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Molecular subtypes based on
centrosome-related genes can
predict prognosis and
therapeutic responsiveness in
patients with low-grade gliomas

Ganghua Zhang †, Panpan Tai †, Jianing Fang, Aiyan Chen,
Xinyu Chen and Ke Cao*

Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
Background: Abnormalities in centrosome regulatory genes can induce

chromosome instability, cell differentiation errors, and tumorigenesis.

However, a limited number of comprehensive analyses of centrosome-related

genes have been performed in low-grade gliomas (LGG).

Methods: LGG data were extracted from The Cancer Genome Atlas (TCGA) and

Chinese Glioma Genome Atlas (CGGA) databases. The ConsensusClusterPlus” R

package was used for unsupervised clustering. We constructed a centrosome-

related genes (CRGs) signature using a random forest model, lasso Cox model,

and multivariate Cox model, and quantified the centrosome-related risk score

(centS). The prognostic prediction efficacy of centS was evaluated using a

Receiver Operating Characteristic (ROC) curve. Immune cell infiltration and

genomic mutational landscapes were evaluated using the ESTIMATE algorithm,

single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm, and “maftools”

R package, respectively. Differences in clinical features, isocitrate dehydrogenase

(IDH) mutation, 1p19q codeletion, O6-methylguanine-DNA methyltransferase

promoter (MGMTp) methylation, and response to antitumor therapy between the

high- and low-centS groups were explored. “pRRophetic” R packages were used

for temozolomide (TMZ) sensitivity analysis. qRT-PCR verified the differential

expression of the centrosomal gene team, the core of which is CEP135, between

LGG cells and normal cells.

Results: Two distinct CRG-based clusters were identified using consensus

unsupervised clustering analysis. The prognosis, biological characteristics, and

immune cell infiltration of the two clusters differed significantly. A well-

performing centS signature was developed to predict the prognosis of patients

with LGG based on 12 potential CRGs. We found that patients in the high-centS

group showed poorer prognosis and lower proportion of IDH mutation and

1p19q codeletion compared to those in the low-centS group. Furthermore,

patients in the high-centS group showed higher sensitivity to TMZ, higher tumor

mutation burden, and immune cell infiltration. Finally, we identified a

centrosomal gene team whose core was CEP135, and verified their differential

expression between LGG cells and normal glial cells.
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Conclusion: Our findings reveal a novel centrosome-related signature for

predicting the prognosis and therapeutic responsiveness of patients with LGG.

This may be helpful for the accurate clinical treatment of LGG.
KEYWORDS
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Introduction

Gliomas are the most common primary malignant tumors of

the central nervous system (1). According to the histological

differences in glioma, the World Health Organization (WHO)

divides glioma into four grades: grade I, II, III, and IV. Grade II

and III tumors are low-grade gliomas (LGG), including

astrocytomas, oligodendrogliomas, oligoastrocytomas, and

anaplastic astrocytomas, and have better prognosis compared to

glioblastoma (GBM, WHO Grade IV) (2). Surgery is the preferred

treatment for LGG, but it is often impossible to completely remove

LGGs because of their diffuse invasive nature or proximity to

important structures. Currently, the dominant LGG treatment is

surgery followed by radiotherapy. Chemotherapy, mainly including

procarbazine, lomustine, and vincristine (PCV) regimens, as well as

TMZ monotherapy, is a promising alternative therapy. National

Comprehensive Cancer Network guidelines indicate that TMZ

monotherapy remains the most important chemotherapy regimen

for patients with LGG (3). The EORTC 22033-26033 study showed

no significant difference in progression-free survival (PFS) in

patients with LGG treated with radiotherapy or TMZ alone (4).

IDH, TP53, alpha-thalassemia/mental retardation, X-linked

(ATRX) mutations, MGMTp methylation, and 1p/19q codeletion

have been considered clinically meaningful markers of LGG (5–8),

and especially IDH mutation, 1p/19q codeletion, and MGMTp

methylation status are closely related to diagnosis and prognosis,

which are crucial for postsurgical treatment such as adjuvant

chemotherapy and adjuvant radiotherapy (9). The median

survival time for LGG is 5 to 10 years with the current standard

treatment (10). However, due to LGG’s high intratumoral

heterogeneity and diverse clinical behavior (11), some patients

with LGG quickly advance to GBM (12). Therefore, there is an

urgent need to identify the underlying molecular mechanisms and

construct an effective molecular classification model to evaluate the

prognosis and guide the individualized treatment of patients

with LGG.

As the major microtubule-organizing center, the centrosome,

composed of two centrioles and pericentriolar material, plays a

crucial role in various cellular processes, including chromosome

segregation, spindle formation, and cell division (13, 14).

Dysfunction of core centrosomal or centrosome/centriole-

associated proteins is connected to cell-cycle misregulation,

chromosome segregation error, and cancer (15). Centrosome

abnormalities have been reported in multiple cancer types, such
02
as ovarian, breast, lung cancers, and multiple myeloma (16–19).

Gliomas may arise from neural stem cells or progenitor cells and the

chromosome segregation mechanism plays a vital role in the

regulation of self-renewal and differentiation of these cells.

Abnormalities in centrosome- and microtubule function-related

genes can lead to serious errors in the differentiation of neural stem

and progenitor cells (20). A recent study showed that the

centromere protein J (CENPJ) is overexpressed in human GBM

and that it promotes GBM progression, but there are few studies on

the effects of aberrant centrosome-associated proteins on LGG.

