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Comparison of machine
learning models based on
multi-parametric magnetic
resonance imaging and
ultrasound videos for the
prediction of prostate cancer

Xiaoyang Qi1†, Kai Wang1†, Bojian Feng2,3,4†, Xingbo Sun1,
Jie Yang1, Zhengbiao Hu1, Maoliang Zhang1, Cheng Lv1,
Liyuan Jin1, Lingyan Zhou2,3,4*, Zhengping Wang1*

and Jincao Yao2,3,4*

1Department of Ultrasound, The Affiliated Dongyang Hospital of Wenzhou Medical University,
Dongyang, Zhejiang, China, 2Department of Ultrasound, The Cancer Hospital of the University of
Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China, 3Institute of
Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China, 4Key
Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital
of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Zhejiang Provincial
Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou,
Zhejiang, China
Objective: To establish machine learning (ML) prediction models for prostate

cancer (PCa) using transrectal ultrasound videos and multi-parametric magnetic

resonance imaging (mpMRI) and compare their diagnostic performance.

Materials and methods: We systematically collated the data of 383 patients,

including 187with PCa and 196with benign lesions. Of them, 307 patients (150with

PCa and 157 with benign lesions) were randomly selected to train and validate the

MLmodels, 76 patientswere used as test set. B-Ultrasound videos (BUS),mpMRI T2

sequence (T2), and ADC sequence (ADC) were obtained from all patients. We

extracted 851 features of each patient in the BUS, T2, and ADCgroups and used a t-

test, the Mann–Whitney U test, and LASSO regression to screen the features.

Support vector machine (SVM), random forest (RF), adaptive boosting (ADB), and

gradient boosting machine (GBM) models were used to establish radiomics

models. In addition, we fused the features screened via LASSO regression from

three groups as new features and rebuilt ML models. The performance of the ML

models in diagnosing PCa in the BUS, T2, ADC, and fusion groups was compared

using the area under the ROC curve (AUC), sensitivity, specificity, and accuracy.

Results: In the test cohort, the AUC of each model in the ADC group was higher

than that of in the.BUS and T2 groups. Among the models, the RF model had the

best diagnostic performance, with an AUC of 0.85, sensitivity of 0.78 (0.61–0.89),

specificity of 0.84 (0.69–0.94), and accuracy of 0.83 (0.66–0.93). The SVM

model in both the BUS and T2 groups performed best. Based on the features

screened in the BUS, T2, and ADC groups fused to construct themodels, the SVM
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model was found to perform best, with an AUC of 0.87, sensitivity of 0.73 (0.56–

0.86), specificity of 0.79 (0.63–0.90), and accuracy of 0.77 (0.59–0.89). The

difference in the results was statistically significant (p<0.05).

Conclusion: TheML predictionmodels had a good diagnostic ability for PCa. Among

them, the SVMmodel in the fusion group showed the best performance in diagnosing

PCa. These prediction models can help radiologists make better diagnoses.
KEYWORDS

radiomics, prostate cancer, machine learning, ultrasound, magnetic resonance imaging,
support vector machines
1 Introduction

Prostate cancer (PCa) is the most common malignant tumor in

the genitourinary system of elderly men, ranking second in

incidence of male malignant tumors (1). Although the incidence

of PCa in China is much lower than in developed Western

countries, it is increasing more rapidly (2.6% per year) than in

developed Western countries with the “Westernization” of lifestyle

and the rapid aging of the population (2). PCa occurs in the prostate

epithelium with an insidious onset and a lack of typical clinical

manifestations, so many patients are diagnosed at an advanced

stage, when it is often accompanied by bone metastases (3).

Therefore, early detection and diagnosis are key factors to

determine treatment outcomes. Prostate-specific antigen (PSA)

level detection, digital rectal examination, and transrectal

ultrasound (TRUS)-guided prostate biopsy are the most

commonly used methods for screening PCa in clinical practice (4,

5), despite some degree of overdiagnosis (6). Philip et al. (7) found

that the overall cancer detection rate in men with PSA levels

exceeding 10 ng/ml was 43%. In a study by Ozorak (8) et al., 56%

of patients had PSA levels of 10.1–20 ng/ml and the cancer

detection rate in patients with PSA levels > 20 ng/ml was 82.3%.

