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Objectives: The objective of this study was to compare the predictive

performance of 2D and 3D radiomics features in meningioma grade based on

enhanced T1 WI images.

Methods: There were 170 high grade meningioma and 170 low grade

meningioma were selected randomly. The 2D and 3D features were extracted

from 2D and 3D ROI of eachmeningioma. The Spearman correlation analysis and

least absolute shrinkage and selection operator (LASSO) regression were used to

select the valuable features. The 2D and 3D predictive models were constructed

by naive Bayes (NB), gradient boosting decision tree (GBDT), and support vector

machine (SVM). The ROC curve was drawn and AUC was calculated. The 2D and

3D models were compared by Delong test of AUCs and decision curve analysis

(DCA) curve.

Results: There were 1143 features extracted from each ROI. Six and seven

features were selected. The AUC of 2D and 3D model in NB, GBDT, and SVM

was 0.773 and 0.771, 0.722 and 0.717, 0.733 and 0.743. There was no significant

difference in two AUCs (p=0.960, 0.913, 0.830) between 2D and 3D model. The

2D features had a better performance than 3D features in NB models and the 3D

features had a better performance than 2D features in GBDT models. The 2D

features and 3D features had an equal performance in SVM models.

Conclusions: The 2D and 3D features had a comparable performance in

predicting meningioma grade. Considering the issue of time and labor, 2D

features could be selected for radiomics study in meningioma.

Key points: There was a comparable performance between 2D and 3D features

in meningioma grade prediction. The 2D features was a proper selection in

meningioma radiomics study because of its time and labor saving.
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Introduction

According to the World Health Organization (WHO)

classification of tumors of the central nervous system published in

2021 (1), meningioma can be classified into three subtypes: grade 1,

grade 2 and grade 3. Grade 1 is low-grade tumors, while grades 2

and 3 are high-grade tumors. The selection of therapy strategy and

prognosis are different for low- and high-grade meningioma

because of their different biological characteristics (2–4). High-

grade meningioma grows aggressively and invades the surrounding

structures. Therefore, there is a poor prognosis for patients with

high-grade meningioma. As its main treatment, surgical resection is

essential for high-grade meningioma (2). Other therapies, such as

hormone therapy, cytotoxic chemotherapy or targeted therapy, are

complementary choices for tumors that cannot be resected

completely (5). Low-grade meningioma grows slowly and rarely

shows invasion. Thus, patients with low-grade meningioma usually

have a better outcome. Regular follow-up or radiotherapy can be

better choices than surgery (6). Given this clinical context, a clear

preoperative diagnosis of meningioma and establishing its grade

have crucial roles in guiding treatment decisions.

Radiomics has been used widely in recent years (7–9). Many

researchers have applied radiomics in the study of meningioma,

especially the prediction of meningioma grade (10–15) (Table 1). In

previous studies, there were two different methods applied to

feature extraction: two-dimensional (2D) radiomics features (10,

11) and three-dimensional (3D) radiomics features (12–15). To the

best of our knowledge, no study has directly compared the

performance of 2D and 3D radiomics features in predicting

meningioma grade. In our opinion, this is a very important issue

due to the wide use of radiomics in clinical practice.

The purpose of this study was to compare the performance

between 2D and 3D features to predict meningioma grade based on

enhanced T1-weighted imaging (T1WI). Our aim was to identify

the best method and provide a reference for future meningioma

radiomics research.
Materials and methods

Patients

The ethics review board of our institution approved this

retrospective study and waived the requirement for informed
Abbreviations: 2D, Two dimensional; 3D, Three dimensional; AUC, Area under

the receiver operating characteristic curve; DCA, Decision curve analysis;