Hence, we selected 13 crucial proteins, polo-like kinase 4 (PLK4),

SCL/TAL interrupting locus (STIL), spindle assembly abnormal

protein 6 homolog (SAS6), spindle and centriole associated protein

1 (SPICE1), centrosomal protein 295 (CEP295), centrosomal

protein POC5, CEP152, CENPJ/centrosomal P4.1-associated

protein (CPAP), rotatin (RTTN), CEP135, CEP63, POC1

centriolar protein B (POC1B), and CEP120, that are closely

related to centrosome/centriole activity from the literature to

comprehensively explore the effect of centrosomal proteins on

LGG treatment, recurrence progression, and prognosis. We

named the genes that encode these proteins as centrosome-related

genes (CRGs). PLK4, a master regulator of centrioles, is recruited to

the mother centriole by CEP152 and CEP192 and is activated by

binding to STIL. SAS6 is then recruited, which in turn starts the

construction of the cartwheel, a structural platform for procentriole

formation (21). CEP63 forms a complex with CEP152, which is

essential for maintaining a normal centrosome number (22). The

creation and maintenance of the procentriole microtubule wall is

aided by CENPJ/CPAP, which works in conjunction with its

binding partners CEP135, CEP120, and SPICE1 (21). RTTN

interacts with STIL and is recruited close to the procentriole

during the S-phase, acting downstream of the STIL-mediated

centriole assembly (23). RTTN is necessary for the proper loading

of centromeric proteins POC5, POC1B, and CETN1 to the distal

centriole at a later stage, as well as for the appropriate loading of

CEP295 to the proximal centrioles (23, 24).

In this study, we conducted twice subtype clustering based on

key centrosome related genes on LGG’s samples and found

significant clinicopathological, biological, and prognostic

differences among the subtypes. Furthermore, we established a

prediction signature, centrosome score (centS), based on 12

potential centrosome genes and divided the samples into high-

and low-centS groups according to the centS. Our analysis revealed

that the low-score group had better prognosis, higher percentage of
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IDH mutation, MGMTp methylation, and1p/19q codeletion, and

preferable antitumor therapy outcome, but lower tumor mutation

burden (TMB), immune infiltration, and TMZ sensitivity. Finally,

we explored the differential expression of the key gene CEP135 and

three potential CRGs that are strongly associated with key genes

between LGG and normal glial cells.
Materials and methods

Data collection and processing

We obtained the RNA-seq data in transcripts per kilobase

million (TPM) format from The Cancer Genome Atlas (TCGA)

and Genome Tissue Expression (GTEx), which were processed

uniformly by the Toil process in UCSC Xena (https://

xenabrowser.net/datapages/) for differential gene expression

(DGE) analysis (25). TCGA-LGG data (515 samples), and normal

tissue data from GTEx (1152 samples) were extracted. RNA

sequencing data (fragments per kilobase million, FPKM values)

gene expression and clinical data of LGG were obtained from

TCGA. The FPKM values were then converted to TPM for

further analysis, and samples without complete survival data were

excluded. Finally, we obtained a TCGA-LGG cohort containing 506

samples. The baseline data for all TCGA-LGGs are presented in

Table 1. LGG samples from the Chinese Glioma Genome Atlas

(CGGA, http://www.cgga.org.cn/) were screened, and samples

without survival data were excluded. A total of 592 samples were

selected, as shown in Table 2.
Genetics, expression, and survival analysis
of CRGs in LGG

Thirteen important CRGs from the published articles were

screened. The Gene Set Cancer Analysis (GSCA) database (http://

bioinfo.life.hust.edu.cn/GSCA/#/) was used to analyze the single

nucleotide variation (SNV) and copy number variation (CNV) of

CRGs (26). CNV data were downloaded from https://

xena.ucsc.edu/. The “limma” R package was used to analyze the
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differentially expressed genes (DEGs). The Kaplan-Meier (K-M)

survival curve showed the effect of CRGs on LGG prognosis. The

“igraph” R package was used to draw a prognostic correlation

network based on correlation analysis and univariate Cox

regression analysis.
Unsupervised clustering based on CRGs

All samples were clustered to different subtypes using the

“ConsensusClusterPlus” R package according to the expression of

the 13 CRGs (27). Survival analysis was performed to compare the

differences in overall survival (OS) between the two subtypes, and

DGE analysis was used to examine the expression of the 13 CRGs

among different subtypes. The “pheatmap” R package was utilized

to draw a cluster heat map to show the distribution of the

expression of the 13 CRGs and clinicopathological features in

different subtypes.
Gene set variation analysis

The gene set data from the Kyoto Encyclopedia of Genes and

Genomes (KEGG), Reactome, and HALLMARK pathways were

downloaded from the Molecular Signatures Database (MsigDB,

http://software.broadinstitute.org/gsea/msigdb/). The following

gene sets served as references: “c2.cp.kegg.v7.5.1. symbols.gmt”,

“c2.cp.reactome.v7.5.1. symbols.gmt,” and “h.all .v7.5.1.

symbols.gmt” (28). Then, the “GSVA” R package was used to

perform GSVA to explore the potential pathways whose activities

vary in different subtypes.
Identification of DEGs and
enrichment analysis

The “limma” R package was used to screen DEGs among

different subtypes with |logFoldChange|>1 and p<0.05. KEGG

and Gene Ontology (GO) functional enrichment analyses were

performed using the “clusterProfiler” R package (29). An adjusted

p value of <0.05 was considered statistically significant.
Unsupervised clustering based on
centrosome subtype-related genes

Univariate Cox regression analysis was used to screen

prognostic DEGs (p<0.05). Subsequently, using the same specific

clustering parameters, unsupervised clustering classification was

performed based on the prognostic DEGs, and the samples were

divided into different gene subtypes. We then performed survival

analysis to compare the differences in OS among different gene

subtypes, implemented DGEs analysis to compare CRGs expression

between different gene subtypes, and drew a cluster heat map to

i l lus trate the connect ion between DEGs express ion,

clinicopathological characteristics, and gene subtypes.
TABLE 1 Baseline Data Sheet for the Cohort of TCGA-LGG.

Characteristic Levels N (%)

Age >45 years old 204 (39.6%)

≤45 years old 311 (60.4%)

Gender Male 285 (55.3%)

Female 230 (44.7%)

Grade G2 249 (48.4%)

G3 266 (51.6%)

histological_type Oligodendroglioma 191 (37.1%)

Oligoastrocytoma 130 (25.2%)

Astrocytoma 194 (37.7%)
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Construction and evaluation of the
centrosome signature

Least absolute shrinkage and selection operator (Lasso) Cox

regression analysis and the random forest algorithm were used to

reduce dimensionality and screen feature genes based on the prognostic

DEGs. The “glmnet” R package was used to execute Lasso Cox

regression analysis. Random forest is an integrated algorithm based

on decision tree classifiers. Bootstrap self-help method puts back and

extracts k sample sets to form k decision trees. With a default of 100

iterations and 500 trees built, the model is robust enough. The random

forest is based on Gini coefficient to select gene features. We used the

“randomForest” R package to screen genes with centS feature (30).The

genes screened by Lasso were scored using the “important” function,

and genes with scores above 2 points were selected for further analysis.

