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and Alan McWilliam1
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The University of Manchester, Manchester, United Kingdom, 2Department of Medical Physics,
Memorial Sloan Kettering Cancer Center, New York, NY, United States, 3Department of Clinical
Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom, 4Department of
Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
Purpose: For patients receiving lung stereotactic ablative radiotherapy (SABR),

evidence suggests that high peritumor density predicts an increased risk of

microscopic disease (MDE) and local-regional failure, but only if there is low or

heterogenous incidental dose surrounding the tumor (GTV). A data-mining

method (Cox-per-radius) has been developed to investigate this dose-density

interaction. We apply the method to predict local relapse (LR) and regional failure

(RF) in patients with non-small cell lung cancer.

Methods: 199 patients treated in a routine setting were collated from a single

institution for training, and 76 patients from an external institution for validation.

Three density metrics (mean, 90th percentile, standard deviation (SD)) were

studied in 1mm annuli between 0.5cm inside and 2cm outside the GTV

boundary. Dose SD and fraction of volume receiving less than 30Gy were

studied in annuli 0.5-2cm outside the GTV to describe incidental MDE dosage.

Heat-maps were created that correlate with changes in LR and RF rates due to

the interaction between dose heterogeneity and density at each distance

combination. Regions of significant improvement were studied in Cox

proportional hazards models, and explored with and without re-fitting in

external data. Correlations between the dose component of the interaction

and common dose metrics were reported.

Results: Local relapse occurred at a rate of 6.5% in the training cohort, and 18% in

the validation cohort, which included larger and more centrally located tumors.

High peritumor density in combination with high dose variability (0.5 - 1.6cm)

predicts LR. No interactions predicted RF. The LR interaction improved the

predictive ability compared to using clinical variables alone (optimism-adjusted

C-index; 0.82 vs 0.76). Re-fitting model coefficients in external data confirmed

the importance of this interaction (C-index; 0.86 vs 0.76). Dose variability in the

0.5-1.6 cm annular region strongly correlates with heterogeneity inside the

target volume (SD; r = 0.53 training, r = 0.65 validation).
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Conclusion: In these real-world cohorts, the combination of relatively high

peritumor density and high dose variability predicts increase in LR, but not RF,

following lung SABR. This external validation justifies potential use of the model

to increase low-dose CTV margins for high-risk patients.
KEYWORDS

image-based data mining, real world data, biomarker-by-treatment interactions, local
relapse, NSCLC, stereotactic ablative body radiotherapy (SABR), personalized medicine,
external validation
1 Introduction

Patients with early-stage lung cancer who are medically

inoperable or refuse surgery will receive stereotactic body

radiotherapy (SABR) as standard of care (1). It is a well-

tolerated and successful treatment, with five-year local relapse

(LR), regional failure (RF), and distant metastasis (DM) rates at

ranges between 8-11%, 10-13%, and 11-22% respectively (2–5).

SABR is characterized by high dose radiation delivered by multiple

conformal beams to precisely target the tumor and avoid

surrounding tissue. To maintain a conformal dose distribution,

dose heterogeneity inside the planning target volume (PTV) is

permitted (6). It is still unknown what part of the tumoral dose

distribution is affecting tumor control the most (7), and further

considerable institutional differences exist in treatment planning

approaches (8). Better understanding of the level of tumor dose

homogeneity/heterogeneity could lead to changes in radiotherapy

planning to improve patient outcomes. In some situations, data

from real-world settings allows us to test hypotheses on the impact

of changes that can be made to the treatment planning process as

an alternative to costly clinical trials. Real word data also has the

advantage of being more inclusive of a general population. This is

particularly relevant in the context of patients with lung cancer

treated with SABR as most of them are elderly, frail and with

multiple comorbidities. These patients are typically excluded or

underrepresented in clinical trials (9).

The association between dose and LR has been well investigated

through the link between the prescription dose and tumor control

probability. Such studies report dose associations with the isodose

surface encompassing the PTV (10, 11), the isocenter (12) and the

average of the two (13). A study on 1500 patients emphasized the

importance of ensuring high doses within the gross tumor volume

(GTV) to promote local control (13). Reports have also detailed the

importance of high dose outside the GTV as means of treating

microscopic disease (MDE) and nodal micro-metastases that could

be responsible for treatment failure (14, 15). Further studying this

effect may identify associations that can be utilized to personalize

treatments for patients at high-risk of failure.