DICOM, Digital imaging and communications in medicine; GBDT, Gradient

boosting decision tree; GLCM, Gray-level co-occurrence matrix; GLDM, Gray-

level dependence matrix; GLRLM, Gray-level run length matrix; GLSZM, Gray-

level size zone matrix; ICC, Intraclass correlation coefficient; LASSO, Least

absolute shrinkage and selection operator; NB, Naive bayes; NGTDM,

Neighboring gray-tone difference matrix; PACS, Picture archiving and

communications system; ROC, Receiver operating characteristic; ROI, Region

of interest; SVM, Support vector machine; T1 WI T1, weighted image; WHO,

World health organization.
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consent. We searched for meningioma patients treated at our

hospital who accepted surgical resection from January 2012 to

January 2022 and selected those meeting the criteria. The

inclusion criteria were: (1) the enhanced T1 WI examination was

performed one week before surgery, (2) the patients did not receive

any treatment before MRI examination, (3) a clear pathology

diagnosis and grade of the meningioma was made after surgery,

and (4) the image quality was satisfactory for further analysis. The

exclusion criteria were: (1) the pathological grade of the

meningioma was unclear and (2) the artifacts on the MRI images

were severe and they were not suitable for further analysis.

There were 170 high-grade meningiomas meeting the inclusion

criteria, including 144 cases of WHO grade 2 meningiomas and 26

cases ofWHO grade 3 meningiomas. These 170 cases formed the high-

grade group. The number of low-grade meningiomas was more than

1000 cases and far greater than that of high-grade meningiomas. To

avoid statistical bias, we randomly selected 170 cases of low-grade

meningioma to form the low-grade group to match the high-grade

group. Finally, our study included 340 cases of meningioma.
MRI examination

All patients received enhanced T1 WI examination before

surgery. The magnetic resonance imaging (MRI) machines

included GE Signa 1.5T/3.0T MRI and Siemens Prisma/Skyra

3.0T MRI. The scan parameters were: TR=1800 ms, TE=10 ms,

FOV=25 cm, and slice thickness=5 mm. Every patient was

administered 0.1 ml/kg Gd-DTPA before the MRI examination.
Image preprocessing and tumor
segmentation

The images were downloaded as Digital Imaging and

Communications in Medicine (DICOM) files from the picture

archiving and communications system (PACS) workstation and

uploaded to 3D Slicer software (version 4.11, https://

www.slicer.org/). Image preprocessing was performed with 3D

Slicer to standardize the data across the patients. The “N4ITK

MRI bias correction” was performed to remove unwanted low-

frequency intensity nonuniformity (16). We used the same “bin

width” of 25 to normalize the image intensities from different MRI

machines or acquisition protocols. The image was resampled with a

1 × 1 × 1 mm3 voxel size to ensure the conservation of scales and

directions (17).

The ROI of the tumor was drawn with two methods. The 2D

ROI was drawn with the largest cross-sectional area of the tumor,

while the 3D ROI was drawn with all of the slices of the tumor

(Figure 1). A 2D ROI and a 3D ROI were made in each tumor.
Radiomics feature extraction

Radiomics in 3D Slicer was used to extract features for each

ROI. There were eight feature groups: first-order, gray-level co-
frontiersin.org
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occurrence matrix (GLCM), gray-level dependence matrix

(GLDM), gray-level run length matrix (GLRLM), gray-level size

zone matrix (GLSZM), neighboring gray-tone difference matrix
Frontiers in Oncology 03
(NGTDM), shape and wavelet. Finally, we obtained the 2D features

and 3D features.

The intraclass correlation coefficient (ICC) was calculated to

select the stable features. Forty meningiomas (20 low-grade and 20

high-grade) were selected randomly for ICC calculation. Two

neuroradiologists drew the ROI of 40 cases independently. The

ICC calculation model was a single rater, absolute agreement, two-

way random-effects model (18). We selected the features with high

stability (ICC≥0.8) for further analysis.

Spearman’s rank correlation coefficient was analyzed for the

selected features to evaluate the relativity with meningioma grade.

The features showing relativity (P<0.05) were retained for the

next step.

Least absolute shrinkage and selection operator (LASSO)

regression was applied to reduce the dimensions of the features

after ICC calculation and Spearman correlation analysis. The

valuable features were selected for model construction.
Model construction

The selected features after LASSO were used to construct a

predictive model with naive Bayes (NB), gradient boosting decision

tree (GBDT), and support vector machine (SVM). The data were

divided randomly into a training set (accounting for 70%; 238 cases)

and a validation set (accounting for 30%; 102 cases) in each model.

