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Máximo Francisco Fraga Rodrı́guez1,2,
Juan Carlos Vallejo Llamas1,2 and José Luis Bello López1,2
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Diffuse Large B-cell Lymphoma (DLBCL) is the most common type of aggressive

lymphoma. Approximately 60% of fit patients achieve curation with

immunochemotherapy, but the remaining patients relapse or have refractory

disease, which predicts a short survival. Traditionally, risk stratification in DLBCL

has been based on scores that combine clinical variables. Other methodologies

have been developed based on the identification of novel molecular features,

such as mutational profiles and gene expression signatures. Recently, we

developed the LymForest-25 profile, which provides a personalized survival

risk prediction based on the integration of transcriptomic and clinical features

using an artificial intelligence system. In the present report, we studied the

relationship between the molecular variables included in LymForest-25 in the

context of the data released by the REMoDL-B trial, which evaluated the addition

of bortezomib to the standard treatment (R-CHOP) in the upfront setting of

DLBCL. For this, we retrained the machine learning model of survival on the

group of patients treated with R-CHOP (N=469) and then made survival

predictions for those patients treated with bortezomib plus R-CHOP (N=459).

According to these results, the RB-CHOP scheme achieved a 30% reduction in

the risk of progression or death for the 50% of DLBCL patients at higher

molecular risk (p-value 0.03), potentially expanding the effectiveness of this

treatment to a wider patient population as compared with other previously

defined risk groups.

KEYWORDS

machie learning, DLBCL - diffuse large B cell lymphoma, bortezomib, R-CHOP,
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Introduction
Diffuse Large B-cell Lymphoma (DLBCL) is the most common

type of aggressive lymphoma. Approximately 60% of patients achieve

curation with the standard first line treatment, which is based on the

combination of an anti-CD20 antibody (rituximab) with

chemotherapy (cyclophosphamide, doxorubicin and vincristine)

and prednisone (R-CHOP). The remaining patients have either

refractory disease or relapse after achieving a remission, and this

predicts an adverse prognosis (1). Traditionally, risk stratification has

been based on scores that combine the value of different prognostic

variables. Examples of these methods are the International Prognostic

Index (IPI), the revised IPI (R-IPI), and the National Comprehensive

Cancer Network IPI (NCCN-IPI) (2). Nevertheless, the accuracy of

these scores is far from optimal, and other strategies are actively being

explored based on novel molecular features. Earlier studies based on

transcriptomic signatures revealed 3 prognostic groups based on their

cell-of-origin (COO) status: activated B-cell–like (ABC), germinal-

center B-cell–like (GCB) and unclassified (3). Furthermore, recent

research reports proved that high risk lymphomas can also be

identified as those which share a gene expression signature with

either double & triple-hit DLBCLs or with Burkitt lymphomas (4).

These lymphomas have been termed as molecular high-grade (MHG)

by the academics (4). Finally, comprehensive classifications of

DLBCL based on patterns of somatic mutations also exist, which

are also associated with divergent clinical outcomes (5).

A few years ago, we presented a new prognostic tool in DLBCL

based on a 102-gene expression profile (6). The data from this

profile, when interpreted with machine learning tools, enabled the

inference of personalized survival outcomes that were

prognostically superior to those of the COO classification.

Afterwards, we reproduced this profile in another cohort, and

reduced the total number of genes in the signature to 19 variables

which were prognostically independently of the IPI-related

variables (7). The model was named LymForest-25. Finally, we

validated the prognostic value of this signature in the UK

population-based Haematological Malignancy Research Network

database (8), confirming its superiority with respect to the COO and

MHG classifications. Notably, the performance of the predictor

continued to be high despite the exclusion of 2 genes which were

not represented in the gene expression panel used in that study.