As a screening indicator for PCa, PSA is susceptible to other factors

such as urinary retention and prostatitis.

Currently, TRUS has become common for screening PCa

because of its convenience and affordability, and the absence of

significant contraindications. In TRUS, PCa appears as a

hypoechoic area with indistinct margins (9), but many benign

prostate diseases also present with similar ultrasound

presentation, and the accuracy of the examination depends on

both the performance of the examination equipment and also the

experience and technique of the examining physician, which is

somewhat subjective, resulting in low accuracy for PCa diagnosis.

Multi-parametric MRI (mpMRI) achieves good soft tissue

resolution, and scholars researchers widely agree that MRI signal

changes of prostate tumor lesions are characteristic, which can

improve the diagnostic accuracy and help reduce overdetection and

overtreatment in clinical practice (10). Clinically significant PCa

diagnosis based on Prostate Imaging Reporting & Data System (PI-
02
RADS) relies heavily on the clinical experience of radiologists; the

false-positive rate of mpMRI is high and the interobserver

agreement is poor (11). Magnetic resonance imaging (MRI) and

ultrasound can noninvasively provide morphological and some

functional tumor information but cannot provide a deeper

analysis of the heterogeneous characteristics of tumors.

Radiomics can extract high-throughput, quantitative image

features from medical images and mine information related to

tumor pathophysiology (12). Through machine learning (ML),

screening and classification of a large number of image

phenotypic features can be performed to evaluate tissues

noninvasively and quantitatively, which can allow more accurate

diagnoses and differential diagnoses of lesions compared with

traditional imaging examinations. Therefore, we used TRUS

videos and mpMRI of the prostate to establish ML prediction

models for PCa. The purpose of this study is to compare TRUS

videos and mpMRI and discover their respective advantages

and disadvantages to facilitate the selection of the best prediction

model to improve the detection rate of PCa and avoid

transitional diagnoses.
2 Materials and methods

2.1 Case collection and grouping

All ultrasound videos and mpMRI were collected from

Dongyang Affiliated Hospital of Wenzhou Medical University.

We recorded a total of 519 cases from July 2021 to June 2022,

including 245 cases of PCa and 274 cases of benign prostate lesions.

The inclusion criteria were as follows: (i) prostate-occupying

lesions detected on rectal finger examination, TRUS, or MRI; (ii)

pathological results obtained from prostate puncture biopsy or

surgery; and (iii) no relevant treatment received within 3 months.

The flowchart of inclusion and exclusion of the study population is

shown in Figure 1.

Finally, a total of 383 cases were included in this study: 187 cases

of PCa and 196 cases of benign lesions. We randomized all cases

into a training cohort (307 cases, including 157 cases of benign
frontiersin.org
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lesions and 150 cases of malignant lesions) and a test cohort (76

cases, including 39 cases of benign lesions and 37 cases of malignant

lesions) at a ratio of 8:2, and then randomly selected 20% of the

cases from the training cohort as the validation set before training.

The training cohort was used for feature screening and model

construction and validation, while the test cohort was used only for

model testing.
2.2 Ultrasound video and mpMRI
acquisition

We collected all prostate-related ultrasound data using an

Esaote MyLab Class C diagnostic ultrasound machine (Esaote,

Genoa, Italy) with a TRT33 transrectal biplane probe (frequency:

3–13 MHz). Four sonographers with more than 10 years of

experience performed TRUS. The patients lay flat on the

treatment bed in a lithotomy position, and the sonographers

placed the condomed TRT33 probe transanally into the patients’

rectum. Thereafter, the sonographers viewed the prostate pattern on

the ultrasound screen, adjusted the probe to the optimal depth,

manipulated the probe to scan the entire transverse section of the

prostate from top to bottom, and stored a 10-second motion video.

All mpMRI examinations were conducted using a 3.0T Siemens

magnetic atomic antenna MRI scanner (Erlangen, Germany), from

which we collected all T2 and ADC sequence images containing

the prostate.