Assessing pre-treatment imaging biomarkers is a non-invasive

approach to identify high-risk patients who could be candidates for

treatment adaptation. Salguero et al. demonstrated that CT-based
02
GTV circularity and surface density predict high-risk of MDE (14).

High-risk of MDE also translated into an increased risk of local-

regional failure if patients had low dose within 1.5cm from the GTV

(16). Previous efforts have, however, focused on using tumor dose

parameterizations, histological, or clinical characteristics alone to

study and stratify risk of MDE (10–13, 17).

Ignoring risk stratification can lead to incorrectly claiming a

lack of association (18). In our previous work, we developed a Cox-

per-radius method to investigate the interaction between imaging

density biomarkers and dose in independent annuli surrounding

the GTV (19). In that study we demonstrated that the interaction

between CT-based imaging biomarkers and dose far outside the

tumor is linked to DM. In this study, we will use our previously

developed method to assess whether a similar associations can be

identified for LR and RF using two real-world patients cohorts. We

will utilize real-world data from geographically separate institutions

to explore the generalizability of any identified patterns.
2 Methods

2.1 Clinical data and patient follow-up

2.1.1 Training data
Data was available for 195 patients with T1-2 N0M0 non-small

cell lung cancer (confirmed histologically or suspected based on

radiology) who were treated with SABR for primary lung cancer

during 2011-2017 at The Christie NHS Foundation Trust, with 60 Gy

in 5 fractions on consecutive weekdays. Institutional approval was

granted to collect and analyse this data (REC reference: 17/NW/

0060). All patients were staged with both a CT and 18F-FDG positron

emission tomography (PET) scan, but did not always receive a

histological diagnosis. Four-dimensional computed tomography

scans (4D-CT) and three-dimensional dose distributions were

available, as described previously and in Supplementary Material

(SM), Section 1 (19). Clinical data was retrospectively collected from

structured e-forms completed in routine practice. Clinical data was

available on tumour lobe location, age, sex, Eastern Cooperative

Oncology Group (ECOG) performance status (functional ability),

ACE27 comorbidity score (describing the presence and severity of

existing medical conditions), and histological sub-type. Where
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available, histological sub-type diagnosis was classified as

‘adenocarcinoma not otherwise specified (ADC NOS)’, ‘squamous

cell carcinoma (SCC)’, ‘carcinoma NOS’ or other. Information on

tumor centrality was not available.

In routine practice, patients were followed-up every three months

for the first year, and six monthly thereafter. At the discretion of the

clinician, a free-breathing CT is performed, PET or biopsy

recommended when treatment failure is suspected. Recorded data on

treatment failure was retrospectively collected from electronic records.

Local relapse (LR) was defined as progression in or adjacent to the

original treatment volume, based on clinical interpretation of ‘adjacent’

following reported definitions as guidance (20). Regional failure (RF)

was defined as recurrence in regional lymph nodes (hilar or

mediastinal). Time to failure was recorded from the start of

radiotherapy to the date of the first scan that showed progression.

Patients were censored at the most recent follow-up in the absence

of failure.
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2.1.2 Validation data
For validation, data were available for 139 patients with T1-2

NOM0 early-stage NSCLC treated with a range of fractionation

regimes (see SM, Table 1) treated at Memorial Sloan Kettering

Cancer Center (MSKCC) between 2014 and 2017. There was no

agreement in treatment schedules between the training and

validation data. For validation, we limited selection to patients

treated with 50Gy in 5 fractions treated on consecutive weekdays, as

the most common treatment schedule, and included all such patients

treated with that regime during this time frame. All patients included

had been staged with a CT and PET scan. A data-sharing agreement

was in place and a study analysis plan made available online at the start

of the collaboration (21). Clinical data was collected retrospectively

from structured e-forms completed in routine practice. Clinical data

was available on tumor lobe location, age, sex, Karnofsky performance

status (a rating of 0-100 measuring a patient’s ability to perform daily

tasks), and histological sub-type (SCC, ADC, or other). Information on
TABLE 1 A table to demonstrate patient demographic differences in training and validation data.

