58.8%) (70.6%,87.8%)

CEUS 0.738 0.457 0.299 55.7% 74.9% 69.6% 45.7% 81.7%

(0.697,0.776) (39.1%,71.2%) (64.9%,82.8%) (60.9%,77.1%) (31.4%,60.8%) (71.8%,88.6%)

CUS+CEUS 0.730 0.461 0.323 58.0% 74.9% 70.2%* 46.7% 82.5%

(0.688,0.767) (41.2%,73.1%) (64.9%,82.8%) (61.5%,77.7%) (32.4%,61.6%) (72.6%,89.3%)

Category 2

CUS 0.840 0.593 0.452 71.3% 67.6% 69.3% 65.8% 72.9%

(0.805,0.870) (58.4%,81.5%) (55.4%,77.8%) (60.6%,76.9%) (53.3%,76.5%) (60.5%,82.6%)

CEUS 0.671 0.357 0.491 61.3% 63.5% 62.5% 59.5% 65.2%

(0.628,0.712) (48.2%,72.9%) (51.3%,74.3%) (53.6%,70.6%) (46.6%,71.2%) (52.8%,75.8%)

CUS+CEUS 0.888 0.672 0.481 69.2% 70.2% 69.7% 67.0% 72.2%

(0.857,0.913) (56.2%,79.7%) (58.1%,80.0%) (61.0%,77.2%) (54.1%,77.7%) (60.1%,81.8%)

Category 3

CUS 0.605 0.321 0.165 32.1% 91.0% 83.7% 33.8% 90.4%

(0.561,0.648) (14.4%,57.2%) (84.0%,95.1%) (76.0%,89.2%) (15.2%,59.3%) (83.3%,94.7%)

CEUS 0.612 0.334 0.160 20.2% 86.8% 78.4% 17.9% 88.4%

(0.568,0.655) (7.2%,45.4%) (79.0%,92.0%) (70.3%,84.9%) (6.3%,41.4%) (80.8%,93.2%)

CUS+CEUS 0.652 0.393 0.174 34.2% 91.2% 84.0%* 35.6% 90.7%

(0.608,0.693) (15.8%,59.1%) (84.2%,95.2%) (76.5%,89.5%) (16.5%,60.8%) (83.6%,94.9%)

Category 4

CUS 0.803 0.596 0.234 60.4% 90.8% 86.7% 50.2% 93.7%

(0.765,0.836) (36.8%,80.0%) (83.7%,95.0%) (79.5%,91.7%) (29.8%,70.6%) (87.2%,97.0%)

CEUS 0.749 0.521 0.176 54.0% 80.8% 77.2% 30.2% 91.9%

(0.709,0.7867) (31.3%,75.2%) (72.2%,87.2%) (69.0%,83.8%) (16.6%,48.5%) (84.5%,96.0%)

CUS+CEUS 0.829 0.632 0.251 58.4% 91.3% 86.9% 50.8% 93.4%

(0.793,0.860) (35.0%,78.5%) (84.3%,95.4%) (79.7%,91.8%) (29.9%,71.5%) (86.9%,96.8%)

Category 5

CUS 0.817 0.565 0.709 78.1% 60.3% 73.5% 84.9% 49.0%

(0.780,0.849) (68.5%,85.5%) (42.8%,75.4%) (65.0%,80.6%) (75.7%,91.1%) (33.9%,64.2%)

CEUS 0.743 0.446 0.693 69.8% 46.3% 63.7% 78.9% 34.8%

(0.702,0.780) (59.6%,78.4%) (30.2%,63.3%) (54.8%,71.8%) (68.6%,86.4%) (22.2%,50.1%)

CUS+CEUS 0.855 0.626 0.703 78.8% 62.1% 74.5%* 85.6% 50.5%

(0.821,0.884) (69.2%,86.0%) (44.6%,76.9%) (66.0%,81.4%) (76.5%,91.6%) (35.3%,65.6%)

Category 6

CUS 0.837 0.552 0.351 45.6% 79.6% 70.8% 43.8% 80.8%

(0.801,0.867) (29.6%,62.6%) (70.1%,86.7%) (62.2%,78.2%) (28.3%,60.7%) (71.3%,87.7%)

CEUS 0.665 0.358 0.287 38.5% 76.3% 66.6% 36.2% 78.1%

(Continued)
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TABLE 4 Continued

Predictive model AUC (95%CI) YI Cut-off SE (95%CI) SP (95%CI) ACC (95%CI) PPV (95%CI) NPV (95%CI)

(0.621,0.706) (23.5%,55.9%) (66.5%,84.0%) (57.7%,74.4%) (22.0%,53.2%) (68.3%,85.5%)

