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poor outcome and maintains
tumor-promoting enhancer–
gene programs in basal-like
breast cancer
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Breast cancer biology varies markedly among patients. Basal-like breast cancer is

one of the most challenging subtypes to treat because it lacks effective therapeutic

targets. Despite numerous studies on potential targetablemolecules in this subtype,

few targets have shown promise. However, the present study revealed that FOXD1,

a transcription factor that functions in both normal development andmalignancy, is

associated with poor prognosis in basal-like breast cancer. We analyzed publicly

available RNA sequencing data and conducted FOXD1-knockdown experiments,

finding that FOXD1 maintains gene expression programs that contribute to tumor

progression. We first conducted survival analysis of patients grouped via a Gaussian

mixturemodel based on gene expression in basal-like tumors, finding that FOXD1 is

a prognostic factor specific to this subtype. Then, our RNA sequencing and

chromatin immunoprecipitation sequencing experiments using the basal-like

breast cancer cell lines BT549 and Hs578T with FOXD1 knockdown revealed that

FOXD1 regulates enhancer–gene programs related to tumor progression. These

findings suggest that FOXD1 plays an important role in basal-like breast cancer

progression and may represent a promising therapeutic target.

KEYWORDS
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Introduction

The biology of breast cancer, a leading cause of cancer-related death among women

worldwide, varies greatly among patients (1, 2), and studies on gene expression profiles

have revealed several intrinsic subtypes, e.g., luminal A, luminal B, HER2-enriched,

normal-like, and basal-like (3–6). The most aggressive subtype, basal-like breast cancer,

is characterized by a gene expression profile similar to that of basal or myoepithelial cells.

However, basal-like breast cancer tumors often lack established therapeutic targets, such as
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hormone receptors or HER2, making their treatment challenging

(7). Moreover, the heterogeneity of basal-like tumors makes

identifying optimized therapeutic targets difficult.

In the epigenetic landscape of cancer, the complex and dynamic

interplay between genetic and environmental factors has profound

implications on the initiation, progression, and metastasis of

malignant neoplasms (8). The aberrant regulation of cis-regulatory

elements and transcription factors (TFs) is a key mechanism

underlying reprogramming of the gene regulatory circuit in cancer

and leads to the emergence of distinct phenotypic and functional

states (9). Enhancers, a class of noncoding cis-regulatory elements,

are characterized by specific histone modifications, such as

acetylation of histone H3 lysine 27 (H3K27ac), which confer a

permissive chromatin environment and promote the transcriptional

activity of target genes. The aberrant activation of TFs, particularly

those associated with oncogenic pathways, is one of the most

common mechanisms underlying enhancer reprogramming in

cancer (10). For example, in breast cancer, abnormal upregulation

of the luminal-lineage TF FOXA1 modifies genome-wide enhancer

activity and induces transcriptional reprogramming to establish an

endocrine-resistant state in metastatic tumors (11).

Previous studies have found that FOXD1, a member of the

forkhead TF family, plays a critical role in regulating various cellular

and molecular processes in both normal and malignant tissues (12–

16). The expression of FOXD1 is upregulated in primary breast

cancer and promotes tumor proliferation and chemoresistance in

the MDA-MB-231 (basal-like) and MCF7 (luminal) cell lines (17).

However, the specific effects of FOXD1 in basal-like tumors,

mechanisms underlying these effects, and association with

enhancer–gene regulation have not been elucidated.

In the present study, we conducted integrative analysis of publicly

available expression data and multiomics data from cell line

experiments to identify potential therapeutic targets for basal-like

breast cancer. We stratified patients with basal-like tumors in The

Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) data

using a Gaussian mixture model (GMM) according to the expression

level of each gene. We then performed survival analysis to identify

genes associated with poor prognosis in basal-like breast cancer, finding

that FOXD1 was associated with poor prognosis in basal-like breast

cancer but not in other subtypes. RNA sequencing (RNA-seq) and

H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq)

experiments in basal-like cell lines with FOXD1 knockdown revealed

that FOXD1 maintains distinct enhancer-gene programs associated

with tumor progression. Collectively, our findings suggest that FOXD1

plays a critical role in establishing an aggressive phenotype in a basal-

like breast cancer subset by maintaining tumor-promoting epigenetic

features and gene expression patterns.
Materials and methods

Quantification of FOXD1 expression in
breast cancer cell lines

Breast cancer cell lines were either purchased from the Japanese

Collection of Research Bioresources (JCRB) or American Type

Culture Collection (ATCC) or were kindly gifted by Drs. Hitoshi
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Zembutsu and Yoshio Miki. The cells were maintained in

accordance with the manufacturer’s instructions, and details were

provided in Supplementary Table 1. Total RNA was extracted from

the cells using QIAGEN RNeasy Plus Mini Kit (QIAGEN).

