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Editorial on the Research Topic

Combining multiple non-invasive images and/or biochemical tests to
predict prostate cancer aggressiveness
Introduction

This Special Topics Issue in Frontiers in Oncology, Genitourinary Oncology compiles

research articles that noninvasively assess prostate tumors through combining multiple

disparate independent quantitative data. The contributions to the Special Topics discuss the

performance of more common resources and methods that have been employed in the

medical arena, such as biomarkers, clinical data, visual inspection of multi-parametric MRI

(mpMRI), as well as adapting and applying novel approaches derived from other fields that

quantitatively assess spatially registered multi-parametric MRI (SRMP-MRI).
Background
“What’s past is prologue,” William Shakespeare, The Tempest

“The past is a stepping stone, not a mill stone,” Robert Plant
Quantifiable research endeavors can benefit from combining multiple independent pieces

of information or variables (1–3) to describe or ascertain a given condition or predict an

outcome. The sources of input information may be garnered from biomarkers, clinical

factors, meta information, human intelligence, detectors and/or images. Having multiple

input factors that supplement and/or complement each other without mere duplication

improves the accuracy of the predicted outcome. To aid combining disparate data in the

clinic, nomograms (4) have provided a graphical tool for computing the likelihood of an effect
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due to a number of input variables. Standard measures can establish

the significance of the input information for evaluating or achieving a

desired goal.

Extracting information, however, may burden and harm the

patient (5). For prostate cancer, a 6-12 core transrectal ultrasound-

based needle biopsy supplemented by MRI has been the principal

means of diagnosis and patient risk stratification. Aside from possible

under sampling the prostate (6, 7), such an invasive procedure carries

the risks of pain, hemorrhage, and infection for the patient (8).

Although the widely implemented non-invasive PSA indicator has

significantly reduced PCa mortality, its low specificity lead to under

and overtreatment and loss quality of life for the patient (9).

To improve PCa diagnosis, grading, and alleviate patient

suffering, non-invasive strategies have been developed, such as the

Prostate Imaging Reporting and Data System (PI-RADS) (9). PI-

RADS (10) is a protocol for radiologists to visually inspect multiple

MRI sequences and combine the assessments to determine the

prostate tumor’s aggressiveness. However, such a qualitative

approach depends on the training and experience of the radiologists.

Only one study (Jia et al.) in this compilation applies Artificial

Intelligence (AI) methods to find image texture features and combine

them to predict outcomes. AI harnesses the available image data and

the growing computing power, is fashionable, and successful.

However, there are drawbacks to the AI, such as overtraining of

models lead to low accuracy, require fixed measurement conditions

such as magnetic field, and textures are unconnected to physiology.

The studies in this issue mostly avoid these pitfalls.
Discussion

Table 1 summarizes nine studies, including Chang et al., Falagario

et al., Jia et al., Jiang et al., Lei et al., Liu et al., Mo et al., Wang et al.,
Frontiers in Oncology 02
and Mayer et al. that examined the efficacy of combining various

forms of PSA, prostate volume, and PI-RADS to non-invasively

predict Clinically Significant Prostate Cancer (csPCa) or presence in

MRI. There are a number of exceptions in this compilation. Chang

et al. used two statistical metrics that characterize the diffusion,

namely the mean and kurtosis to predict the International Society

of Urological Pathology staging (ISUP). Falagario et al. added

clinically based Risk Factors to mpMRI and improved the accuracy

for detecting csPCa. Unlike other studies in this compilation, only Jia

et al. applied AI and radiomics to predict the csPCa. Jiang et al. used

geometric measures for the prostate to predict the presence of

prostate cancer. Liu et al. departed from the others in examining

input data that predicted the need for mpMRI. The summary cites the

input variables, dependent variable, number of patients, an evaluation

metric, specifically the Area Under the Curve (AUC) from Receiver

Operator Characteristic and whether a nomogram was generated. All

studies achieved high AUC and showed that adding mpMRI and

using multiple variables relative to a single variable improved the

accuracy. All studies need further verification with prospective studies

and higher patient numbers.

Two articles in this Special Topics issue studied spatially

registered hyperspectral mpMRI. The first (Mayer et al.) eschewed

the familiar independent variables (PI-RADS, PSA, age, etc), but

instead tapped variables associated with SRMP-MRI such as

eccentricity, Signal to Clutter Ration and achieved high AUC. The

second (Mayer et al.), not in Table 1, does not use multiple features to

predict an outcome. Instead, Mayer et al. studied an anomaly detector

that finds deviant voxels within the normal prostate through

processing the SRMP-MRI and examines a variety of statistical

methods to manipulate the covariance matrix in order to generate

an optimized AUC. Further studies are warranted that compared the

anomaly detection with a radiologist tumor contouring of the SRMP-

MRI tumors.
TABLE 1 Retrospective, single center studies included in this Special Topics issue.