Characteristic Training, N = 1951 Validation, N = 761 p-value2

Tumor volume (cc) 4 (0 - 31) 14 (0 - 158) <0.001

Tumor motion (cm) 0.56 (0.00 - 3.43) 0.36 (0.00 - 2.73) 0.016

Tumor lobe location 0.7

Lower 69 (35%) 29 (38%)

Upper 126 (65%) 47 (62%)

Age (years) 75 (45 - 92) 78 (52 - 92) 0.036

Biological sex 0.3

Female 99 (51%) 44 (58%)

Male 96 (49%) 32 (42%)

Histological subtype <0.001

Adenocarcinoma, NOS 35 (37%) 45 (59%)

Squamous cell carcinoma 37 (39%) 24 (32%)

Carcinoma, NOS 14 (15%) 0 (0%)

Other 8 (8.5%) 7 (9.2%)

Unknown 101 0

Performance status (ECOG) <0.001

0 3 (1.8%) 29 (38%)

1 64 (37%) 43 (57%)

2 83 (49%) 4 (5.3%)

3 21 (12%) 0 (0%)

Unknown 24 0

Local relapse 13 (6.7%) 12 (16%) 0.020

Regional failure 15 (7.7%) 5 (6.6%) 0.8
fr
1Statistics presented: n (%); Median (range).
2Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.
Tumours were larger and less mobile in the validation data compared to training. Worse performance status was reported in the training set. Differences were also identified in histological sub-
type with a larger proportion of adenocarcinoma in the validation data, but this could be influenced by the missing data reported for training. In the validation set there were significantly more
local relapses but a similar percentage of regional failures.
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comorbidity score or tumor centrality was not available. The Karnofsky

performance status was scaled to the ECOG gradings to match the

training cohort using a published guide (22).

Data was also collected on recurrences for this cohort. Local

relapse was defined as new tumor growth at the site of prior CT; and

recurrences were typically confirmed by PET (to demonstrate local

FDG avidity) and/or biopsy. Regional failure was defined as

recurrence in regional lymph nodes.
2.2 Imaging and dosimetric data

Both training and validation cohorts had treatment plans that

included a ‘motion-adapted’ GTV (iGTV) which incorporates the

GTV combined across all respiratory phases. In both institutions,

this is outlined on the maximum intensity projection (MIP) and

edited on individual respiratory phases. The PTV was also recorded,

which represents the iGTV plus a 5mm expansion (with a 2-3mm

additional CTV in the validation cohort). To extract the tumor

volume (GTV) for every phase, an in-house process was applied to

estimate and remove the motion adaptation using rigid tumor

registration across 4D phases (23). As a result, a GTV contour

was available for every phase and two additional clinical variables

recorded: tumor volume and tumor motion amplitude. Results of

the registration were assessed visually on a movie-loop of registered

phases, and all GTV contours were visually approved by a

single observer.

Three-dimensional dose distributions were available for all

patients and were converted to biologically equivalent doses in

2Gy fractions (EQD2) using a/b=10. Independently, the same set

of distributions were blurred according to respiratory motion

(derived from the registration above) and then converted to

EQD2 – which represents the blurred dose represented on a

reference phase (for which we used the middle, i.e., 50% phase).

The mean, maximum, minimum, and standard deviation (SD) of

the dose inside the PTV was calculated in both cohorts based on

the planned dose. The blurred dose provides an indication of the

planned tumor dose over the respiratory cycle. From this

distribution, the mean, maximum, minimum, and SD dose on

the generated GTV was calculated.
2.2.1 Density metrics
The radial histogram framework described in our previous work

was implemented to measure density and dose at radial distances

from the generated GTV for all patients (19). A 2D cross-histogram

of density vs distance in bins of 1mm annuli from -0.5 to 2cm from

the GTV was formed for each 4D phase considering lung tissue

only. Only lung tissue was considered for density metrics so that

higher density is not just a surrogate for nearby organs-at-risk. For

each patient, a single phase was selected as the most stable

compared to neighboring phases and used for density analysis in

the remaining analysis (as detailed in previous work) (19, 24).

Summary curves were then extracted from the 2D histogram for

each patient to describe the mean, 90th percentile, and SD density at

the defined distances from the GTV. The summary curves were
Frontiers in Oncology 04
smoothed with Gaussian smoothing (s = 1.5mm) (as annuli

thickness is less than slice thickness) and stored for each patient.

2.2.2 Dose metrics
To extract dosimetric information, scans were cropped based on

the body contour, and dose-volume histograms were extracted in

1mm annuli from the blurred dose distribution in the region 0.5-

4cm radially from the GTV on the reference phase (19). Smoothed

curves were summarized by dose SD, and the fraction of volume in

each 1mm rim that receives EQD2 of less than 30Gy, which is a dose

threshold reported for controlling MDE (25). An additional curve

of mean dose was extracted for visualization only.