Then, 10-fold cross-validation was applied. The model constructed

by 2D features and 3D features were defined as the 2D model and
FIGURE 1

A WHO 2 grade meningioma in a 58-year-old female patient (A). The
region of interest (ROI) was drawn along with the edge of the tumor
(B). The 2D ROI (C) and 3D ROI (D) were performed in the tumor.
TABLE 1 Summary of previous studies of radiomics in predicting meningioma grade.

Research
groups

Sample
size

Modality Feature
type

Result Conclusion

Duan C
et al (10)

188 T1+C 2D The AUC of radiomics nomogram was 0.952 (95% CI: 0.904–1).
The AUC of radiomics nomogram was higher than that of
clinical model and radiomics signature with a significant
difference.

The radiomics nomogram showed high
predictive value and might contribute to
the diagnosis and treatment of
meningioma.

Duan CF
et al (11)

188 T1+C 2D KNN had the largest net benefit when the threshold probability
was <0.50, whereas SVM had the largest net benefit when the
threshold probability was >0.50.

The model of SVM and KNN performed
better than other models with a larger net
benefit.

Park YW
et al (12)

194 T1+C,
ADC,
FA

3D The best classification system had an AUC of 0.86 (95% CI,
0.74–0.98) in the validation set. The accuracy, sensitivity, and
specificity of the best classifier were 89.7, 75.0, and 93.5% in the
validation set, respectively.

Radiomics feature-based machine learning
classifiers of T1C images, ADC, and FA
maps are useful for differentiating
meningioma grades.

Lu Y
et al (13)

152 ADC 3D The machine learning classifiers could achieve equivalent
diagnostic performance (accuracy = 62.96%) compared to two
experienced neuro-radiologists (accuracy = 61.11% and 62.04%).
The decision forest achieved the best diagnostic performance in
the testing dataset (kappa = 0.64, accuracy = 79.51%).

Decision forest with the ADC value and
ADC map-based texture features is a
promising multiclass classifier that could
potentially provide more precise diagnosis
and aid diagnosis in the near future.

Ke C
et al (14)

263 T1WI,
T2WI,
T1+C

3D The multiparametric MRI model demonstrated the best
performance in both the training and external validation cohorts
(AUC 0.91, accuracy 89% in the training cohort; AUC 0.83,
accuracy 80% in the validation cohort).

Nonbenign meningiomas might be
preoperatively differentiated from benign
meningiomas by using texture analysis
from multiparametric MR data.

Han Y
et al (15)

131 T1WI,
T2WI,
T1+C

3D The best performance of the radiomics model was obtained by
SVM (AUC, 0.956; 95% CI, 0.83–1.00; sensitivity, 0.87;
specificity, 0.92; f1-score, 0.90).

The radiomics models are of great value
in predicting the histopathological grades
of meningiomas, and have broad
prospects in radiology and clinics.
AUC, area under receiver operating characteristic curve; CI, confidence interval; KNN, k-nearest neighbors; SVM, support vector machine; ADC, apparent diffusion coefficient; FA, fractional
anisotropy.
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3D model. The ROC curve was drawn, and the AUC of each model

was calculated. The Delong text of AUC in each machine learning

method was used to evaluate the performance of the two models.

The clinical usefulness of the two models was evaluated by

calculating the net benefits with decision curve analysis (DCA)

(19). The radiomics workflow was shown in Figure 2.
Statistical analysis

R software (https://www.r-project.org/) was used for statistical

analysis. The “irr” package, “tidyr and dplyr” package, and “lars”

package were applied for ICC calculation, Spearman correlation

analysis and LASSO regression. The “e1071” “gbm” package was

applied for the NB, GBDT, and SVM model construction. The

“pROC” package and “rmda” package were applied for the ROC

curve and DCA curve drawing. p<0.05 was considered

statistically significant.
Results

The number of 2D and 3D features was 1143 in total. There

were 1068 2D features that showed high stability (ICC≥0.8) and 986

3D features. Among these features, 294 features and 393 features

were found with relativity (P<0.05) in the 2D and 3D features. A

total of 6 and 7 features were selected by LASSO regression as the

2D and 3D features, respectively. The selected features and their

groups are shown in Table 2.