Multivariate Cox regression analysis was used for final screening and

construction of the centrosome signature. The risk score of the

signature was defined as the “centrosome score” (centS), which was

calculated based on a multivariate Cox regression model: centS = ho(t)

* exp (b1X1+ b2X2+,…. + bnXn). In the equation, b refers to the

regression coefficient, and ho(t) is the baseline risk function. The

patients in the LGG cohort were divided into high- and low-centS

groups according to themedian centS value. The “ggalluvial” R package

was used to draw a Sankey diagram to visualize the correspondence

among centS, different subtypes, and prognosis. Univariate or

multivariate Cox regression analyses were conducted to confirm the

independence of centS in predicting disease prognosis. K-M survival
Frontiers in Oncology 04
analysis was used to compare the difference in OS between the low- and

high-centS groups. Receiver Operating Characteristic (ROC) curves

were further generated to examine the efficiency and accuracy of centS

in predicting survival outcomes at 1-, 3-, and 5-years.
Genomic mutation exploration based on
centS grouping

Simple nucleotide variation data were downloaded from the GDC

database (https://portal.gdc.cancer.gov/). The TMB value was

calculated based on these data (TMB (Mut/Mb) = total number of

mutations (including synonymous and nonsynonymous point

mutations, substitutions, insertions, and deletions)/coding region size

of the target region). Difference, correlation, and survival analyses were

used to analyze the relationship between TMB, centS, and prognosis.

We divided patients of LGG into high TMB (H-TMB) group and low

TMB (L-TMB) group based on optimal cutoff, which was determined

using the “surv cutpoint” and “surv categorize” functions of the

“survminer” R package and was taken into consideration as the

boundary. The differences in the genomic mutational landscape in

the high- and low- centS groups was explored using the “maftools” R

package. In addition, we explored the potential relationship between

IDH1 mutations, 1p19q codeletion, MGMTp methylation level, and

centS using CGGA cohort data.
Clinical subgroup analysis based on centS

We selected “age,” “gender,” “grade,” and “histological type” as

clinical subgroup characteristics, and analyzed the proportion of

each clinical characteristic in the high- and low-centS groups and

the differences in centS between different clinical characteristics.

Survival curves showed the effect of centS on the prognosis of

patients with LGGs of different grades.
Prediction of chemoradiotherapy efficacy
using centS

We extracted samples of WHO II-III grade in CGGA and

analyzed the survival differences of high- or low-centS in the TMZ

therapy, radiotherapy, and TMZ combined with radiotherapy

groups. We then used K-M survival analysis to explore patient

prognosis under different treatment combinations (non-TMZ

+non-Radio, non-TMZ+Radio, TMZ+non-Radio, and TMZ

+Radio) based on centS.
Evaluation of tumor immune
microenvironment infiltration
based on centS

The proportions of stromal and immune components were

represented using the StromalScore and ImmuneScore, respectively.
TABLE 2 Baseline Data Sheet for the Cohort of CGGA-LGG.

Characteristic Levels N (%)

Age >45 years old 160 (27.0%)

≤45 years old 432 (73.0%)

Gender Male 341 (57.6%)

Female 251 (42.4%)

Grade WHO II 270 (45.6%)

WHO III 322 (54.4%)

histological_type A 160 (27.0%)

O 106 (17.9%)

OA 9 (1.5%)

AA 206 (34.8%)

AO 91 (15.4%)

AOA 20 (3.4%)

IDH_mutation Wildtype 138 (25.0%)

Mutant 415 (75.0%)

1p19q_codeletion Non-codel 372 (67.4%)

Codel 180 (32.6%)

MGMTp_methylation Un-methylated 200 (41.2%)

Methylated 285 (58.8%)
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The estimate score is the product of the StromalScore and

ImmuneScore, and it is inversely associated with tumor purity

(31). We used the “ESTIMATE” R package to calculate the

StromalScore, ImmuneScore, and ESTIMATEScore. We analyzed

the correlation between the model genes centS and immune

checkpoint genes, and visualized it in a heat map. The relative

abundance of each immune cell infiltration was determined using

single-sample Gene Set Enrichment Analysis (ssGSEA) using the

“GSVA” R package (32). Immune cell infiltration levels were

evaluated using ssGSEA, and a correlation heat map was created

to show the connection between centS and immune cell infiltration

levels. Furthermore, we used the IMvigor210 cohort to investigate

the effect of centS on immunotherapy outcomes.
Analysis of TMZ sensitivity based on centS
and identification of the key gene CEP135

Using “cgp2016” as the reference dataset, we constructed a ridge

regression model to predict the IC50 value of TMZ in the high- and

low-centS groups using the pRRopheticPredict function of the

“pRRophetic” R package. The relationship between the 13 CRGs

and 12 signature genes and TMZ sensitivity was visualized using a

matrix of correlation. Univariate Cox regression analysis and area

under the ROC curve (AUC) for single-gene survival analysis were

used to identify the key genes. We selected the gene with the greatest

r i sk ra t io as the key gene us ing AUC>=0.8 as the

inclusion criterium.
Screening and validation of the
potential CRGs

Potential CRGs were screened using gene co-expression

network analysis of the key gene CEP135 and signature genes,

with a correlation coefficient of r>0.5 as the standard. We then

selected three genes that were most relevant to the key genes as

potential CRGs. Finally, DGE analysis of the potential CRGs with

the core gene CEP135 was performed using qRT-PCR.
Cell lines and cell cultures

Human astrocytes (NHA) and astroglioma cells (SW1088) were

obtained from the American Type Culture Collection (Manassas,

VA, USA). The oligodendroglioma cells (HS683) were purchased

from the Cell Bank of Type Culture Collection of the Chinese

Academy of Science (Shanghai, China). HS683 cells were cultured

in Dulbecco’s modified Eagle’s medium (DMEM; HyClone, Logan,

USA), supplemented with 10% fetal bovine serum (FBS; Gibco, NY,

USA) and 1% penicillin-streptomycin (HyClone, Logan, USA).