Subsequently, cDNA was synthesized from 500 ng of total RNA

using PrimeScript RT Master Mix Perfect Realtime (TaKaRa) and

then diluted to 200 µL. Reverse transcription real-time polymerase

chain reaction (RT–qPCR) was performed using 2 µL of cDNA per

reaction with PowerUp™ SYBR™ Green Master Mix

(ThermoFisher) via 7500 Fast Real-Time PCR System (Applied

Biosystems). The relative expression levels of FOXD1 were

determined using the delta-delta Ct method, with normal human

breast tissue RNA (BioChain) as a reference, and the endogenous

housekeeping gene ACTB serving as an internal control. The

p r im e r s u s e d i n t h i s s t u d y i n c l u d e d FOXD1 - F

(GGACTCTGCACCAAGGGA) , FOXD1-R(AAACACC

GAACCACCAAGAC) , ACTB -F (GCCAACCGCGAG

AAGATGA), and ACTB-R(AGCACAGCCTGGATAGCAAC).
Small interfering RNA transfection

BT549 and Hs578T cells were seeded onto 6-well plates at a

density of 1.6 × 105 cells per well and cultured for 24 h. Cells were

transfected with FOXD1 small interfering RNA (siRNA) (Ambion,

s5229 or s5230) and negative siRNA control (Ambion, Negative

Control siRNA) at a final concentration of 16 nM using

Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) and

Opti-MEM Reduced Serum Medium (Gibco) following the

manufacturer’s instructions. Cells were subjected to RNA-seq and

ChIP-seq 48 h after transfection. Knockdown efficiency was

confirmed by quantifying FOXD1 mRNA as described above.
RNA-seq

Total RNA was extracted from BT549 and Hs578T cells that

had been treated with siRNA for 48 h, using the method described

previously. RNA-seq libraries were prepared with 10 ng of total

RNA, as a technical duplicate, using a SMARTer Stranded Total

RNA-Seq Kit v2-Pico Input Mammalian (Takara) following the

manufacturer’s instructions. The resulting gene expression libraries

were sequenced via an Illumina NextSeq 550 platform with paired-

end reads (read1, 75 bp; index1 8 bp; read2, 75 bp).
ChIP-seq

BT549 and Hs578T cells treated with siRNA for 48 h were

subjected to ChIP-seq. ChIP-seq was performed as described in our

previous report with slight modifications (18). Briefly,

approximately 3 × 105 cells were fixed with 0.5% formaldehyde

for 10 min at room temperature, quenched with 1.25 M glycine,

washed, and lysed. The chromatin was sheared using an S220

Focused-ultrasonicator (Covaris). The complex of anti-H3K27ac

antibody (Cell Signaling Technology, 8173S) and protein G

Dynabeads (Invitrogen) was mixed with sheared chromatin. After

overnight incubation, the complex was washed and incubated at 65°
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C for 4 h for reverse cross-linking. The released DNA was purified

using AMPure XP (Beckman). ChIP-seq libraries were prepared as

a technical duplicate using ThruPLEX DNA-seq Kit (Takara) and

were sequenced via Illumina NextSeq.
Cell growth assay

BT549 and Hs578T cells were seeded onto 96-well plates at a

density of 3 × 103 cells per well. After 24 h, siRNA was transfected

into the cells using the same method and concentration as described

previously. After 5 h, RealTime-Glo™ MT Cell Viability Assay

(Promega) reagent was added to the cells, and luminescence was

quantified at 48 h using ARVO2 (PerkinElmer).
The cancer genome atlas breast invasive
carcinoma data analysis

We downloaded TCGA-BRCA RNA-seq data as a

SummarizedExperiment object via the R package TCGAbiolinks

(19) using “GDCquery(project = “TCGA-BRCA,” data.category =

“Transcriptome Profiling,” data.type = “Gene Expression

Quant ifica t ion ,” workflow. type = “STAR–Counts” ) ,”