2.2.3 Exploratory comparison
The average curve across patients for each metric as function of

radius was calculated in training and validation. The curves did not

inform selection of which variables to use in the remaining analysis

but assist in interpretating the results. We visually assessed the

images for all patients to note any qualitative characteristics that

may lead to differences between the two groups.
2.3 Model development

2.3.1 Clinical model and ‘standard’ dose metrics
For training, a reference Cox model was derived for both LR

and RF including clinical variables with complete data for all

patients – which were tumor lobe location, age, sex, tumor

motion amplitude, and tumor volume. The concordance index

(C-index), Akaike Information Criterion (AIC), and any variables

that statistically significantly predicted LR and/or RF were recorded.

Each GTV and PTV dose-related parameter extracted in Section 2.2

was then included in the Cox model individually to determine

whether it was associated with RF and LR, and a likelihood-ratio

test was performed for models with and without the dose parameter

to determine if there was a significant improvement in

model performance.

2.3.2 Interaction maps
The Cox-per-radius method was applied for each outcome

separately (LR and RF); full details reported in previous work

(19). Briefly, for each combination of dose and density in

independent annuli, the density feature, dose metric, and

interaction term (density*dose) were added to the clinical model.

A likelihood-ratio test was performed for models with and without

the interaction to produce a heat-map of p-values describing the

benefit of the interaction for prediction in each dose-density

annulus combination. Regions of statistical significance (defined

by p<0.05) were highlighted on the heat-map.

Region size post-processing was then used as multiple-testing

correction on the heat-maps to ensure regions were truly not less

than 3mm thickness in either the dose or density scale (likely

representing spurious associations) (26, 27). The average height and

width of each region defined boxes on a heat-map that represent the

significant distances for dose and density independently. From the
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defined independent annuli, the dose and density values in the

identified regions were extracted and included in overall Cox

models. Internal validation was performed over 500 bootstrap

resamples to estimate the interaction coefficient stability and

model performance. A secondary post-processing step was then

performed, which removed unstable interaction coefficients on

internal validation or interactions that did not improve the

performance of the clinical model (C-index). Unstable coefficients

are those that show both a negative and positive effect within the

95% confidence interval across resamples.

2.3.3 Final models, internal validation, and
interpretation

Coefficients and p-values were reported for models with and

without the interaction term. To interpret the direction and size of

the association between density and outcome, contrast plots were

created with log(hazard ratio) on the y-axis and different density

values on the x-axis for the 10th percentile, median, and 90th

percentile value of the dose parameter in the relevant region (28).

Based on the results from the internal validation, the

concordance-index was adjusted for optimism. For each

bootstrapped model we calculated an estimate of the C-index and

calculated the difference between the C-index of the model in the

bootstrapped data and in the original data. To calculate the

optimism-adjusted C-index, the median difference across all

resamples was subtracted from the original C-index. This internal

validation was performed for the clinical model, and the new

models with and without an interaction term for comparison. For

all models, the median and 95% confidence interval of the C-index

across the bootstrap resamples were recorded.

For interpretation of the identified dose location, correlations

were investigated between the relevant dose parameter and the

metrics extracted in Section 2.2.
2.4 External validation

No formal advice is currently reported for external ‘validation’

in an image-based data mining framework. Following the stricter

advice of Royston et al. on validation in prediction modelling (29),

the model coefficients developed on the training data were applied

in the new data-set to build a validation Cox model. The C-index of

the validation model was recorded and compared to that identified

from the internal validation. This process was performed for the

clinical model and repeated for the new models with and without

the interaction terms.

As a second comparison (as opposed to strict prediction-model

validation) we re-fit the model coefficients in the new data set to
Frontiers in Oncology 05
determine if the significance of the interaction would still be

identified. Contrast plots were created for this interaction, and the

same correlations between other dose metrics performed for

interpretation. As a further validation step, we also studied the

stratification of patients with Kaplan-Meier plots in both training

and validation using an arbitrary cut off for the median peritumour

density, and the lowest and highest third of the identified

dose metrics.
3 Results

3.1 Clinical, imaging and dosimetric data

For training, 195 patients with complete clinical, image and

dose data were available (19). Thirteen patients had LR (6.5%) and

15 patients (8%) had RF. Complete clinical data was available on

tumor lobe location, age, sex, tumor motion amplitude, and tumor

volume. In the training data, we report 52% missing data on

histological sub-type and 12% on performance status – hence

these were excluded from further analysis.