SW1088 cells were cultured in Leibovitz’s (L)- 15 medium

supplemented with 10% FBS (Gibco, NY, USA) and 1%

penicillin-streptomycin (HyClone, Logan, USA). NHA cells were

cultured in DMEM (HyClone, Logan, USA) supplemented with

15% FBS (Gibco, NY, USA) and 1% penicillin-streptomycin
Frontiers in Oncology 05
(HyClone, Logan, USA). All the cells were cultured at 37°C in an

incubator with 5% CO2.
Quantitative reverse transcription
polymerase chain reaction

Total RNA was extracted using the Trizol reagent (Invitrogen).

The PrimeScript RT Reagent Kit (TaKaRa, Shiga, Japan) was used to

reverse transcribe 1 µg of total RNA into cDNA, and the SYBR Green

PCR Master Mix was used for qRT-PCR. Relative gene expression

was calculated using the 2–DDCT method, with GAPDH as an

internal control. Visualization of qRT-PCR results and two-sample

unpaired t-tests were performed using GraphPad Prism version 9.0.1.

Primer sequences are listed in Supplementary Table 1.
Statistical analysis

Perl language was used for data processing and R 4.2.1 was used

to conduct all analyses. Correlation analysis was performed using

Spearman’s and Pearson’s correlation coefficients. The Wilcoxon

test was applied using the “limma” R package for DGEs analysis to

compare the two groups in the bioinformatic analysis part. The

Student’s t-test was performed for the DGEs analysis in the

experimental part to compare the two groups. The Kruskal-Wallis

test was used for comparisons involving more than two groups. The

survival of the different groups was compared using K-M survival

analysis and the log-rank test. A two-tailed p value of <0.05 was

considered statistically significant.
Results

Variation, expression, and survival analysis
of CRGs in LGG

The workflow of this study is illustrated in Figure 1. We

conducted a variation analysis of the 13 CRGs using the GSCA

database. Supplementary Figure 1A shows the chromosomal

distribution of CRGs. The SNV frequencies of the ten CRGs are

displayed in the form of a heat map (no data are available for SSAS6,

CEP295, and POC5), and RTTN had the greatest SNV frequency

(Supplementary Figure 1B). All 13 CRGs had CNV gain and loss

frequency in different degrees, with CEP135 having a very large

percentage of insertion mutations and CENPJ having the highest

frequency of deletion mutations (Supplementary Figure 1C). The

CNV of CRGs were positively correlated with their mRNA

expression, especially that of SSAS6 (Supplementary Figure 1D).

We then constructed the mutational landscape of 13 CRGs in the

TCGA-LGG cohort, and RTTN had the highest mutation

frequency, with missense mutations being the most common

mutation type (Supplementary Figure 1E). Next, we explored the

differential expression of 13 CRGs in LGG and normal samples

combined with TCGA and GTEx databases and discovered that

CRGs expression was significantly higher in glioma tissues than that
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in normal tissues, except for CEP295 (Figure 2A). Furthermore, K-

M survival analysis revealed that 13 CRGs had substantial impact

on the prognosis of patients with LGG (p<0.001, Figure 2B). Finally,

we constructed a network of 13 CRGs showing the results of the

correlation and Cox regression analyses; 13 CRGs were significantly

positively correlated with each other (p<0.0001) and were risk

factors for LGG (hazard ratio [HR]>1, Figure 2C).
Identification and evaluation of subtypes
based on the 13 CRGs

Unsupervised clustering and classification were performed

based on the 13 CRGs. We produced the best classification results

when classifying patients with LGG into clusters A and B

(Figures 3A–C). There was a distinct difference in OS between the

two CRGs subtypes, with cluster A having a better prognosis than

cluster B (p<0.001, Figure 3D). The expression levels of the 13 CRGs

were higher in cluster B than those in cluster A (p<0.001,

Figure 3E). We then created a heat map to show the differences

in clinicopathological features and expression distribution of the 13

CRGs in the two CRGs subtypes (Figure 3F). We utilized GSVA to

compare the variant pathways of the two subtypes from the three

sets of the KEGG pathway (Supplementary Figure 2A),

HALLMARK pathway (Supplementary Figure 2B), and Reactome

pathway (Supplementary Figure 2C) and observed significant

differences primarily in multiple cell cycle and cell division

pathways. Principal Component Analysis showed that patients in

different clusters demonstrated identifiable differences in CRGs

expression features (Supplementary Figure 3A). We used the
Frontiers in Oncology 06
ESTIMATE algorithm to assess the immune infiltration state of

the two clusters and observed that cluster B had higher

StromalScore, ImmuneScore, and ESTIMATEScore than cluster A

(Supplementary Figure 3B). We used ssGSEA to assess the

abundance of 23 infiltrating immune cells and found that the

infiltration levels of most immune cells in cluster B were

significantly higher than those in cluster A, including CD4 T

cells, CD8 T cells, dendritic cells, CD56 dim structural killer cells,

gamma delta T cells, natural killer T cells, type 1 T helper cells, and

type 2 T helper cells (p<0.05, Supplementary Figure 3C).
Identification and enrichment analysis of
DEGs and secondary clustering

We conducted DGEs analysis between clusters A and B to

further investigate their probable biological functions. We identified

427 DEGs with | logFoldChange|>1 and p<0.05, as shown in the

volcano plot (Figure 4A). GO (Figure 4C) and KEGG (Figure 4D)

enrichment analyses were performed based on the DEGs, and the

top five pathways in the KEGG analysis were nuclear division,

organelle fission, chromosome segregation, mitotic nuclear division,

and regulation of cell cycle phase transition. Their relationship

networks with related genes are shown in Figure 4B. Univariate Cox

regression analysis was performed on 427 DEGs, of which 407 were

found to be significantly related to LGG prognosis. We then

performed clustering again and identified two clusters, C1 and

C2, based on the expression of the 407 DEGs (Figures 5A–C).