At the same time, a growing interest for improved treatments in

DLBCL has emerged, and several trials have evaluated new upfront

combinations during the last years. The ROBUST study was a

randomized, phase III trial which explored the addition of

lenalidomide to R-CHOP (R2-CHOP) vs standard R-CHOP, but

failed to provide significant results (9). However, a tendency for an

improved progression-free survival (PFS) with R2-CHOP was

observed among patients with high risk disease (IPI ≥ 3). More

recently, the POLARIX phase III trial evaluated a modified scheme

of R-CHOP (pola-R-CHP), in which vincristine was replaced with

polatuzumab vedotin, as compared with standard R-CHOP in

patients with previously untreated intermediate-risk or high-risk

DLBCL (10). A significant benefit in PFS was observed in the pola-
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R-CHP treatment branch, with a hazard ratio (HR) of 0.73. Notably,

exploratory subgroup analysis evidenced that this benefit was more

pronounced among patients with IPI ≥ 3 and in those with ABC

phenotype. A different therapeutic strategy has been based on the

incorporation of the proteasome inhibitor bortezomib into the R-

CHOP scheme (RB-CHOP). Preclinical evidence indicated that

bortezomib can exert antitumoral activity in B-cell lymphoma cell

lines (11). This promoted clinical studies that ended up in the

development of the REMoDL-B trial, a randomized phase III trial

testing RB-CHOP vs R-CHOP in previously untreated DLBCL

patients (12). The results of this trial indicated no evidence for a

benefit of RB-CHOP over R-CHOP neither in PFS nor in overall

survival (OS). However, exploratory post-hoc analysis evidenced a

benefit for RB-CHOP in PFS in the MHG group, and a tendency

towards a benefit in the ABC group (13).
Methods

In the present report, we aimed to reproduce the prognostic

value of the LymForest gene expression profile in the publicly

available data of the REMoDL-B trial (13), as well as to evaluate

the possible predictive value of this signature. Briefly, normalized

gene expression estimates were downloaded from the Gene

Expression Omnibus (GEO), with ID GSE117556. This cohort

contained data for 928 patients, out of which 469 were treated

with R-CHOP and 459 were treated with RB-CHOP. Median

follow-up was 29.37 months, and median overall survival was not

reached. We created a random forest model of survival following

previous specifications (7, 8), and this model was exclusively trained

on the group of patients treated with R-CHOP. Out-of-bag metrics

were derived for patients in this subgroup, and new predictions on

patients treated with RB-CHOP were made based on the results of

the training set. The values of the cumulative hazard function were

used to calculate the c-indexes.
Results

Firstly, we decided to reproduce the machine learning

predictions based on the expression of 17 out of 19 original

genes. This was due to the fact that 2 genes (FAM208B and

TRAV6) were not included in the Illumina HumanHT-12 WG-

DASL V4.0 R2 expression beadchips. In the original UK

population-based Haematological Malignancy Research Network

database, the c-index of this signature was 0.612. In the case of the

REMoDL-B trial cohort, the c-indexes were 0.619 and 0.640 for the

R-CHOP and RB-CHOP treated patients, respectively. Then, we

reasoned that the expression of one of the missing genes (the T-cell

receptor alpha subunit variable region gene; TRAV6), could be

substituted by the expression of the CD3 T-cell specific marker

genes, namely CD3D, CD3G and CD3E. We observed that this

strategy improved the c-index in the UK population-based

Haematological Malignancy Research Network database (original

c-index, 0.612; new c-index, 0.621). Hence, we performed the same
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modification in the REMoDL-B trial cohort, obtaining a c-index of

0.668 in the group of patients treated with R-CHOP, and a small

reduction of the c-index to 0.631 in those treated with RB-CHOP.