Author Input Variables Prediction Number of
Patients

Evaluation
Metrics

Best or Range
of AUC

Nomogram

Chang Dmean ,Dkurtosis ISUP 45 AUC 0.907 No

Faligario mpMRI, RC csPCa 221 AUC, DCA 0.8 No

Jia Radiomics: T2, DWI, Clinical Data PFS 191 AUC, DCA,
Calibration Curve

0.917-0.926 No

Jiang Age, PSA, transCGA, PA PCa 691 AUC 0.918 Yes

Lei PI-RADS, PSAD csPCa 422 AUC 0.97 No

Liu Total PSA, Free PSA, PSAD, Prostate Volume, Age Tumor Presence
in MRI

784 AUC, DCA 0.8 No

Mo Prostate Health Index (Free PSA, Total PSA), PI-
RADS, Prostate Volume

csPCa 315 AUC 0.882 Yes

Wang PI-RADS, PSAD csPCa 833 AUC 0.94 No

Mayer Eccentricity, Signal to Clutter Ratio, Tumor
Volume

csPCa 25 AUC, DCA 0.861-0.969 Yes
mpMRI, Multi-parametric MRI; PI-RADS, Prostate Imaging Reporting And Data system; AUC, Area Under the Curve; DCA, Decision Curve Analysis; RC, Risk Calculator; PSAD, Prostate Serum
Antigen Density; PFS, Progression Free survival; ISUP, International Society of Urological Pathology; Dmean, Mean diffusion; Dkurtosis, Diffusion kurtosis; csPCa, Clinically Significant Prostate Cancer;
PA, maximum prostate sectional area; transCGA, transverse central gland area.
frontiersin.org

https://doi.org/10.3389/fonc.2022.974257
https://doi.org/10.3389/fonc.2021.659014
https://doi.org/10.3389/fonc.2020.603384
https://doi.org/10.3389/fonc.2020.603384
https://doi.org/10.3389/fonc.2022.974257
https://doi.org/10.3389/fonc.2021.708730
https://doi.org/10.3389/fonc.2022.992032
https://doi.org/10.3389/fonc.2021.732027
https://doi.org/10.3389/fonc.2022.1068893
https://doi.org/10.3389/fonc.2022.1024204
https://doi.org/10.3389/fonc.2023.1066498
https://doi.org/10.3389/fonc.2021.659014
https://doi.org/10.3389/fonc.2021.659014
https://doi.org/10.3389/fonc.2020.603384
https://doi.org/10.3389/fonc.2022.974257
https://doi.org/10.3389/fonc.2022.974257
https://doi.org/10.3389/fonc.2021.708730
https://doi.org/10.3389/fonc.2021.732027
https://doi.org/10.3389/fonc.2023.1066498
https://doi.org/10.3389/fonc.2022.1033323
https://doi.org/10.3389/fonc.2022.1033323
https://www.frontiersin.org/articles/10.3389/fonc.2021.659014/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.603384/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.974257/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.708730/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.992032/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.732027/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1068893/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1024204/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1066498/full
https://doi.org/10.3389/fonc.2023.1156649
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mayer et al. 10.3389/fonc.2023.1156649
Future research
Fron
“The best way to predict the future is to create it.”

Abraham Lincoln

“The past is in your head, the future is in your hands.” Margaret

Atwood
The works presented in this issue directly suggested future

refinements, such as more patients, prospective studies, application

to greater number of clinics, but hints at more ambitious projects

such as:
New biomarkers.

A number of studies in Special Topics showed that adding PSA to

mpMRI boosts sensitivity and specificity for reliably determining

csPCa. New biomarkers, beyond PSA (11, 12), show promise in

identifying the presence of prostate tumors with fewer false

positives than PSA. Future studies might combine these novel

biomarkers with PI-RADS or mpMRI for further improvement.
Directed proton therapy

Due to the increasing prevalence of proton beam therapy and its

ability to more precisely deliver radiation therapy (13), imaging (14,

15) may reveal that certain patients benefit from exposing only a

portion of the prostate, rather than the entire prostate, to irradiation,

thus reducing possible side effects from unnecessarily exposing

nearby normal tissues. To date, only treatment planning studies

(13) suggest the feasibility of using mpMRI for this purpose.
Qualitative/quantitative color maps.

Currently radiologists (10) visually inspect individual greyscale

images to discern and interpret lesions. An alternative coloring

schemes assigns red, green, blue to components in SRMP-MRI and

generate a composite color image that can be quantified (16–18).

Color in this case codes for PCa and normal tissue physiology. This

coloring is not equivalent to false or pseudo coloring applied to

individual images to show relative intensities within a given image.

Future research (18) may clinically test employing tumor color

display for patient care management and possibly derive new

quantitative metrics for assessing tumors.
Cross-clinic transformation

MRI scanning conditions (magnetic field strength, pulse

sequences etc.), can vary among clinics which hinders AI-based

techniques from generalization. Previously (19), “whitening-
tiers in Oncology 03
dewhitening” transformed target signatures for supervised target

detections to handle the changes in conditions. Similarly (20),

signatures based on Gleason score status were transformed. Future

research may transform prostate tumor signatures across multiple

clinics. A single library may hold multiple tumor signatures in

the future.
mpMRI and genomics

Other research directions may combine multiple data input or

images to infer tumor genomics. A meta-analysis (21) found that

mpMRI-visible cancer related to genotype, phenotype, physiology

(proliferative signaling, DNA damage, and inflammatory processes).

Others (22, 23) correlated mpMRI visibility with aggressive genomic

and proteomic features. Further research incorporating all mpMRI

modalities may further discriminate among genomic metrics or find

more markers.
Magnetic resonance spectroscopy

MRS uses many bands, similar to airborne hyperspectral imagers.

However, MRS suffers from crude spatial resolution (MRS (24) is 0.25

cm3 versus mpMRI is 0.006 cm3) causing sampling issues. The limited

MRS sample number precludes exploiting the statistical analysis due

to background covariance matrix inversion non-singularity.

Covariance matrix regularization can mitigate the insufficient

sampling. Elevating the MRS spatial resolution by degrading the

spectral resolution may enable MRS statistical analysis similar to

remote sensing. Remote sensing proved the value of making the trade-

offs and possibly help the clinic.
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