In the validation set, we first selected patients who were treated

with the same number of fractions as the training data-set, this left

95 patients treated with 50Gy in 5 fractions. Out of the remaining

patients ten more were excluded due to: missing radiotherapy data

(n = 1), missing 4D-CT phases (n = 5), alternative planning

approach (breath-hold; n = 2), or no iGTV (n = 2). On visual

assessment of the GTV generation, we observed seven failures

related to registration and three related to segmentation. Overall,

76 patients were available for analysis with complete data, and the

difference between the training and the validation cohort are shown

in Table 1. Twelve patients had LR (16%) and five RF (6.6%). In the

validation cohort, the tumours were larger with a mean tumour

volume of 14cc compared to 4cc, and a maximum volume of 158cc

compared to 31cc. The tumours in the validation cohort also were

more centrally located on visual assessment, which contributed to a

significantly lower tumour motion amplitude. In the validation

data, a larger distribution of adenocarcinoma compared to

squamous cell carcinoma was recorded, and patients had better

performance status.
3.2 Clinical models for training data

Firstly, using the training data, multivariable Cox models were

built to predict LR and RF containing all clinical variables in

Table 1, and the full tables are reported in SM Table 2. The

summary of these models in Table 2 demonstrates that only
TABLE 2 Clinical model for local and regional failure in training data with significant variables, C-index, and Akaike Information Criterion (AIC)
reported. Performance metrics were evaluated on the full data-set.

Outcome Multivariable prognostic factors (p<=0.05) C-index AIC

Regional None 0.74 142.3

Local ln(Tumour volume) (HR = 3.05, p = 0.006) 0.79 100.0
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tumor volume is a prognostic factor for LR, and there are no

prognostic factors for RF. Including ‘standard’ dose metrics in each

model did not significantly improve model performance

(SM, Table 3).
3.3 Radial dose and density metrics

Three density metrics (mean, 90th percentile, SD) and three dose

metrics (mean, SD, fraction volume receiving less than 30Gy) were

extracted from both training and validation cohorts. These metrics

were averaged across all patients and the differences visualised between

cohorts as shown in Figure 1. An increased density heterogeneity inside

and outside the tumour in the validation data was observed. The mean

dose is lower in the validation cohort as the total prescription was 50Gy

in 5 fractions compared to 60Gy in 5 fractions delivered in the training

cohort. Differences in the other curves (Figure 1) include variation in

both dose and density heterogeneity which likely represent institutional

planning differences.
3.4 Dose-density interaction maps

Using the dose and density curves extracted for all patients, six

Cox-per-radius maps were produced from combinations of the

three density metrics and two dose metrics (SD, fraction volume

receiving less than 30Gy) extracted for this stage of the analysis.

In the analysis of LR, post-processing 1-40% of significant pixels

were removed (SM, Figure 1 and 2). After this, up to nine candidate

regions were identified on each map. Of these nine regions, three

were below the size threshold, one had unstable coefficients on

internal validation, and four did not improve the clinical model

performance (SM, Table 3), therefore only one consistently

identified region remained (Figure 2).

This region indicates that 90th percentile density at the

peritumor border (-0.1 to 0.3cm) interacts with the dose SD 0.5-

1.6cm and jointly predict LR. The interaction term was significant

in 74% of bootstrap resamples and the interaction model

performance had a median of 0.81 (95% confidence interval: 0.70

- 0.85) on internal validation. The larger region (light pink border;

Figure 2) was not considered important as it did not improve the

clinical model performance with a median C-index of 0.79.
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For RF, the maps before and after post-processing are shown in

SM, Figures 3 and 4 where between 25-100% of spurious significant

pixels were removed across maps. Two regions remained (SM,

Table 4), but neither met the 3mm threshold for annuli size and

hence no regions were considered for further analysis of

regional failure.
3.5 Final training and validation models

The first column of Table 3 reports the median and 95%

confidence interval of the training C-index for the clinical LR

model, the model with additional dosimetric and density

information, and the final model with an interaction term. In the

second column, we record the optimism-adjusted estimates of these

values. In both cases, the interaction model out-performs the other

models. The strict prediction-model validation results (without

refitting) demonstrate that the interaction model does not directly

translate to the external data, but the dose and density terms alone

do improve on the clinical model in the validation data-set.

However, when model coefficients were re-fitted, the importance

of the interaction term was re-established.
3.6 Model interpretation

The model coefficients for the interaction model in the training

data and for the re-fitted model in the validation data are shown in

Table 4. The HRs for the interaction term are reported at the 90th

percentile of SD dose (11.7Gy) and peritumor density (-107.4HU)

as this is a multiplicative model, the hazard can only be interpreted

as a single value at specified values of the interacting variables.