Three types of image information were obtained from the cases:

B-Ultrasound videos, mpMRI T2 sequences, and ADC sequences.

We divided the data into three groups according to the image

source: BUS, T2, and ADC groups.
Frontiers in Oncology 03
2.3 Manual annotation

We used a 3D slicer software (v.5.03) for manual annotation,

and all three sets of images were outlined with the entire prostate as

the region of interest by three ultrasonographers with more than 5

years of experience in TRUS diagnosis. We obscured identifying

information, such as the name for each case, named the cases by

number, and randomly disorganized them to ensure that the three

sonographers could not obtain other relevant information

before outlining.

Intra- and inter-class correlation coefficients (ICCs) were used

to evaluate the reproducibility of imaging histology feature

extraction. Only the manually labeled features with ICCs of ≥0.8,

which indicated good reproducibility in the other feature selection

process, were included.
2.4 Feature extraction

We used the SlicerRadiomics [v.aa418a5 (2022-07-08)]

extension package in the 3D Slicer software to extract the imaging

histology features (13). For each training cohort in the three groups,

we extracted 851 features from each case, including 14 shape

features, 18 first-order features, 24 GLCM features, 14 gray level

dependency matrix (GLDM) features, 16 GLRM features, 16 gray

level size zone matrix (GLSZM) features, 5 NGDM features, and

744 wavelet features. We used the computer programming language

Python (v.3.8.8) for subsequent feature screening and model

construction, validation, and testing. First, the Levene chi-square

test was performed for all features, and the two independent-

samples t-test (features with chi-square) and the Mann–Whitney
FIGURE 1

Flowchart of inclusion and exclusion of the study population.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1157949
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qi et al. 10.3389/fonc.2023.1157949
U test (features with chi-square) were used to test for differences

between the benign and malignant groups, retaining features that

were significantly different (p<0.05). Second, we added labels to the

data of each case according to the pathological findings, with 0

representing benign and 1 malignant. Finally, the remaining

features were screened using LASSO regression, and 10-fold

cross-validation was repeated 1,000,000 times in the training

cohort to obtain the optimal values of L and finally the most

valuable features.
2.5 ML models

We used the scikit-learn 0.24.2 extension package in Python for

the construction of the ML models (14) and randomly divided the

training cohort into a training set including 246 cases and an

internal validation set including 62 cases at a ratio of 8:2. We

used the support vector machine (SVM) model with Gaussian

kernel, random forest (RF) model, adaptive boosting (ADB)

model, and gradient boosting machine (GBM) model to classify

the features in the training set. The best ML model was determined

via grid search and cross-validation (GridSearchCV) to find the

parameters with the highest accuracy for each model in the

validation queue.
2.6 Optimization model

First, we fused the features filtered via LASSO regression from

the BUS, T2, and ADC groups as new features and applied the SVM,

RF, ADB, and GBM models to the validation and test cohorts to

obtain the ROC curves.

Second, we asked three SRs (all with more than 5 years of MRI

experience) to diagnose the cases based on the prostate MRI in the

validation cohort and selected the diagnoses via a minority–

majority approach to obtain the AUC.
Frontiers in Oncology 04
Third, we combined the diagnostic results of each ML model

with the diagnostic results from the senior physicians for voting,

with the aim of obtaining a diagnostic result better than that

obtained from each model alone.
2.7 Statistical analysis

Python and SPSS (v.25.0) were used for the statistical analysis.

The chi-square test was used to compare the categorical variables;

the continuous variables were presented as means (standard

deviations) and categorical variables as numbers (percentages).

We also evaluated the superiority of the four ML models in

diagnosing PCa in the BUS, T2, and ADC groups based on the

AUC, sensitivity, specificity, and accuracy. A p-value of <0.05

indicated a statistically significant difference. The overall

flowchart of the study is shown in Figure 2.
3 Results

3.1 Clinical case characteristics

The mean age of the training and test cohorts was 71.24 and

71.46 years, respectively, and the mean PSA level was 33.55 and

32.49 ng/mL, respectively (p>0.05). These findings indicated no

significant differences in age and the PSA level between the two

cohorts and no significant selection bias.