In a second approach, we evaluated the possible predictive value

of this signature in the REMoDL-B trial. With this aim, we extracted

the 2-year survival probabilities from the machine learning

predictions. We chose this threshold because most of the relapses

and lymphoma-related deaths are known to occur during this

period of time (14). Initially, we explored the possible utility of

the 17-gene model by splitting the patients into 2 halves and 3

tertiles of risk (Table 1). No statistically significant difference in PFS

was observed between patients treated with RB-CHOP and R-

CHOP in either the high or the low 50% risk groups. However, a

significant advantage of RB-CHOP for those patients assigned to

the higher 33% of risk was identified (p-value 0.03, HR 0.66). Then,

we reproduced the same procedure with the model enriched in T-

cell markers (Table 1). In this case, we observed a significantly

higher PFS with RB-CHOP for the 50% of patients at higher risk (p-

value 0.03, HR 0.70; Figure 1A), whereas no significant differences

were observed for those patients assigned to the lower 50% of risk

(Figure 1B). This effect appeared to be even more pronounced

among patients in the higher 33% of risk (p-value 0.03, HR 0.66)

(Figures 1C, D).
Discussion

Our data indicates a role for bortezomib-containing upfront

treatments in patients with DLBCL who have high-risk molecular

features. According to these results, the RB-CHOP scheme achieved

a 30% reduction in the risk of progression or death for the 50% of

DLBCL patients at higher molecular risk, potentially expanding the

effectiveness of this treatment to a wider patient population as

compared with other previously defined risk groups. Furthermore,

we confirmed that the inclusion of T-cell markers in the gene

expression signature enriches the prognostic performance of the

signature in patients treated with R-CHOP, although their

importance appears to diminish in patients treated with RB-

CHOP. In conclusion, the standardization and implementation of

machine learning-guided molecular risk scores based on

transcriptomic features should be performed in the context of

clinical trials evaluating novel upfront combinations in the

upfront treatment of DLBCL. Additionally, the LymForest

molecular profile improves previous transcriptomic signatures for

both prognostication and drug-response prediction in patients with

DLBCL requiring systemic immunochemotherapy. This strategy

could also be explored to enrich the results of other trials aiming to

improve R-CHOP as upfront treatment in DLBCL, such as those

based on polatuzumab (pola-R-CHP) (10) and those aiming to

incorporate immunotherapy (bispecific antibodies or CAR-T cells)

(15, 16). This is relevant because most of the new drugs in the

frontline setting face a substantial difficulty to improve R-CHOP

due to its high effectivity in the global population, and therefore the

development of biomarkers to guide their use is of the

utmost interest.
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Machine learning has the potential to play an important role in

the post hoc analysis of clinical trials by enabling more

comprehensive and accurate analysis of trial data. AI-based

methods can process large amounts of data and identify patterns,

relationships, and insights that may not be immediately apparent

through traditional statistical methods. Additionally, AI techniques

can help to identify potential safety concerns, optimize dosing

regimens, and identify subgroups of patients who may benefit the

most from a particular treatment. For example, machine learning

algorithms can be used to identify the best predictive biomarkers or

clusters of patients for a particular treatment, which can inform

future trial design and clinical decision making. Several studies have

demonstrated the potential of AI in the post hoc analysis of clinical

trials. For instance, a recent study by Yan et al. (2021) used a

machine learning algorithm to predict clinical outcomes in patients

with colorectal cancer treated with immunotherapy, achieving

better performance than traditional statistical methods (17).

Recently, newer approaches in the prediction of response to

targeted drugs and drug combinations from patients treated in

routine clinical practice have been presented. For example, Kong

et al. (2022) presented an approach to predict the response to

immune check-point inhibitors based on the construction of a

network of genes and proteins that are known to be involved in the

immune response (18). Using machine learning algorithms, they

identified patterns in the network that were associated with drug

response, proving that their approach can accurately predict

responses in several different types of cancer. In another

approach, our group explored new methods to predict risk in

multiple myeloma (MM) by the integration of clinical and

biochemical data with gene expression profiling. By applying

machine learning algorithms, we created a 50-variable model that

can predict OS with high concordance (19). The model included

patient age, ISS stage, serum B2-microglobulin, first-line treatment,

and the expression of 46 genes as covariates. Importantly, we found

that patients treated with the best-predicted drug combination were

significantly less likely to die than patients treated with other

schemes, particularly those treated with a triplet combination

inc lud ing bor t ezomib , an immunomodu la tory drug

and dexamethasone.