“GDCdownload(),” and “GDCprepare().” GMM clustering was

performed using the “Mclust()” function in the mclust package

with the option modelNames = “V.” For survival analysis, we used

the “survfit()” function of the survival package and “ggsurvplot()”

function of the survminer package.
RNA-seq analysis

To generate an expression count matrix, row reads were

trimmed to remove adaptor sequences using Skewer (v0.2.2) and

mapped to the hg38 genome using STAR (v.2.7.8a). The mapped

reads were then counted using featureCounts (v.2.0.10). To quantify

differential gene expression, we utilized edgeR’s glmQLFTest

(v3.32.1). We used control and intervention experiments as input

groups with a simple design using a 0 intercept ‘~0 + Group.’ First,

we normalized the library sizes by calculating scaling factors using

‘calcNormFactors(y, method = TMM).’ We next estimated

dispersions via ‘estimateDisp(y, design = design, robust = TRUE)’

and fitted the generalized linear model using ‘glmQLFit(y, design =

design).’ Finally, we determined log2 fold changes and

false discovery rates (FDRs) using glmQLFTest. Genes with an

FDR of <0.01 and log2FC of >1 (upregulated) or <−1

(downregulated) were considered differentially expressed genes.

Gene Ontology enrichment analysis was performed via

Enrichr (20).
ChIP-seq analysis

The sequenced reads were mapped to the hg38 genome using

bowtie2 (v.2.4.2). Multi-mapped reads and PCR duplicates were
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removed using Picard (v.2.25.3). Overlapping reads according to the

ENCODE blacklist were filtered out using bedtools (2.30.0).

MACS2 (v.2.2.7.1) was used for calling peaks with the “–keep-

dup auto -q 0.1” parameter. After calling peaks, the peak summits

were extended by 250 bp on both sides to a final width of 501 bp.

Then, the regions of ENCODE hg38 blacklist were filtered out.

Overlapping peaks within a single sample were removed using an

iterative removal procedure that preserved the most significant

peaks based on MACS2 ‘score’ values, thus identifying “a sample

peak set.” The “score per million” was calculated by dividing

individual peak score by the sum of all peak scores in each

sample divided by 1 million. This iterative removal procedure was

repeated across sample peak sets based on the score per million. The

reproducible peak set was identified by selecting peaks with a score

per million of ≥5 and overlaps between at least two samples; in

addition, the peaks on chromosome Y were removed. Finally, we

generated a reproducible high-quality set of 501 bp fixed-width

peaks. To obtain the number of fragments in each peak, bam files

were read as Genomic Ranges object via R using Rsamtool’s

“scambam().” Each fragment per peak was estimated using

“countOverlaps().” The counts matrix was normalized using

edgeR’s “cpm(log = TRUE, prior.count = 1).” The motif

enrichment score was calculated using ChromVAR (21) as

follows: (i) adding GC bias information using “addGCBias(),” (ii)

identifying elements with motifs via “matchMotifs()” using the

motif annotation of the R package chromVARmotif ’s

“homer_pwms,” (i i i ) obtaining background peaks via

“getBackgroundPeaks(),”and (iv) calculating motif deviations

using “computeDeviations().” The Z-scores of motif deviations

(i.e., Motif scores) were used for analysis. To perform differential

peak analysis, we used edgeR as previously described for RNA-seq

analysis. Peaks with an FDR of <0.1 and log2FC of >0 (upregulated)

or <0 (downregulated) were determined as differential peaks. To

annotate peaks and determine peak–gene association, Genomic

Regions Enrichment of Annotations Tool (GREAT) was used

with default settings.
Results

GMM based approach reveals genes
associated with overall survival in
basal-like breast cancer

RNA-seq data from 193 basal-like tumors in the TCGA-BRCA

dataset were analyzed to identify prognosis-associated genes in

basal-like breast cancer. Genes were screened using three steps:

(1) filtering genes with low average expression and variance of

expression, (2) classifying tumors based on the expression level of

each gene using the GMM, and (3) comparing the survival rates

between different GMM classifications via Kaplan–Meier

analysis (Figure 1A).