Survival analysis showed that C1 patients had a better prognosis

than C2 patients (Figure 5D). The clinicopathological features and
FIGURE 1

The workflow of this study.
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expression distribution of DEGs showed significant differences

between C1 and C2 on the heat map (Figure 5E).
Construction and evaluation of the
centrosome signature

To assess the predictive value of the centrosome-related DEGs

on clinical prognostic characteristics and treatment outcomes in

patients, we performed Lasso Cox regression analysis and random

forest analysis to screen characteristic genes from the 407

prognostic DEGs and obtained 26 characteristic DEGs

(Supplementary Figures 4A–D). Subsequently, we performed

multivariate Cox regression analysis on the 26 DEGs to obtain 12

model genes to construct the centrosome signature and calculated

the centS for each sample (Supplementary Table 2). The expression

of the 12 signature genes in LGG tissues was higher than that in

normal glial tissues (Supplementary Figure 5A). The K-M survival

curve showed that most of the signature genes were associated with

poor prognosis in LGG patients, while the opposite was

demonstrated for F5 and SFRP2 (Supplementary Figure 5B).

Next, we divided samples into high- and low-centS groups

depending on the median value of centS, “0.6246025”. The K-M

survival analysis revealed that patients in the high-centS group had

a poorer prognosis than those in the low-centS group (Figure 6A).

The ROC curve showed that centS had excellent predictive ability

for the prognosis of LGG patients, the AUC values at 1-, 3-, and 5-

years were 0.932, 0.909, and 0.843, respectively (Figure 6B). Patients

in the high-centS group also had shorter PFS (Figure 6C), and the

AUC values of PFS at 1-, 3-, and 5-years were 0.794, 0.687, and

0.742, respectively (Figure 6D). Univariate and multivariate Cox

regression analyses indicated that centS was an independent

prognostic factor (Figures 6E, F). Furthermore, we verified this

conclusion in the CGGA cohort, the ROC curve illustrated that

centS had a good predictive performance for the prognosis of

patients with LGG, and the AUC values of OS at 1-, 3-, and 5-

years were 0.776, 0.788, and 0.767, respectively (Figure 6G). The

AUC values of centS at 1- (Figure 6H), 3- (Figure 6I), and 5-years

(Figure 6J) were larger than grade, IDH mutation status, 1p19q

codeletion status, and MGMTp methylation status. A Sankey

diagram was drawn to illustrate the link between subtypes, gene

subtypes, centS, and prognosis (Figure 6M). Patients with LGG in

subtype B were more likely to match the gene subtype C2, which has

a higher centS and worse prognosis. This conclusion was also

supported by the box plots (Figures 6K, L).
Clinical subgroup analysis based on centS

To further investigate the association between centS and normal

LGG clinical characteristics, we used stacked histograms to display

the percentage of each clinical characteristic in the high- and low-

centS groups, and box plots to display the centS difference among

various clinical characteristics. Patients older than 45 years had

higher centS (Supplementary Figure 6A), and there was no

significant difference between males and females (Supplementary
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Figure 6B). Patients with histological grade G3 had higher centS

than those with histological grade G2 (Supplementary Figure 6C).

In both G2 and G3 phases, patients in the high-centS group had a

poor prognosis (Supplementary Figures 6E, F) and patients with

astrocytoma type had a higher centS than those with

oligoastrocytoma and oligodendroglioma types (Supplementary

Figure 6D). Moreover, we extracted information on patients with

LGG recurrence and analyzed the relationship between centS and

LGG recurrence. We discovered that there was a higher percentage

of patients with recurrence in the high-centS group (Supplementary

Figure 6G), and at the same time, the patients with recurrence had a

higher centS (Supplementary Figure 6H).
Mutation analysis and tumor immune
microenvironment analysis

The TMB, which is measured as the number of somatic coding

mutations per megabase (mutations/Mb) of the tumor genotype

(33), has emerged as a useful biomarker for predicting the

effectiveness of immunotherapy in a variety of cancer types (34).

We found that the high-centS group had higher TMB (Figure 7A),

and there was a positive correlation between centS and TMB

(Figure 7B), while IDH1, TP53, ATRX, and IDH2 had lower

mutation frequencies in the high-centS group than in the low-

centS group (Figures 7C, D). The results of the OS analysis showed

that individuals with high TMB had poorer prognosis than those

with low TMB (Figure 7E). The cohort with high TMB combined

with high centS had the worst prognosis, whereas the group with

low TMB combined with low centS had the best prognosis

(Figure 7F). Next, we explored the relationship between immune

infiltration, immunotherapy, and centS in patients with LGG. The

violin diagram illustrated that the high-centS group had higher

StromalScore, ImmuneScore, and ESTIMATEScore compared to

the low-centS group (Figure 8A). We generated a correlation heat

map to investigate the connection between centS and immune cell

infiltration, and noticed a positive relationship between centS and

the majority of immune cells (Figure 8B). Correlation analysis of

centS and positively associated immune cells is shown in

Supplementary Figure 7. Subsequently, the correlation heat map

showed the co-expression relationship between 12 signature genes,

centS, and 46 immune checkpoint genes (ICGs) (Figure 8C). CentS

and the majority of the signature genes were positively related to

ICGs, whereas F5 and SFRP2 were negatively related to ICGs.

Finally, we probed the predictive ability of centS for

immunotherapy efficacy using the IMvigor210 cohort, and found

that individuals with higher centS are likely to have better

immunotherapeutic effects (Figure 8D).
Exploration of antitumor therapy efficacy
based on centS

Using CGGA-LGG cohort data, we explored the proportion of

different IDH mutation status, 1p19q codeletion status, and

MGMTp status in the high- and low-centS groups, and the
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difference in centS among different gene statuses. Our results

showed that the high-centS group had a lower proportion of

IDH1 mutations (Figure 9A) and 1p19q codeletion (Figure 9C).