In the training cohort, there were 157 (51.1%) cases of benign

prostate lesions, including 133 (43.4%) cases of prostate

hyperplasia, 19 (6.2%) cases of prostate hyperplasia with

prostatitis, 3 (1.0%) cases of prostate hyperplasia with basal cell

hyperplasia, and 2 (0.6%) cases of prostate hyperplasia with low-

grade intraepithelial neoplasia. Further, there were 150 (48.9%)

cases of PCa, of which the Gleason score (GS) was 6 in 59 (19.2%), 7

in 53 (17.3%), 8 in 24 (7.8%), and >8 in 14 (4.6%) cases.
FIGURE 2

Overall flowchart of the study, including manual segmentation, feature extraction, feature selection, machine learning, and evaluation.
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In the test cohort, there were 39 (51.3%) cases of benign prostate

lesions, including 33 (43.4) cases of prostatic hyperplasia, 3 (4.0%)

cases of prostatic hyperplasia with prostatitis, 2 (2.6%) cases of

prostatic hyperplasia with basal cell hyperplasia, and 1 (1.3%) case

of prostatic hyperplasia with low-grade intraepithelial neoplasia.

Moreover, there were 37 (48.7%) cases of PCa, of which the GS was

6 in 12 (15.8%), 7 in 17 (22.3%), 8 in 4 (5.3%), and >8 in 4

(5.3%) cases.

The clinicopathological characteristics of the training and test

cohorts of the study are shown in Table 1.
3.2 Feature screening

We extracted 851 features from the image data of each case in

the BUS, T2, and ADC groups and screened them using a t-test and

the Mann-Whitney U test, depending on the outcome of Levene’s

test: if p > 0.05, the two groups of samples were compared by an

independent two-sample t-test (H1: the means of the sample

distributions differ); otherwise, the Mann-Whitney U test was

used with continuity correction and H1: the distributions of the

two data sets differ. After LASSO regression and dimensionality

reduction screening, 20, 13, and 13 features were left in the BUS, T2,

and ADC groups, respectively (Table 2). In the LASSO regression,

we used 10-fold cross-validation to generate the optimal penalty

coefficient l, which was 0.016, 0.024, and 0.024 for the three groups,
respectively. The performance of the three groups of screened

features is shown in Figure 3.
Frontiers in Oncology 05
3.3 Model evaluation

The AUC, sensitivity, specificity, and accuracy of the SVM, RF,

ADB, and GBM models in the test cohort among the BUS, T2, and

ADC groups are shown in Table 3, while the ROC curves are

displayed in Figure 4. The AUC in the ADC group was higher than

that in the other two groups. The RF model showed the best

diagnostic performance, with an AUC of 0.85, sensitivity of 0.78

(0.61–0.89), specificity of 0.84 (0.69–0.94), and accuracy of 0.83

(0.66–0.93), indicating that the ML model based on ADC

performed best. The SVM model in both the BUS and T2 groups

showed the best performance. The sensitivity of the model in the

BUS group was higher than that in the T2 group, while the

specificity and accuracy in the BUS group were lower than those

in the T2 group. However, the AUC of the SVM and RF models in

the BUS group was higher than that in the T2 group, indicating that

the ML models in these two groups had their own advantages

and disadvantages.

We fused the features filtered from the BUS, T2, and ADC

groups and then used GridSearchCV to derive the best parameters

in the SVM, RF, ADB, and GBM models. After the construction of

the four models, classification prediction was then successively

performed in the internal validation and test sets. The SVM

model performed best, with an AUC of 0.87, sensitivity of 0.73

(0.56–0.86), specificity of 0.79 (0.63–0.90), and accuracy of 0.77

(0.59–0.89).

The results obtained from the chi-square test in each group

were significantly different (p<0.05).
TABLE 1 Clinicopathological characteristics of the training and test cohorts.