Of 60,660 genes, 5,755 genes had both an average expression

and variance of expression of ≥0.5 across basal-like tumors

(Figure 1B). Using GMM classification, we stratified the patients

into one group (not stratified) for 3,008 genes, two groups for 1,584
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genes, three groups for 756 genes, four groups for 311 genes, five

groups for 85 genes, and six groups for 11 genes (Figure 1C). For

2,394 genes with ≥2 GMM groups that contained at least 10 patients

per group, we conducted survival analysis, identifying 43 genes for

which expression groups were associated with overall survival (log-

rank P-value <0.01; Figure 1D and Supplementary Table 2). For

example, YTHDF3-AS1 and KCNK6 were the top significant genes

associated with poor prognosis. According to their expression

levels, the patients were stratified into two groups, i.e., the low

and high expression groups (Figure 1E), of which the high

expression group exhibited shorter overall survival (Figure 1F).

Although YTHDF3-AS1 has not been well-characterized, its

antisense gene, YTHDF3, is involved in the progression and

metastasis of triple-negative tumors (22). KCNK6 is as an

overexpressed gene that promotes breast cancer cell proliferation,
Frontiers in Oncology 04
invasion, and migration (23). Overall, these results indicate that the

GMM-based approach is useful for identifying genes associated

with patient outcomes.
FOXD1 expression is associated with poor
outcome in basal-like breast cancer but
not in other subtypes

Of the 43 prognosis-related genes identified, we focused on

FOXD1, a TF involved in breast cancer proliferation and drug

resistance. According to FOXD1 expression levels, the GMM

classified patients into four groups (Figure 2A), of which the

groups with higher FOXD1 expression levels (groups 3 and 4)

exhibited poorer outcomes (Figure 2B). According to GMM
B C

D E

F

A

FIGURE 1

Identifying genes associated with poor outcome in basal-like breast cancer using a Gaussian mixture model. (A) Flow chart of gene identification.
First, genes with low mean expression or low variance (both mean expression [log2(FPKM+1)] and variance of <0.5) across basal-like breast cancer
samples were filtered out, leaving 5755 genes. Using GMM classification, 2747 genes that divided the patients into ≥2 expression groups were
selected. Thus, based on gene expression, 2394 genes covering ≥2 GMM groups containing ≥10 patients were selected. Finally, 43 were identified as
the genes whose expression level were associated with poor prognosis (Kaplan–Meier analysis; log-rank P-value of <0.01). (B) Scatter plot showing
mean expression level and variance of expression of each gene. Each dot represents a gene. Red box represents the selected genes (N = 5755,
average expression ≥ 0.5; variance ≥ 0.5). (C) Pie chart showing the distribution of the number of GMM groups. Overall, 2747 genes were selected
covering ≥2 expression level-based GMM groups. (D) Dot plot showing log-rank test P-values of each filtered gene (2,394 genes) calculated via
Kaplan–Meier analysis between GMM clusters. Red line represents filtering criteria (P < 0.01), and 43 genes were finally selected as the prognostic
factors in basal-like breast cancer. (E) Ridge plots representing the distribution of YTHDF3-AS1 and KCNK6 expression in GMM groups. (F) Kaplan–
Meier plots of patient groups stratified by the GMM for YTHDF3-AS1 and KCNK6 expression. P-values were calculated using log-rank test.
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classification by FOXD1 expression and survival analysis in the

other subtypes, there was no significant difference across the GMM

classification for luminal A, luminal B, Her2-enriched, and normal-

like tumors (Supplementary Figure 1). These results suggest that

elevated FOXD1 expression is associated with poor outcome

specifically in basal-like breast cancer.
FOXD1 regulates distinct gene expression
in basal-like breast cancer cell lines

To confirm our findings, we examined FOXD1 expression levels

in a panel of breast cancer cell lines, including three luminal lines

(MCF7, T47D, and YMB1), four HER2-amplified lines (BT474,

SKBR3, MDA-MB-361, and MDA-MB-453), and six basal lines

(BT549, Hs578T, MDA-MB-231, BT20, HCC1954, and HCT1937).

We found that FOXD1 expression levels were low in all luminal

lines, with high expression levels observed only in one HER2-

amplified line (MDA-MB-361) and two basal cell lines (BT549 and

HS578T) (Figure 3A). These results were consistent with the

heterogeneity of FOXD1 expression found among basal-like

tumors in our analysis of TCGA-BRCA data (Figure 2A).