For interpretation on the direction of effect we plot the log

(hazard ratio) for peritumor 90th percentile density as a continuous

variable at three reference values of dose SD in Figure 3. The plot

demonstrates that high peritumor density and high dose SD in the

identified region is linked to increased risk of LR. At other values of

dose SD there is no significant association between density and LR.

An example stratification with these models is demonstrated

in Figure 4, where it can be seen that only at high dose SD,

peritumour density is linked to worse outcome in training and

validation cohorts.
TABLE 3 Concordance index of models on training and validation data.

Model C-index Training Optimism-adjusted Validation
(without refitting)

Validation
(with refitting)

Clinical 0.81
(0.66-0.94)

0.76
(0.61-0.80)

0.58
(0.37–0.76)

0.76
(0.58–0.91)

Clinical + SD dose + 90th percentile density 0.84
(0.71-0.95)

0.77
(0.61-0.82)

0.64
(0.37-0.80)

0.81
(0.66-0.99)

Clinical + SD dose + 90th percentile density
+ SD dose*90th percentile density

0.88
(0.79-0.99)

0.82
(0.69-0.93)

0.56
(0.41-0.70)

0.86
(0.71-1.00)
Optimism-adjusted results represent the internally validated models on the training data. Validation without re-fitting represents a strict prediction model validation procedure, whereas with
re-fitting is building a new model with all the identified variables in the training data for comparison.
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3.7 Dosimetric correlations

The correlations between dose in the PTV and GTV and the SD

dose in the identified region was studied to investigate the relationship

between incidental dose and more ‘standard’ dose metrics. The

correlations among PTV dose metrics are shown in Figure 5, and

among GTV metrics in SM, Figure 5. Dose heterogeneity (SD) in the

identified region (0.5 – 1.6cm from GTV) was positively correlated

with mean PTV and mean GTV dose in training data, but the

correlation was weaker in the validation data. Similar observations

are seen for SD, max and min dose to PTV and GTV.
Frontiers in Oncology 07
4 Discussion

In this study based on real world datasets, as illustrated by the

median age of patients and high performance status, the `Cox-per-

radius` method developed in previous work was applied to

investigate spatial interactions of density and dose for the purpose

of better understanding local relapse (LR) and regional failure (RF)

among early-stage lung cancer patients treated with SABR (19). We

identified that higher peritumor density is significantly associated

with increased chance of LR for patients who have high dose

variability 0.5-1.6cm outside of the GTV. Higher dose variability
D

A B

E F

C

FIGURE 1

Population averages (dashed 95% confidence intervals) for the extracted variables against distance from the GTV for the training data (purple) and
the validation data (yellow) (A) mean (B) 90th percentile and (C) standard deviation of density. Also (D) mean and (E) standard deviation of equivalent
dose, and (F) the fraction of volume in each rim receiving less than 30Gy.
FIGURE 2

Left: Cox per radius significance map of interaction between 90th percentile density vs SD EQD2 at distance from the GTV. The p-value reflects a
likelihood-ratio test of improvement in model performance due to inclusion of the interaction between dose and density at each location. All
significant points are shown with a white circle and the regions extracted for assessment in bootstrap are highlighted in pink. After post-processing
only one region remained (bright pink). Right: The annuli volumes defined by the selected regions overlayed on an example patient.
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in this region is likely driven by increased heterogeneity in the PTV

leading to steeper dose fall-off, as shown by correlations between the

PTV dose and dose in this region further out. Similarly, Salguero

et al. (14) found that patients with high risk of MDE (based on

higher GTV surface density and more complex shape) had

increased risk of local-regional failure if receiving a low minimum

dose up to 1.5cm from the GTV. Both results suggest that

microscopic disease coverage is important to prevent LR and

could potentially be customized according to peritumor density.

Using a second real-world validation data-set, we confirmed the

importance of the interaction between peritumor density and dose

variability in the same location despite large demographic

differences observed in the two cohorts.

Interestingly, the <1.6cm region identified is considerably

narrower compared to the corresponding region discovered by

our group for DM, in which dose variability and underdosage

~3cm was predominant (19). The direct mechanisms to DM, LR,

and RF are not fully understood, but the idea of these being assigned

to different locations of importance is supported.