Training set Test set P value

NO. of studies 307 76

Age(y)* 71.2378+-7.94335 71.4605+-8.87610 0.831

PSA(ng/mL)* 33.5454+-126.63170 32.4897+-133.63170 0.949

Pathology

No.of Benign(-)(%) 157 (51.1%) 39 (51.3%)

BPH 133 (43.3%) 33 (43.4%)

BPH & prostatitis 19 (6.2%) 3 (4.0%)

BPH & BCH 3 (1.0%) 2 (2.6%)

BPH & LGIN 2 (0.6%) 1 (1.3%)

No.of Pca(+)(%) 150 (48.9%) 37 (48.7%)

GS6 59 (19.2%) 12 (15.8%)

GS7 53 (17.3%) 17 (22.3%)

GS8 24 (7.8%) 4 (5.3%)

GS>8 14 (4.6%) 4 (5.3%)
fron
*Data are expressed as means ± standard deviations.
BPH, benign prostatic hyperplasia; BCH, basal cell hyperplasia; LGIN, low-grade intraepithelial neoplasia. p<0.05 indicates significant differences in the clinicopathological features in the
validation and test sets.
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TABLE 2 The subset of radiomics features ultimately selected by the LASSO algorithm.

Feature Image type Feature class Feature name LASSO coefficients

BUS

1 Original Shape Maximum2DDiameterRow 0.016278

2 Original glszm SmallAreaEmphasis -0.035462

3 wavelet-LLH firstorder Mean 0.064800

4 wavelet-LLH glcm MCC -0.447730

5 wavelet-LHL firstorder Skewness -0.021033

6 wavelet-LHL glcm ClusterShade -0.074558

7 wavelet-LHL glcm Correlation 0.012700

8 wavelet-HLL firstorder Mean 0.002197

9 wavelet-HLL glszm GrayLevelNonUniformity -0.077523

10 wavelet-HLH firstorder Maximum -0.008058

11 wavelet-HLH firstorder Range -0.034742

12 wavelet-HLH ngtdm Complexity -0.002279

13 wavelet-HHL glcm InverseVariance -0.040718

14 wavelet-HHL ngtdm Strength 0.001840

15 wavelet-HHH firstorder Maximum -0.010937

16 wavelet-HHH glcm ClusterShade 0.012013

17 wavelet-HHH ngtdm Complexity -0.026380

18 wavelet-LLL glcm DifferenceVariance 0.038269

19 wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.035822

20 wavelet-LLL ngtdm Complexity 0.002062

T2

1 Original Shape Flatness -0.000019

2 Original Shape Maximum3Ddiameter 0.001639

3 Original ngtdm Strength 0.001174

4 wavelet-LHL firstorder Energy -0.002221

5 wavelet-LHL firstorder TotalEnergy 0.000001

6 wavelet-LHH firstorder Skewness 0.002864

7 wavelet-LHH glszm SmallAreaHighGrayLevelEmphasis 0.001878

8 wavelet-HLL gldm SmallDependenceLowGrayLevelEmphasis 0.000943

9 wavelet-HLH gldm DifferenceVariance 0.008648

10 wavelet-HLH ngtdm Strength 0.000759

11 wavelet-HHH glcm Imc1 -0.000859

12 wavelet-HHH ngtdm Coarseness 0.010744

13 wavelet-HHH ngtdm Strength 0.005782

ADC

1 Original Shape SurfaceVolumeRatio 0.028674

2 Original firstorder 10Percentile -0.172593

3 Original gldm DependenceNonUniformityNromalized 0.005133

(Continued)
F
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3.4 Model voting