There was no significant difference in MGMTp methylation levels

between the high- and low-centS groups (Figure 9E). Patients with
Frontiers in Oncology 08
the IDHmutation subtype, 1p19q codeletion subtype, and MGMTp

methylation subtype had a lower centS (Figures 9A, C, E). We then

investigated the effect of different gene statuses on the prognosis of

patients with LGG in the high- and low-centS groups. In the high-

centS group, the prognosis of patients with the IDHmutant subtype
A

B

C

FIGURE 2

Differential expression and prognostic analysis of thirteen CRGs in TCGA-LGG cohort. (A) Differential expression of thirteen CRGs in LGG and normal
tissue. (B) K-M survival analysis of thirteen CRGs in LGG. (C) Correlation network analysis of thirteen CRGs. The line represents the correlation
between genes, the sphere represents the univariate Cox test of each gene. CRGs, centrosome related genes; **p < 0.01, ***p < 0.001, ns, not
statistically significant.
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was significantly better than that of patients with the wild-type IDH,

but in the low-centS group, the prognosis of the two subtypes was

not statistically different (Figure 9B). The prognosis of patients with

the 1p19q codeletion subtype was remarkably superior to that of

patients with the 1p19q non-codeletion subtype in both the low-
Frontiers in Oncology 09
and high-centS groups (Figure 9D). There was no statistical

difference in prognosis between the different MGMTp

methylation subtypes in both the low- and high-centS groups

(Figure 9F). Finally, we explored the predictive value of centS in

response to chemotherapy, radiotherapy, and chemotherapy
A D

B

E
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F

FIGURE 3

Identification of CRGs subtypes and exploration of the clinical and biological features of subtypes. (A) Unsupervised consensus clustering divides
LGG samples into two clusters (k=2). Detailed of consensus clustering to identification of CRGs subtypes: cumulative distribution curve (B) and area
under the cumulative distribution curve (C). (D) OS curves of patients with two subtypes of LGG. (E) Differential expression of CRGs in different
subtypes. (F) Clinicopathological characteristics and CRGs expression of two distinct subtypes. CRGs, centrosome related genes; ***p < 0.001.
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combined with radiotherapy. The low-cents group had better

survial across different treament cohorts (Figures 9G–J). In both

the high- and low-centS groups, patients who received radiotherapy

alone or chemotherapy alone may have a better prognosis than

those who received chemoradiotherapy or no therapy

(Figures 9K, L).
TMZ sensitivity analysis and identification
of the key gene CEP135

We observed lower IC50 value for TMZ in the high-centS group

compared with those in the low-centS group, indicating that patients

with high centS were more sensitive to TMZ (Figure 10A). The

correlation scatter plot showed a negative correlation between centS
Frontiers in Oncology 10
and the IC50 value of TMZ (Figure 10B). The correlation matrix

visualized the relationship between 13 CRGs, 12 signature genes, and

the IC50 value of TMZ, the majority of genes had a negative

correlation with the IC50 of TMZ (Figure 10C). Then, univariate

Cox regression analysis and AUC for single-gene survival analysis

were performed to identify the key gene CEP135 (AUC>=0.8,

HR=2.64) (Supplementary Table 3), the expression of which was

negatively related with the TMZ IC50 (Figure 10D).
Identification and expression validation of
the potential CRGs team

Based on the gene co-expression network analysis, we identified

three genes with the strongest positive correlation with CEP135:
A

D

B

C

FIGURE 4

Identification and enrichment analysis of DEGs from two CRGs subtypes. (A) Volcano plot of difference analysis between the two CRGs subtypes to
identify DEGs. (B) The network map displays the correspondence between the KEGG top five pathways and related genes. (C) GO enrichment
analysis of DEGs. BP, Biological Process; CC, Cellular Component; MF, Molecular Function (D) KEGG enrichment analysis of DEGs. CRGs,
centrosome related genes; DEGs, differentially expressed genes.
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structural maintenance of chromosomes 4 (SMC4),WEE1, and human

sterile alpha motif protein 9 (SAMD9) (Figure 11A). These three genes

and CEP135 constitute a potential CRGs team. Subsequently, we

detected the expression differences of CEP135 (Figure 11B), SMC4

(Figure 11C), WEE1 (Figure 11D), and SAMD9 (Figure 11E) among

SW1088, HS683 and NHA using qRT-PCR. The expression of these

genes was significantly upregulated in SW1088 and HS683 cells

compared to that in NHA cells (p<0.05).
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Discussion

Although it is commonly recognized that LGG has a better

prognosis than GBM, LGG still recurs or advances after treatment

(35). The centrosome is the main microtubule organization center

in animal cells. Centrosomal proteins can modulate the integrity of

centrosomes to preserve the stability of microtubules and influence

the proliferation and differentiation of neural stem cells (36). In this
A

D

B

E

C

FIGURE 5

Unsupervised clustering analysis based on prognostic DEGs. (A) Consensus clustering divides LGG samples into two gene-subtypes (C1 and C2) base
on DEGs (k=2). Detailed of consensus clustering to identification of DEGs subtypes: cumulative distribution curve (B) and area under the cumulative
distribution curve (C). (D) OS curves of patients in C1 and C2 gene-subtypes. (E) Clinicopathological characteristics and expression of differential
genes of C1 and C2. DEGs, differentially expressed genes.
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FIGURE 6

Construction and validation of centS and grouping based on centS. (A) OS analysis between the high- and low-centS groups in TCGA cohort.
(B) ROC curves of centS in predicting OS at 1-, 3-, and 5-years in TCGA cohort. (C) PFS analysis between the high- and low-centS groups in TCGA
cohort. (D) ROC curves of centS in predicting PFS at 1-, 3-, and 5-years in TCGA cohort. (E, F) Verification of the clinical independence of centS by
univariate Cox regression analysis (E) and multivariate Cox regression analyses (F). (G) ROC curves of centS in predicting OS at 1-, 3-, and 5-years in
CGGA cohort. (H–J) ROC curves of centS and other LGG prognostic molecules (grade, IDH mutation status, 1p19q codeletion status, and MGMTp
methylation status) in predicting OS at 1-, 3-, and 5-years in CGGA cohort. (K) Differences in centS levels between the two CRGs subtypes. (L)
Differences in centS levels between the two gene-subtypes. (M) Sankey diagram to show the correspondence among subtypes, gene-subtypes,
centS and survival outcomes. centS, centrosome score; CRGs, centrosome related genes; DEGs, differentially expressed genes.
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study, we attempted to classify LGG subtypes based on centrosome-

related proteins. Thirteen crucial CRGs were identified and shown

to be overexpressed in LGG, indicating that centrosome protein

instability may be responsible for the occurrence and progression

of LGG.