No dose-density interactions were found to provide predictive

ability for RF. In other work, reduced risk of RF has been linked to

higher incidental dose to the ipsilateral hilum, which suggests RF

may be a result of microscopic disease presence at the site of failure

or undiagnosed nodal metastases (15). This finding could not be

confirmed in this work as the radial approach removes information

of proximity to specific anatomy. However, regions were identified
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prior to post-processing, so sensitivity testing is required to ensure

we are not removing insightful information in this process. As the

work of Salguero et al. reports only on local-regional failure it is

impossible to determine whether it is the RF or LR that dominate

their result or whether it is a combination thereof (14). The results

of our study suggest considering LR and RF independently. To

better understand RF, anatomical information could be included by

combining density interactions with a voxel-based dose analysis

(30), but this was beyond the scope of this work.

It is promising that the results of our study generalize to an

external validation cohort despite differences in CT acquisition

parameters. We did not apply any correction for scanner

differences, since inter-scanner variability is typically small

compared to inter-patient variability for density metrics

(otherwise known as first-order radiomic features) (31).

Differences between cohorts may require controlling for more

complex texture features, such as, the Grey Level Run Length

Matrix features. In this study, the focus on density features was

motivated by interpretability and preliminary radiomic analysis that

shown relation between 90th percentile density and metastasis

prediction (24). In addition to other radiomic features, different

imaging modalities could be considered to improve prediction of

recurrence, e.g. 18-FDG PET (32). Imaging that tracks changes

during treatment (e.g., cone-beam CT) could also be utilized to

consider tumor reduction (33), and the location of the surrounding

microscopic disease (34).
A

B

FIGURE 3

Contrast plot displaying the log(hazard ratio) versus 90th percentile peritumour density at different values of dose SD (standard deviation). Significant association
between density and dose is only detected at high dose variability. In this case, higher peritumour density is associated with increased risk. (A) Shows the results
in the training data, and (B) shows the validation results.
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A limitation of the methodology presented in this work is the

potential risk of spurious correlations between density at the border

of an automatically generated GTV and the spatially offset dose

annuli. In particular, density at the peritumor border is closely

linked to the ability to accurately define the GTV. Higher peritumor

density could be representative of high density spiculations that
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may or may not be included in the GTV or demonstrate an under-

sampled iGTV for tumors with large motion amplitude (35, 36).

Such contour variation could link to under-treatment of the GTV as

opposed to microscopic disease. In addition, an organ-at-risk

abutting the GTV could be associated with an increase in

peritumor density. Although care was taken to visually check all
A

B

FIGURE 4

Example stratification of LR based on the median peritumour density for the lowest and highest third of dose SD (discarding uninformative middle
values). For low dose SD (assumed adequate MDE coverage), peritumour density no longer stratifies patients for LR – suggesting that peritumour
density is a potential predictor for MDE. (A) Shows the survival plots on the training data, and (B) shows the validation data.
TABLE 4 The hazard ratios (HR) and p-values for the final models built in the training and validation data for predicting LR.

Training Validation

HR P-value HR P-value

ln(Tumour volume) 4.29 0.008 0.53 0.095

Tumour motion [cm] 1.68 0.334 1.22 0.784

Tumour location (lower lobe reference) 10.3 0.047 0.52 0.454

Age [years] 1.01 0.885 0.97 0.552

Sex (female reference) 1.4 0.619 8.36 0.059

90th percentile density -0.1 to 0.3cm from GTV [unit: 100HU] 0.02 0.013 0.27 0.057

Dose variability 0.5 to 1.6cm from GTV [Gy] 2.90 0.02 1.20 0.184

90th percentile density * Dose variability [100HU * Gy] 1.64 0.009 1.29 0.035
fron
The bold values are those that are significant predictors in the model (p<0.05).
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contours this cannot be fully excluded as a potential confounding

factor. The influence of these factors on the association between

high peritumor density and LR could be further studied by

exploring the impact of contour variation on LR (37). Further,

adopting a physics-approach of annuli at set distances regardless of

surrounding anatomy means the dose annuli assessed in this study

are not restricted to specific anatomical locations. The annuli can,

therefore, include regions for some patients where microscopic

disease is unlikely to be a biologically plausible route to LR (i.e.,

chest-wall) (14). To investigate the sensitivity of the method, a

further improvement could include using dose information

sampled from the lungs only (similar to density biomarkers), but

one would have to be cautious as this could also lead to bias due to

loss of different amounts of data when performing lung cropping

for peripheral tumors or those close to surrounding organs. The

radial data-mining technique demonstrated may provide

information on routes to LR, but it would be important to assess

histological characteristics of the tumor when making biological

conclusions. This was limited by access to such information in

routine practice.