The ROC curve and AUC of the 2D and 3D models in each

machine learning method are shown in Table 3 and Figure 3. The

AUCs of the 2D and 3D models were 0.773 and 0.771, respectively,

in NB; were 0.722 and 0.717, respectively, in GBDT; and were 0.733

and 0.743, respectively, in the SVM. There were no significant
Frontiers in Oncology 04
differences in the AUCs (p=0.960, 0.913, 0.830) between the two

models for NB, GBDT, or SVM by Delong text (Table 3).

The DCA curve is represented in Figure 4. The two models had

different performances. The 2D model had a better performance

than the 3D model in NB because the 2D model had a larger net

benefit than the 3D model across most ranges of the threshold

probability. In contrast, the 3D model performed better than the 2D

model in GBDT due to its larger net benefit in all threshold

probabilities. An intersection of two models at the point of nearly

0.4 can be found in SVM. The 2D model had a better performance

to the left of the intersection, while the 3D model had a better

performance to the right of the intersection. The models

constructed by NB, GBDT, and SVM with 2D and 3D features

performed equally well.
Discussion

In the present study, we compared the performance of 2D and

3D features for meningioma grade prediction. We found that there

was no significant difference in AUC, and they performed equally in

DCA by different machine learning methods. To the best of our

knowledge, this is the first study to compare the performance of 2D

and 3D features for meningioma grade prediction.

Previous studies aiming to predict meningioma grade applied

different methods for feature extraction. Either 2D or 3D features

were used in the previous studies. Duan CF et al. (11) used 2D

features to compare different models for predicting meningioma

grade. In their study, seven models constructed by 2D features

performed well with a high AUC (all>0.80), and SVM and KNN

performed better than the other models with an AUC of 0.88 and a

larger net benefit in the DCA curve. Duan C et al. (10) first

constructed a radiomics nomogram to predict meningioma grade

with 2D features. Their radiomics nomogram had a good predictive
FIGURE 2

The radiomics workflow. ROC, Receiver operating characteristic; DCA, Decision curve analysis.
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value. The AUC (0.95) of the radiomics nomogram was

significantly higher than that of the other models (p<0.05).

Compared to 2D features, 3D features may be used more widely in

meningioma studies. Park YW et al. (12) applied 3D features to

machine learning classifiers for meningioma grade and subtype

prediction. The most valuable predictive classifier had an AUC of

0.86. Hu J et al. (20) found that a radiomic model based on

multiparametric MRI 3D features efficiently predicted meningioma

grade. The best model achieved AUCs of 0.84 and 0.81 without or with

subsampling, respectively. There were also other studies using 3D

features (21, 22). Ugga L et al. (23) argued that adequate

standardization of radiomics in meningioma was necessary in future
Frontiers in Oncology 05
study. Although 2D or 3D features were used in previous studies, their

relative performances remained unknown before this study.

Some studies have compared the performance of 2D and 3D

features in other diseases (24–27). Shen C et al. (24) found that 2D

features (AUC=0.755, validation cohort) had a better performance than

3D features (AUC=0.663, validation cohort) in the prognostic ability of

non-small cell lung cancer. Yang G et al. (25) showed that 2D CT

texture analysis signature performed better than 3D in predicting

lymphovascular invasion in lung adenocarcinoma patients. The AUC

of the 2D signature (0.938) was significantly higher than that of the 3D

signature (0.753) (P < 0.001). Arefan D et al. (26) reported that the AUC

difference between 2D and 3D analysis was not statistically significant
TABLE 3 The AUCs of different methods and results of Delong text.