First, we identified two clusters with different biological and

clinical characteristics in the TCGA-LGG cohort, based on 13
Frontiers in Oncology 13
CRGs. Compared with cluster A, cluster B had worse prognosis

and higher immune cell infiltration levels, including immune-

promoting cells, such as CD8+T cells, CD4+T cells, and immune-

suppressive cells, such as MDSC. GSVA showed that cluster B was

more closely associated with cell cycle-related pathways than cluster

A. Next, we analyzed the differences between clusters A and B and

identified 427 DEGs. Enrichment analysis showed that the DEGs
A

D

B

E

C

F

FIGURE 7

Tumor mutation analysis base on centS in TCGA-LGG cohort. (A) Difference analysis of TMB between the high- and low- centS groups.
(B) Correlation analysis between centS and TMB. (C, D) Tumor mutation landscape in the high- and low- centS groups. (E) OS analysis of patients
with high- and low- TMB. (F) OS analysis of patients in different combination groups of centS and TMB. centS, centrosome score.
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were associated with various cell cycle and cell division pathways,

including chromosome segregation, mitotic nuclear division,

nuclear division, sister chromatid segregation, and organelle

fission. This demonstrated that we would be able to construct a

prognostic model relying on CRGs to assess the therapy and

prognosis of LGG, and that targeting centrosome-related proteins

may be a viable therapeutic strategy.

Next, we selected 407 DEGs using univariate Cox regression

analysis to further construct two new gene clusters. Gene cluster C2

had a poorer prognosis than gene cluster C1. In addition, we

selected 12 potential CRGs to establish the centrosome-related

risk signature centS to predict the prognosis of LGG and help in

clinical decision making. Surprisingly, patients in the high-centS

group had a poorer prognosis, and centS showed a high efficiency

of prediction.

The TMB has emerged as a valuable biomarker for predicting

the efficacy of immune checkpoint blockade in various cancers (34).

The TMB is negatively correlated with OS (37), however, patients
Frontiers in Oncology 14
with high TMB frequently benefit from immunotherapy (38).

Immunotherapy is not currently the mainstream treatment for

glioma; clinical trials have not produced consistently favorable

results in patients with glioma (39), but patients with LGG have

shown excellent immune responses to vaccines in previous clinical

trial (40), suggesting that immunotherapy may have great potential

in LGG. In this study, the high-centS group had a higher TMB,

worse prognosis, superior immune cell infiltration level, and better

immunotherapy response, compared to the low-centS group.

Moreover, the prognosis of the L-TMB combined with the low-

centS group was far better than that of the H-TMB combined with

the high-centS group. These results indicate the potential predictive

value of our signature in the prognosis of LGG and immunotherapy

response. Previous studies have shown that IDH1 mutation causes

changes in the immune environment; patients with IDH1 mutation

have lower expression of PD-L1 (41) and a poor response to tumor

immunotherapy (42). Interestingly, the mutation rate of IDH was

relatively lower in the high-centS group than in the low-centS
A
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FIGURE 8

Tumor Immune microenvironment analysis base on centS. (A) Violin diagram for difference comparison of StromalScore, ImmuneScore, and
ESTIMATEScore in the low- and high-centS groups. (B) Correlation heat map of centS and 23 immune cells based on ssGSEA. (C) Co-expression
heat map of the 12 signature genes and centS with 46 ICGs. (D) OS analysis based on centS grouping in IMvigor210 Cohort. centS, centrosome
score; ICGs, immune checkpoint genes. *p < 0.05; **p < 0.01; and ***p < 0.001.
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group, which also means that the high-centS group has better

immunotherapy sensitivity. Our analysis of the IMvigor210

cohort also confirmed this finding. Therefore, immunotherapy

may be a promising treatment for LGG in the future, and centS
Frontiers in Oncology 15
may be an effective marker for predicting response to

LGG immunotherapy.

The 2016 WHO included molecular characteristics, such as

1p19q codeletion, IDH, ATRX, and TP53 mutations, in the
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FIGURE 9

The potential association of centS with genetic status and therapy methods in LGG. Statistical histogram and difference analysis to explore the
association of centS with IDH mutation status (A), 1p19q co-deleted status (C) and MGMT promoter status (E). OS analysis to show the effects of IDH
mutation status (B), 1p19q co-deleted status (D) MGMT promoter status (F) on prognosis of high- and low- centS groups. OS analysis of high- and
low- centS groups in the CGGA cohort (G), CGGA chemotherapy cohort (H), CGGA radiotherapy cohort (I), and CGGA chemo radiotherapy cohort
(J). The response of patients with LGG in the high- centS group (K) and low- centS group (L) to different combination of treatments. centS,
centrosome score. **p < 0.01; ****p < 0.0001; "ns", not statistically significant.
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diagnostic strategy of LGG to offer a more accurate diagnosis (43).