To investigate the impact of FOXD1 on gene expression, we

conducted FOXD1-knockdown (FOXD1-KD) experiments using

siRNA in BT549 and Hs578T cells, followed by RNA-seq analysis.

First, we validated the effectiveness of two different siRNAs against

FOXD1 (siFOXD1#1 and siFOXD1 #2) (Figure 3B). Subsequently,

we performed RNA-seq analysis and identified 56 genes in BT549

cells and 142 genes in Hs578T cells that were commonly

downregulated by FOXD1-KD using two siRNAs (Figures 3C–E

and Supplementary Table 3). We performed gene annotation

analysis using The Molecular Signature Database Hallmark gene

set and found that the genes downregulated by FOXD1-KD in
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BT549 cells were associated with myogenesis, and those in Hs578T

cells were associated with the G2–M checkpoint (Figures 3F, G),

suggesting that FOXD1 has a different effect on the gene expression

program of each cell line. Interestingly, cell proliferation assays

following FOXD1-KD did not indicate significant inhibition of cell

growth in either cell line (Supplementary Figure 2). This suggests

that although FOXD1 plays a role in tumor progression and shorter

prognosis, it may not be involved in cell cycle regulation.
FOXD1 regulates enhancer–gene
programs potentially associated
with tumor progression

Enhancers play a critical role in maintaining gene expression

programs in various tumors. To examine the impact of FOXD1 on

enhancer activity, we conducted FOXD1-KD in BT549 and Hs578T

cells, followed by H3K27ac ChIP-seq assays. Our analysis

identified 25,669 and 53,794 consensus peaks in BT549 and

Hs578T cells, respectively. Using principal component analysis,

we observed distinct patterns of enhancer activity in both cells

treated with control siRNA (siNC), siFOXD1#1, and siFOXD1#2

(Supplementary Figure 3).

To identify TFs that regulate FOXD1-associated enhancers, we

used ChromVAR to calculate TF motif scores and found that EBF1,

SNAI1, and SNAI2 were less enriched in both cell lines after

FOXD1-KD (Figure 4A and Supplementary Table 4). EBF1 is a

tumor-promoting TF in triple-negative breast cancer (24), whereas

SNAI1/2 are master regulatory TFs for organogenesis and wound

healing in normal tissue as well as for the epithelial–mesenchymal

transition (EMT) in cancer cells (25). Interestingly, enhancers

containing FOXD1 motifs themselves were not downregulated,

indicating an indirect effect of FOXD1 for maintaining enhancer
BA

FIGURE 2

FOXD1 is associated with poor prognosis specifically in basal-like breast cancer. (A) Ridge plots representing the distribution of FOXD1 expression for
GMM groups (group1, N=31; group2, N=33; group3, N=98; group4, N = 31). (B) Kaplan–Meier plot of FOXD1 expression-based GMM groups
stratified by GMM for FOXD1 expression. P-values were calculated using log-rank test.
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activity. These results suggest that FOXD1 is involved in

maintaining the activity of the enhancers targeted by tumor-

promoting TFs.

Next, we performed differential analysis of the control and

FOXD1-KD groups, where siFOXD1#1 and siFOXD1#2 identified

1,913 and 485 downregulated peaks in BT549 cells (Figure 4B and

Supplementary Figure 4A) and 5,408 and 1,133 downregulated

peaks in Hs578T cells, respectively (Figure 4C and Supplementary

Figure 4B). GREAT Gene Ontology analysis revealed that these

regions were associated with tumor microenvironment features

such as extracellular structure organization, hemopoiesis

regulation, and blood vessel morphogenesis (Figures 4D, E and

Supplementary Figures 4C, D). In BT549 cells, the downregulated

peaks were also associated with wound healing (Figure 1D), which
Frontiers in Oncology 06
was consistent with the lower SNAI1/2 motif enrichment in

FOXD1-KD (Figure 4A).

To identify enhancer–gene pairs that could be regulated by

FOXD1, we identified genes that were transcriptionally

downregulated and were associated with the downregulated peaks

in FOXD1-KD identified via GREAT analysis (Figure 4F). We

found that 14 and 82 enhancer–gene pairs were downregulated by

FOXD1-KD (at least one of the siRNAs) in BT549 or Hs578T cells,

respectively (Figures 4G, H; Supplementary Tables 5, 6).