We attempted to improve the diagnostic ability of the MRI

interpreted by the SRs for PCa via model voting. We selected the

diagnoses from the SVM model, RF model, ADB model, and MRI

results by the SRs for voting. The analysis showed that the voting

results were significantly better for the ML models than for the MRI

diagnosis by the SRs (AUC: 0.72 vs. 0.89, sensitivity: 0.68 vs. 0.76,

specificity: 0.77 vs. 0.90, accuracy: 0.74 vs. 0.80).
4 Discussion

PCa radiomics is an emerging research field with high potential

to offer non-invasive and longitudinal biomarkers for personalized

medicine (15). The ML-based imaging radiomics transforms visual

image information into in-depth quantitative indicators, extracts a

large amount of image feature information from medical images,

and constructs predictive models based on feature information (16,

17). In our previous study, prostate features were extracted from

TRUS videos, and the SVMmodel constructed using ML algorithms

was found to outperformMRI-based advanced radiologist diagnosis

for PCa (AUC = 0.78 vs. 0.75 in the validation set and 0.75 vs. 0.72

in the test set) (18). Techniques such as quantitative MRI analysis

and computer-aided diagnosis have expanded the scope to analyze

prostate MRI, and have been shown to improve diagnostic accuracy

and reproducibility (19–21) and reduce inter-diagnostician

variability by highlighting suspicious areas on MRI (22). In this

study, we used TRUS videos and mpMRI to build ML prediction

models for PCa and compared their diagnostic performance. Our

analysis showed that the ML prediction model in the ADC group

and the SVM model in the fusion group had the best diagnostic

efficacy for PCa. The model voting results were significantly better

for the MLmodels than for the MRI diagnosis by the SRs, indicating

that the ML models can effectively assist radiologists in

PCa diagnosis.

ADC can be considered as the best single-parameter component

for prostate MRI assessment at present (23). In the study by
Frontiers in Oncology 07
Bonekamp et al., ML and imaging histology did not exceed the

predictive performance of single-parameter ADC assessment (24).

However, there was an overlap in the ADC values of transitional

zone (TZ) PCa and stromal benign prostatic hyperplasia. Therefore,

the second version of the PI-RADS suggests the use of T2W-MRI as

a definitive sequence for the evaluation of the TZ (25, 26). In this

study, the ML prediction models based on the mpMRI were

constructed using all T2 and ADC sequence images of the

prostate. Based on the sample from our previous study, our team

selected the ultrasound video ML models. A total of four models

were constructed by fitting the training set with GridSearchCV. The

AUC in the ADC group exceeded that in the other two groups and

the results obtained agreed with previous literature (23, 24).

The 3D volumetric region of interest generated was analyzed

computationally, using image histology analysis software to extract

a large number of image histology features. Some of the commonly

extracted features were morphological, first-order, and texture

features (obtained from the grayscale co-occurrence matrix, travel

matrix, size region matrix, and neighborhood grayscale difference

matrix). The redundancy among these large numbers of features

and the fact that some of them were of minimal or no relevance to

the corresponding task, necessitated feature selection and

dimensionality reduction (27, 28).

Among the image histology features selected in this study (29),

the BUS group had one feature from the morphological features and

one from the GLSZM features for quantifying gray areas in the

image; the T2 group had two from the morphological features and

one from the neighborhood gray tone difference matrix features;

and the ADC group had one from the morphological features, one

from the first-order features (i.e., range of gray values of the ROI),

one from the GLDM features, and one from the GLSZM features for

quantifying gray areas in the image. In addition, the BUS, T2, and

ADC groups had 18, 10, and 9 wavelet (30) subsets taken from the

texture features, respectively. The predominance of wavelet-based

texture features indicates that texture features have a better

classification function. These features are related to the

composition of heterogeneous cells in malignant tumors with

significant molecular and microenvironmental differences,
TABLE 2 Continued

Feature Image type Feature class Feature name LASSO coefficients

4 Original glszm HighGrayLevelZoneEmphasis 0.013405

5 wavelet-LLH glcm Imc1 -0.006757

6 wavelet-LHL firstorder Skewness -0.079605

7 wavelet-LHH glcm Idn -0.009877

8 wavelet-HLL glcm Imc1 -0.057371

9 wavelet-HLH glcm Imc2 0.032562

10 wavelet-HHL ngtdm Coarseness 0.016633

11 wavelet-HHH firstorder Skewness -0.009469

12 wavelet-HHH glszm SizeZoneNonUniformityNormalized -0.045828

13 wavelet-LLL firstorder Skewness -0.037563
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indicating that the texture features of tumors are highly correlated

with heterogeneity (31).