CUS+CEUS 0.960 0.823 0.383 46.5% 81.6% 72.5%* 46.8% 81.4%

(0.938,0.974) (30.3%,63.4%) (72.3%,88.3%) (63.9%,79.7%) (30.5%,63.8%) (72.1%,88.1%)
F
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Category1: (non-)Luminal A; Category2: (non-)Luminal B; Category3: (non-)human epidermal growth factor receptor 2 (HER2) overexpression; Category4: (non-)triple-negative breast cancer
(TNBC); Category5: hormone receptor (HR) positivity/negativity; Category 6: HER2 positivity/negativity categories.
CUS, conventional ultrasound; CEUS, contrast-enhanced ultrasound; AUC, area under the curve; YI, Youden index; CI, confidence interval; SE, sensitivity; SP, specificity; ACC, accuracy; PPV,
positive predictive value; NPV, negative predictive value.
* The performance improvement of CEUS was statistically significant (p<0.05).
FIGURE 4

Training ROC curves of prediction group. Extracted from one round of fivefold cross training in each category. As shown, CUS combined with CEUS
radiomics model achieved better performances. CUS, conventional ultrasound; CEUS, contrast-enhanced ultrasound; HER2, human epidermal
growth factor receptor 2; TNBC, triple-negative breast cancer; HR, hormone receptor.
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comparative information between the tumor and its surrounding

tissues which had value for the diagnosis results (25, 26).

This study demonstrated that CUS radiomics has the power in

predicting the molecular subtype of breast cancer, which has also been

proven in previous studies (27, 28). Guo et al. developed an automated

model of radiomics to evaluate the correlation between CUS radiomics

features and the biological characteristics of invasive ductal carcinoma.

They found that AUC, SE, and SP of the model distinguished between

breast cancer of HR-positivity with HER2-negativity and TNBC were

0.760 (95%CI: 0.755, 0.764), 97.9%, and 60.1%, respectively (27). Yu

et al. found that the CUS radiomics nomogram had a moderate

predictive ability for axillary lymph node metastasis of invasive

breast cancer before surgery, in which the AUC (0.84 (95%CI: 0.80,

0.89)) was better than the clinical model (AUC=0.76 (95%CI: 0.71,

0.82), p<0.001) and direct CUS evaluation (AUC=0.70 (95%CI: 0.64,

0.76), p<0.001) (28). Currently, radiomics based on MRI, MG, and

PET-CT images has made progress in predicting the molecular subtype

and biological characteristics of breast cancer. They are being

increasingly used in contrast-enhanced images with tumor blood

perfusion (16, 18, 29). Based on CUS image, CEUS video can

additionally reflect the perfusion of tumor microcirculation and

provide more biological information about the tumor. We found the

significant auxiliary value of CEUS radiomics to CUS radiomics in the

prediction of Luminal A, HER2 overexpression, HR-positivity, and

HER2-positivity breast cancer. This could be due to the different

biological performances of different subtypes of breast cancer.

Luminal A breast cancer is mostly highly differentiated and has

lower expression of tumor cell proliferation markers and slower

growth. Most cases of HER2-positivity breast cancer and TNBC are

poorly differentiated with a high degree of malignancy, strong

aggressiveness, rapid growth, and prone to necrosis of the internal

tissues of the tumor (15, 30, 31). It is, therefore, easier to find the real

necrotic area using CEUS video; hence, the texture features of CEUS

radiomics can reflect the internal differences of tumors that are

indistinguishable by eyes and assist in the diagnosis of CUS. Some

studies have also shown that ER-negative breast cancer has a higher

expression level of vascular endothelial growth factor, thus showing

higher microvascular density and more apparent heterogeneity in

tumor microvascular perfusion (16, 32). The US contrast agent is a

blood pool contrast agent that can improve the contrast between the

tumor and the surrounding tissues because it cannot penetrate the

intercellular space into the interstitial space (33, 34). Therefore, CEUS

radiomics can better capture the vascular characteristics of different

breast cancer subtypes, which is beneficial to the classification.

However, the advantage of CEUS radiomics was not reflected in

predicting Luminal B breast cancer and TNBC; the reason could be

that Luminal B includes both HER2-positivity and HER2-negativity

subtypes, which may overlap with other non-Luminal B in the

characteristics of HER2 expression; hence, its CEUS performance is

not easy to distinguish. TNBCmostly had a swollen appearance, and its

CUS and CEUS findings revealed a clear boundary with the

surrounding tissues; therefore, there may be not much auxiliary

information from CEUS compared with that from CUS.

This study does have some limitations. To better evaluate the

distribution of tumor vasculature, the ROI of the CEUS videos was

drawn with a rectangular box, and therefore, some of the shape
Frontiers in Oncology 10
features of the tumor were lost. There was also some imbalanced

sample size between molecular subtype categories of breast cancer,

especially in the category of HER2-overexpression breast cancer

and TNBC. In the research process of radiomics, the

standardization of medical imaging data collection is a key

problem that limits its clinical reproducibility (35). Moreover, Lee

et al. found that there is no statistically significant difference in

radiomics scores of the breast tumor obtained by different US

machines (Philips IU22, HDI5000, and GE9), indicating that US

radiomics has a general application (8). Therefore, further

supporting findings from multicenter, prospective, and large-

sample-size studies are needed in the future.
Conclusions

CUS radiomics has the potential to diagnose breast cancer and

predict its molecular subtype. On this basis, CEUS video can help

CUS radiomics model improve its predictive performance, which

provides a new idea for a non-invasive diagnosis and prediction of

molecular subtype of breast cancer before surgery.
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