The IDHmutation and 1p19q codeletion were more common in the

low-centS group than in the high-centS group, and TMB analysis

also showed a higher IDH mutation in the low-centS group. Studies

have shown that the presence of IDH mutation and 1p/19q

codeletion contributes to patient prognosis and prediction of

optimal drug therapy (12, 44), which may be one reason why

patients with low centS have a better prognosis. In addition, we

found that centS could be a better prognostic marker for LGG than

traditional IDH mutations, 1p19q codeletion, and MGMT

promoter methylation. Of course, centS, in combination with the

three traditional genetic markers, may differentiate patients with

LGG with different outcomes more accurately. The results of the

subgroup survival analysis provide us with a clinical strategy for

combining centS and three commonly used glioma molecular

indicators for comprehensive prediction. The patients in the high-

centS group can continue to detect IDH mutation and 1p19q

codeletion to differentiate prognostic risks, while for patients in

the low-centS group, only the detection of 1p19q codeletion may

lead to new predictive benefits. However, the detection of MGMT

promoter methylation is not recommended for further prognostic

prediction in either the high- or low-centS group. For high-risk

patients with LGG, there is reasonable evidence for adjunctive

chemotherapy and radiation therapy after maximal surgical

resection (45). We explored the predictive potency of centS for
Frontiers in Oncology 16
patient survival in different treatment cohorts. Our analysis revealed

that regardless of the cohort (chemoradiotherapy, radiotherapy, or

radiotherapy combined with chemotherapy cohorts) the low-centS

group had a longer survival time. It is worth noting that TMZ

chemotherapy or radiotherapy alone can significantly prolong the

survival of patients with LGG. Radiotherapy combined with

chemotherapy may benefit patients in the high-centS group but

has little significance for patients in the low-centS group. As

mentioned above, our centrosome-related risk signature may

provide a reference for more precise clinical treatment decisions

in patients with LGG.

Given that TMZ chemotherapy is still the most effective

chemotherapy regimen for high-risk LGG, we explored the

relationship between centS and sensitivity to TMZ and found that

the high-centS group had a lower IC50 value of TMZ and a higher

sensitivity to TMZ than the low-centS group. In addition, almost all

CRGs and modeling genes showed a positive correlation with TMZ

sensitivity. We speculated that these genes may synergistically

enhance sensitivity to TMZ in LGG. We then identified the key

gene CEP135 and three of the most potent CRGs with CEP135 from

12 signature genes: SMC4, WEE1, and SAMD9. As a necessary

conserved central protein for centrosome replication, an imbalance

of CEP135 results in centriole overduplication and contributes to

chromosome segregation errors to promote breast cancer (46).

Smc4, a core subunit of condensing, has been reported to be
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FIGURE 10

Temozolomide sensitivity analysis of centS and CRGs in LGG. (A) difference analysis of IC50 value of Temozolomide in high- and low- centS group
performed by “pRRophetic” package. (B) Correlation analysis of centS and IC50 value of Temozolomide. (C) The correlation matrix to show the
relationship of the IC50 value of Temozolomide with 13 CRGs and 12 signature genes. Blue indicates that the gene is negatively correlated with the
IC50 of Temozolomide, and red indicates that the gene is positively correlated with the IC50 of Temozolomide. (D) Correlation analysis of key gene
CEP135 and IC50 value of Temozolomide. *p < 0.05.
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associated with a variety of tumors, such as hepatocellular

carcinoma (47), prostate cancer (48), and lung adenocarcinoma

(49), and activated TGFb/Smad signaling has been reported to

promote the aggressive phenotype of glioma (50). Targeting poly

(ADP-ribose) polymerase and cell cycle checkpoints, ATM-CHK2-

TP53 and ATR-CHK1-WEE1, can benefit tumor therapy through a

synthetic lethality mechanism (51). Moreover, WEE1 inhibition can

boost anti-tumor immunity by activating ERV and the dsRNA

pathway and strengthen sensitivity to immune checkpoint blockade

(52). SAMD9 has been identified as a potential antigen for

developing mRNA vaccines against diffuse glioma (53).

Furthermore, we verified that these genes were highly expressed

in LGG cells compared to normal glial cells using qRT-PCR. In

summary, we believe that these four genes may form a gene team

that promotes the occurrence and progression of LGG and regulates

the sensitivity of LGG to TMZ. Thus, they may be promising

therapeutic targets for LGG treatment.

There are a few limitations to our work. On the one hand, the

need for an immunotherapy cohort for low-grade gliomas prevents

us from further validating and optimizing the predictive value of the

scoring system. On the other hand, our current study primarily

clarified the predictive ability of centrosome-related gene score on

the prognosis and treatment response of low-grade glioma based on

bioinformatic analysis, which still requires clinical validation.
Conclusion

In conclusion, our findings revealed a novel CRG signature

named centS that can accurately predict the prognosis of patients

with LGG. Furthermore, CentS can assess the patient’s response to
Frontiers in Oncology 17
TMZ and immunotherapy, helping physicians to develop

individualized treatment plans for patients with different

genetic statuses.
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FIGURE 11

The differential expression verification of potential CRGs team by qRT-PCR. (A) The genes co-expressed network of CEP135 and 12 signature genes
taking correlation coefficient r>0.5 as the threshold value. red represents the key gene, green represents the three strongest correlation genes with
the key gene. (B–E) Differential expression verification of CEP135, SMC4, WEE1 and SMAD4 in SW1088, HS683 and NHA cells using qRT-PCR. CRGs,
centrosome related genes. **p < 0.01; ***p < 0.001; and ****p < 0.0001. qRT-PCR data are means ± SD, with n = 3.
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ATRX alpha-thalassemia/mental retardation, X-linked

AUC area under the ROC curve

CGGA Chinese Glioma Genome Atlas

CENPJ centromere protein J

CEP centrosomal protein

CNV copy number variation

CPAP centrosomal P4.1-associated protein

CRG centrosome-related gene

DEG differentially expressed genes

DGE differential gene expression

DMEM Dulbecco’s modified Eagle’s medium

FBS fetal bovine serum

GBM glioblastoma multiforme

GO Gene Ontology

GSCA Gene Set Cancer Analysis

GSVA Gene Set Variation Analysis

ICG immune checkpoint genes

IDH isocitrate dehydrogenase

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO least absolute shrinkage and selection operator

LGG low-grade gliomas

MGMTp O6-methylguanine-DNA methyltransferase promoter

OS overall survival

PFS progression-free survival

PLK4 polo-like kinase 4

POC1B POC1 centriolar protein

ROC Receiver Operating Characteristic

RTTN rotatin

SAS6 spindle assembly abnormal protein 6 homolog

SNV single nucleotide variation

SPICE1 spindle and centriole associated protein 1

STIL SCL/TAL interrupting locus

TCGA The Cancer Genome Atlas

TMB tumor mutation burden

TMZ temozolomide

TPM transcripts per kilobase million

WHO World Health Organization.
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