2D model 3D model Z value P value

NB 0.773 0.771 0.050 0.960

GBDT 0.722 0.717 0.109 0.913

SVM 0.733 0.743 -0.214 0.830
fron
NB, Naive bayes; GBDT, Gradient boosting decision tree; SVM, Support vecto.
TABLE 2 The selected features and their group.

2D Features Group 3D Features Group

Coarseness Wavelet-LLL NGTDM Maximum3Ddiameter Original
Shape

Coarseness Wavelet-LLH NGTDM Sphericity Original
Shape

Coarseness Wavelet-HHH NGTDM Imc1 Wavelet-LHL
GLCM

Gray level nonuniformity Wavelet-LHL GLSZM Run variance Wavelet-LHH
GLRLM

Gray level nonuniformity Wavelet-LLL GLSZM Zone entropy Log-sigma-1-0-mm-3D GLSZM

Skewness Original
First-order

Short run emphasis Wavelet-HLH
GLRLM

MCC Wavelet-LLH
GLCM
2D, Two dimensional; 3D, Three dimensional; NGTDM, Neighboring gray-tone difference matrix; GLSZM, Gray-level size zone matrix; GLCM, Gray-level co-occurrence matrix; GLRLM, Gray-
level run length matrix.
A B C

FIGURE 3

The ROC curves and AUC values of the models by the Naive bayes (A), Gradient boosting decision tree (B), and Support vector machine (C).
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when they used MRI radiomics to distinguish axillary lymph node

status breast cancer patients. Meng L et al. (27) found that 2D radiomics

features had a comparable performance compared with 3D features in

characterizing preoperative gastric cancer. In these previous studies, 2D

features had a better or equal performance than 3D features.

Researchers have tried to explain the possible mechanisms for the

results of the above studies. Shen C et al. (24) gave two reasons for their

result. First, it was difficult to conform the consistent resolutions of the

CT images and the same transverse plane resolutions in retrospective

studies. Second, there may be a slight deviation of the original

definition of 3D feature calculation, especially in MRI or PET images

because of their thicker layers. Yang G et al. (25) explained that it was

mainly related to the technical method of feature calculation. Arefan D

et al. (26) considered that a representative slice in 2D features could

capture most of the characteristics of the tumor conveyed in the 3D

features. Meng L et al. (27) argued that there was more noise in 3D

features than 2D features, although 3D features were considered to

contain more information. The noise suffered from two aspects:

multiple vague lesion boundaries and the higher susceptibility to

different thicknesses in 3D features.

In the present study, we found that 2D features had a

comparable performance with 3D features. In our opinion, the

reasons were similar to those in previous studies. We used the

largest cross-sectional area of the tumor to draw the ROI and

extracted 2D features. The largest cross-section slice could represent

most of the information of the tumor, including size, shape, signal

intensity, homogeneous or heterogeneous enhancement, and so on.

The 3D features did not present a better performance than 2D

features for several reasons. The routine slice thickness was 5 mm,

which is widely used clinically. This slice thickness is relatively high.

Therefore, it was difficult to ensure that the ROI was 3D in the true

sense. Generally, the so-called 3D ROI might just be a composite of

multi2D ROIs. On the other hand, 3D features could suffer from

more noise with the increase in slices, especially in tumors with

indistinct edges. For example, if a 3D ROI had ten slices, the

radiologist would have to draw the tumor edge ten times.

However, the radiologist merely drew the edge one time in the

2D ROI. There was more interference from the surrounding

structures in the 3D ROI.
Frontiers in Oncology 06
This study had some limitations. First, the nature of a

retrospective study could lead to selection bias and accuracy

overestimation of the performance. Second, the sample capacity

of high-grade meningioma was larger than that in most previous

studies. The results of the present study need further validation in a

larger sample. Third, there was no external validation because of the

lack of data from other research centers or hospitals. We will add

external validation and a multicenter study in the future.
Conclusion

The present study compared the predictive value of 2D and 3D

radiomics features for meningioma grade. The 2D features had a

comparable performance with 3D features. Given the time and labor

savings, 2D features can be used in meningioma radiomics studies. Our

results provide a reference for future radiomics studies of meningioma.
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