Validated and transparent machine learning algorithms are

essential in medical applications because they can provide

accurate and reliable predictions, which can aid clinicians in

making optimal decisions (20). Despite this great potential, it is

important to recognize their limitations and potential biases. It is

crucial to fully understand the strengths and weaknesses of each

algorithm and to ensure that they are appropriately validated and

transparent. This requires ongoing research and collaboration

between machine learning experts and clinicians (21). In the

particular context of clinical trials, post hoc analysis can be used

to analyze data from clinical trials and determine if a drug is

effective and safe (22). Machine learning can be used to identify

patterns and relationships that can later be used to develop new

drugs or optimize existing ones. However, post hoc studies also have

limitations, including the possibility of data overfitting and the

inability to control for confounding variables due to their

retrospective nature (23). In our particular case, we retrained a
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previously described prognostic model in the group of patients

treated with R-CHOP, because this population was the target of our

predictor (6–8). Afterwards, we used these predictions to risk

stratify those patients treated with RB-CHOP and compare

outcomes. However, though the use of an external cohort for

training the predictor could be an option, this should have the

same structure (e.g., inclusion and exclusion criteria, baseline

characteristics…) as the original clinical trial data. This highlights

the crucial importance of external validity in clinical trials,

particularly for the construction of new machine learning

predictors, and the need to discuss these issues with regulatory

agencies for drug approval based on such types of evidence (24).
Frontiers in Oncology 04
Surely, a prospective validation of the findings on a new clinical trial

or in a post-authorization real world cohort would provide more

reliable information. Eventually, the growing application of

machine learning in clinical trials will make these post hoc

analysis more relevant, and regulators should pursue the

development of good clinical practices to ensure a reliable and

fair application (25, 26). This includes using appropriate statistical

methods, validating the model on multiple datasets, and being

transparent about its possible limitations. Another issue of

relevance for the application of this technology relies on the need

for genomic standardization, which should be pursued in order to

lead to reliable results for patient care. Standardization of genomic
TABLE 1 Results of the cox models testing for differential PFS outcomes of the different groups of patients analyzed in the text.

17-gene model CD3 genes + 17-gene model

Groups P-value HR (95% CI) P-value HR (95% CI)

50% higher risk 0.29 0.84 (0.61-1.16) 2.94 x 10-2 0.70 (0.51-0.96)

50% lower risk 0.92 0.98 (0.67-1.43) 0.26 1.24 (0.85-1.82)

33% higher risk 3.5 x 10-2 0.66 (0.45-0.97) 2.88 x 10-2 0.66 (0.45-0.96)

34-65% risk 0.35 1.23 (0.79-1.92) 0.84 1.05 (0.67-1.65)

33% lower risk 0.97 0.99 (0.62-1.59) 0.36 1.25 (0.78-2.01)
P-values, hazard ratios (HR) and 95% confidence intervals of the HR are provided.
D

A B

C

FIGURE 1

Kaplan-Meier curves representing the PFS of patients treated with RB-CHOP and R-CHOP according to their biological risk predicted by the CD3
markers & 17 gene expression signature. (A, B) Representation of RB-CHOP and R-CHOP curves for those patients in the higher 50% risk group
(A) and in the lower 50%risk group (B). (C, D) Representation of RB-CHOP and R-CHOP curves for those patients in the higher 33% risk group
(A) and in the lower 67%risk group (B).
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tests involves ensuring that the tests are performed in a consistent

and reliable manner across different laboratories, using well-defined

protocols, standardized testing platforms and quality control

measures (27). This will help to ensure that the results of the tests

are accurate and can be compared across different settings and

over time.

In conclusion, we present an evaluation of LymForest-25

machine-learning-based gene expression profile to risk stratify

patients and predict treatment responses in patients with DLBCL

within the REMoDL-B trial. The results suggest a role for

bortezomib-containing upfront treatments in molecular high-risk

patients. The standardization and implementation of machine

learning-guided molecular risk scores based on transcriptomic

features should be pursued in the context of clinical trials

evaluating novel upfront combinations in the upfront treatment

of DLBCL.
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