In radiomics modeling, logistic regression models are the most

popular and commonly used supervised classifiers owing to their

simplicity and ease of implementation. Further, the commonly

used ML methods include RF (32), SVM (33), and artificial neural
Frontiers in Oncology 08
networks. Previous literature has reported that both the SVM and

RF models exhibit good stability, both models achieving good

diagnostic efficiency in building small sample prediction models

(34). In this study, both the BUS group and the T2 group

performed best with the SVM model. Compared with the BUS

group, the T2 group exhibited lower sensitivity and higher
a1

b1

c1

a2

b2

c2

FIGURE 3

Selection of significant features in the training set and definition of the linear predictor. (a1, b1, c1) Spearman’s correlation coefficients were
calculated for the selected features of the BUS, T2, and ADC groups. (a2, b2, c2) Character classification weight of the features of the BUS, T2, and
ADC groups.
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specificity and accuracy, but the AUC of the SVM model and the

RF model of the BUS group were higher than those of the T2

group, indicating that the machine learning models of the two

imaging sources have their own advantages and disadvantages.

Previously, Li et al. compared the PCa diagnostic performance of

the mpMRI imaging histology model and PI-RADS v2.1 and

found that the AUC of the mpMRI imaging histology model

exceeded that of PI-RADS v2.1, and that combined imaging

histology could improve the diagnostic performance of PI-

RADS scores (35).To evaluate the best ML prediction model for

the diagnosis of PCa, we fused the features screened via LASSO

regression from the BUS, T2, and ADC groups and re-used the

SVM, RF, ADB, and GBM models for another comprehensive

feature model comparison in this study. The results showed that

the combined features (BUS+ADC+T2) had better efficacy in the

diagnosis of PCa relative to ADC, while the SVM model was

superior to the other models in terms of diagnostic efficacy. Since

the GBM model was less effective than the other three models, we
Frontiers in Oncology 09
selected the SVM model, RF model, ADB model, and MRI

diagnosis by the SRs for voting. The analysis showed that the

combined voting results were significantly better for the ML

models than for the MRI diagnosis by the SRs (AUC: 0.89 vs.

0.72, sensitivity: 0.76 vs. 0.68, specificity: 0.90 vs. 0.77, accuracy:

0.80 vs. 0.74), indicating that the ML integrated models can

effectively assist radiologists in the diagnosis of PCa.

The ML models constructed on the basis of TRUS videos and

mpMRI improved the diagnosis of PCa but did not guarantee the

utility of accurately ruling each other out. A fusion model of the two

techniques provides complementary information that is expected to

become more important in the era of focal therapy to accurately

identify the location of PCa.

There are several limitations to this study. First, the study was

conducted at a single center, and we therefore cannot rule out a

single-center effect. Second, since this was a retrospective study with

a small sample size, and the findings were only preliminary, multi-

center and large-sample studies are still needed to test the validation
TABLE 3 Diagnostic performance of machine learning model and MRI on a per-lesion basis.

Model and Dataset Sensitivity(95%
CI)