There was also limited access to information on baseline

pathologies that are common in lung cancer patients (e.g.,

chronic obstructive pulmonary disease (COPD) and emphysema)

that have CT density presentations (e.g., fibrosis and bullae) that

could make SABR planning more difficult. Such pathologies could

influence the dose-density analysis, so care was taken to review

images, dose, and density curves to detect possible outliers. In future

study, this information such be incorporated in the analysis to

understand causal links behind the associations identified in this
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work. Another potential avenue of further investigation could

involve the underlying reason of the importance of dose alone

(13, 38), while in this study and others the dose and density

interaction is required to identify a similar association with

outcomes (14, 19). This may in part be due to cohort differences,

including tumor size or planning techniques combined with

typically small cohort sizes and low number of events all

contributing to limited power to determine true effects. Despite

the low event rates, we were able to both produce a predictive model

for LR with an optimism-adjusted performance of 0.82 in two

independent data sets. In particular, the two cohorts included

difference in demographics (i.e., performance status), tumor

volume, and tumor location, which is representative of the

challenges faced using real-world data as opposed to carefully

selected patients enrolled on a clinical trial. Despite these

challenges, we identified significant support towards the

peritumor density as a predictive image biomarker, and increased

dose variability up to 1.6cm for high-risk patients leads to worse

clinical outcomes. The larger SD in density outside of the GTV in

the validation cohort suggests that GTV delineations are tighter,

which is consistent with the higher observed LR rate.

Furthermore, the higher LR rate observed in the validation data

could also be explained by the lower overall dose (50Gy in 5

compared to 60Gy in 5). Here it is relevant to note that the

model of Jeong et al., available online at https://tcp4rt.info, which

predicts local failure rates quite close to those observed (39).

Namely: predicted failure rates: 6.3% (12Gy x 5), 13% (10Gy x 5);

observed rates: 6.7% (12Gy x 5), 16% (10Gy x 5). The Jeong fit to

early-stage lung cancer SBRT saturates at a failure rate of 5%, even
A

B

FIGURE 5

Correlations with standard deviation of the respiratory blurred dose extracted from the region identified and different dose metrics extracted from
the PTV on the planned dose distribution. (A) Reports correlations in the training data, and (B) reports correlations in the validation data.
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for very high biological effective dose. It seems reasonable to

hypothesize that the mechanism identified in this paper, namely,

underdosing of peripheral local disease, is partly responsible for

these commonly observed high-dose failures.

The interaction between peritumoral density and dose

variability to the identified region (0.5 – 1.6cm from GTV)

maintained significance in external validation despite differences

in planning approaches implemented at both institutions. The

difference in planning approaches was demonstrated by difference

in dosimetric correlations between the two cohorts. In training data,

a positive correlation was found between standard deviation of dose

to identified region, and mean PTV and mean GTV dose. This

correlation was weaker in the validation data. In future, it would be

worth comparing planning approaches to determine how to best

homogenize dose to the identified region.

The inclusion of interaction terms in analysis of real-world

data-sets has so far been under investigated. Whilst the current

gold-standard evidence for a predictive biomarker is a significant

‘interaction test’ in a randomized controlled trial (40), we have

demonstrated inclusion of dose-density interactions in retrospective

analyses could allow us to explore and hypothesize on the impact of

personalized radiotherapy using real-world data-sets. As

randomized controlled trials have long timescales and are limited

to specific populations, this complementary method is beneficial to

assess the impact of smaller changes to clinical practice in a real-

world cohort (41). The discovery and validation of a significant

interaction suggests that patients could potentially be stratified

based on risk of local relapse pre-treatment which could lead to

changes in radiotherapy delivery (e.g., increased margins or dose

intensification) or selection for immunotherapy to improve

patient outcome.

5 Conclusion

In summary, we have applied a previously described data-mining

technique to predict LR and RF following lung SABR. High

peritumor density was found to interact with dose variability up to

1.6cm outside the GTV and they jointly predicted LR in two

independent data-sets from different institutions. No direct

association with clinical outcome was found in GTV and PTV dose

metrics, but correlations demonstrated that within PTV

heterogeneity may be chiefly responsible for this interaction.

Overall, external confirmation of the model supports the use of

density biomarkers to predict risk of microscopic disease extension,

and that adequate dose coverage outside the intended treatment

region of the tumor could reduce the risk of local failure. The

proposed density x dose biomarker could be investigated in the

future to personalize SABR dose distributions and possibly to reduce

the rate of residual failures observed even at high doses.
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