Specificity(95%
CI) (95%CI) AUC P Value Kappa

BUS

SVM Model 0.57(0.40-0.72) 0.74(0.58-0.86) 0.68(0.49-0.83) 0.77 0.0058 0.312

RF Model 0.59(0.42-0.75) 0.72(0.55-0.84) 0.67(0.48-0.81) 0.73 0.006 0.313

ADB Model 0.65(0.47-0.79) 0.67(0.50-0.80) 0.65(0.47-0.79) 0.72 0.006 0.315

GBM Model 0.65(0.47-0.79) 0.67(0.50-0.80) 0.65(0.47-0.79) 0.72 0.006 0.315

T2

SVM Model 0.46(0.30-0.63) 0.87(0.72-0.95) 0.77(0.55-0.91) 0.75 0.001 0.335

RF Model 0.51(0.35-0.68) 0.79(0.63-0.90) 0.70(0.50-0.86) 0.71 0.005 0.331

ADB Model 0.57(0.40-0.72) 0.79(0.63-0.90) 0.72(0.53-0.87) 0.74 0.001 0.364

GBM Model 0.57(0.40-0.72) 0.79(0.63-0.90) 0.72(0.53-0.87) 0.72 0.001 0.364

ADC

SVM Model 0.73(0.56-0.86) 0.82(0.66-0.92) 0.79(0.62-0.91) 0.83 0.000001 0.551

RF Model 0.78(0.61-0.89) 0.84(0.69-0.94)
0.83(0.66-

0.93)
0.85 0.000000 0.631

ADB Model 0.59(0.42-0.75) 0.74(0.57-0.86) 0.69(0.50-0.83) 0.78 0.000089 0.420

GBM Model 0.59(0.42-0.75) 0.74(0.57-0.86) 0.69(0.50-0.83) 0.81 0.000089 0.420

MRI-SR 0.68(0.50-0.81) 0.77(0.60-0.88) 0.74(0.55-0.86) 0.72 0.000097 0.446

BUS+T2+ADC

SVM Model 0.73(0.56-0.86) 0.79(0.63-0.90) 0.77(0.59-0.89) 0.87 0.000005 0.525

RF Model 0.76(0.58-0.88) 0.69(0.52-0.82) 0.70(0.53-0.83) 0.85 0.000089 0.448

ADB Model 0.59(0.42-0.75) 0.82(0.66-0.92) 0.76(0.56-0.89) 0.84 0.000196 0.417

GBM Model 0.65(0.47-0.79) 0.72(0.55-0.84) 0.69(0.51-0.83) 0.81 0.001 0.367

VOTE 0.76(0.58-0.87) 0.90(0.74-0.97) 0.80(0.64-0.90) 0.89 0.000000 0.656
front
SVM model, support vector machine model; RF model, random forest model; ADB model, Adaboosting model; GBM model, gradient boosting machine model; MRI-SR, senior radiologists’
(more than 5 years of experience) diagnosis based on MRI, VOTE, the vote from SVM model, RF model, ADB model and MRI-SR. p<0.05 indicates a significant difference in the discrimination
of the SVM model and MRI diagnosis.
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set and prospective studies to verify the reliability of the models.

Third, only the value of the T2 sequences from TRUS videos and

mpMRI with ADC sequences in predicting PCa was investigated.

The predictive value of the comparison between the ML models
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using ADC images with b-values and ADC images combined with

clinical features was not considered, since it was not the focus of this

study. Further integration of clinical and imaging histology features

to construct models will be performed in later studies. We aim to
A

B

FIGURE 4

Comparison of the ROC curves between the ML models and MRI data in the validation and test sets, where TPR denotes True Positive Rate and FPR denotes
False Positive Rate. (A) ROC curves of the internal validation and test sets; 1 SVM models, 2 RF models, 3 ADB models, 4 GBM models. (B) ROC curves of the
combination model.
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build a robust prediction model to replace other imaging methods

and provide a solid theoretical basis for accurate and individualized

treatment of PCa.
5 Conclusions

In our study, we used ultrasound videos, mpMRI T2 sequences,

and ADC sequences to form separate datasets to build ML models.

The prediction models constructed using ML algorithms showed a

good diagnostic ability for PCa. The accuracy, sensitivity, and

specificity of the SVM model in the ADC group were better than

those in the BUS and T2 groups. The SVM model in the fusion

group showed the best diagnostic performance for PCa. The model

showed a better diagnostic efficacy in the fusion group than in the

ADC, BUS, and T2 groups in both the validation and test cohorts.

In the fusion group, the SVM model showed a better performance

than did the RF model. These prediction models can help

radiologists make better diagnoses. In our future work, we plan to

combine the comparison outcomes of the ML models based on

ADC images of prostate MRI and ADC b-values with clinical

features to build a better ML model and use deep learning and

neural networks for ultrasound diagnosis of PCa. The models

established in this study can help in achieving more accurate

diagnoses and differential diagnoses of lesions, which can greatly

aid in clinical treatment decision-making and prognosis prediction.
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