Interestingly, we observed that these pairs were largely distinct

between the two cell lines (Figure 4I; Supplementary Tables 5 and

6), indicating that the function of FOXD1 depends on the context.

Both gene lists contained genes associated with tumor progression

and metastasis, such as CDK6, SNED1, and MTDH (26–28). Taken
B

C D

E F G

A

FIGURE 3

Gene expression changes induced by FOXD1-KD in basal-like breast cancer cell lines BT549 and Hs578T. (A) Bar chart showing FOXD1 expression
levels in breast cancer cell lines (three luminal, four HER2 amplification, six basal-like lines) and normal breast tissue examined via qPCR. Error bars
represent standard deviation. (B) Bar chart showing FOXD1 expression levels in BT549 and Hs578T cells transfected with control siRNA (siNC) or two
siRNA against FOXD1 (siFOXD1#1 and siFOXD1#2). Error bars represent standard deviation. (C) Volcano plot showing differential expression analysis
in BT549 cells between siNC and siFOXD1#1 (left) or siFOXD1#2 (right). Each dot represents a gene. The upregulated or downregulated genes are
indicated in red or blue, respectively. (D) Volcano plot showing differential expression analysis in Hs578T cells between siNC and siFOXD1#1 (left) or
siFOXD1#2 (right). Each dot represents a gene. The upregulated or downregulated genes are indicated in red or blue, respectively. (E) Venn diagram
showing overlaps between the genes downregulated by siFOXD1#1 and siFOXD1#2 in BT549 (up) or Hs578T (bottom) cells. (F, G) Bar chart showing
gene enrichment analysis (MSigDB Hallmark gene set) for the overlap of the downregulated genes by two siRNAs in BT549 (F) and Hs578T (G) cells.
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together, these findings suggest that FOXD1 modulates gene

expression programs involved in tumor progression.
Discussion

Forkhead box TFs are involved in various processes of cancer

progression such as metastasis, hormone regulation, therapeutic

resistance, and reprogramming metabolism (29). FOXA1 is a

central regulator of gene expression programs in ER+ breast

cancer (30), FOXC1 is associated with EMT and poor prognosis
Frontiers in Oncology 07
in basal-like breast cancer (31), and FOXO3 is often dysregulated

and plays both tumor-suppressive and oncogenic roles (32, 33).

FOXD1 plays a role in both normal development and cancer

progression. In normal development, FOXD1 controls kidney

morphogenesis (34, 35) and appropriate formation of the optic

chiasm (36). FOXD1 also contributes to the successful

reprogramming of cells during the establishment of induced

pluripotent stem cells (37). Moreover, it has been suggested that

FOXD1 plays critical roles in cell proliferation, invasion, metastasis,

and poor prognosis in various cancer types. In glioma, FOXD1 has

been found to activate signaling pathways that contribute to the
B C

D

E

F

G
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I

A

FIGURE 4

Changes in enhancer activity induced by FOXD1-KD and enhancer–gene pairs maintained by FOXD1. (A) Scatter plot of DChromVAR motif scores
(siNC − siFOXD1) calculated using H3K27ac ChIP-seq data. A high DChromVAR score indicates reduced motif enrichment in H3K27ac peaks by
FOXD1-KD. Each dot represents a CISBP motif. The top 30 enriched motifs in each cell line are indicated in orange (BT549), purple (Hs578T), or red
(both). (B) Volcano plot showing differential peak analysis in BT549 cells between siNC and siFOXD1#1. Each dot represents a peak. Upregulated or
downregulated peaks are indicated in red or blue, respectively. (C) Volcano plot showing differential peak analysis in Hs578T cells between siNC and
siFOXD1#1. Each dot represents a peak. Upregulated or downregulated peaks are indicated in red or blue, respectively. (D) Bar plot showing the
GREAT GO Biological Process for H3K27ac peaks downregulated by siFOXD1#1 in BT549 cells. (E) Bar plot showing the GREAT GO Biological
Process for H3K27ac peaks downregulated by siFOXD1#1 in Hs578T cells. (F) Schema representing the identification for downregulated peak–gene
associations via FOXD1-KD. (G) Venn diagram showing overlaps between the genes downregulated by FOXD1-KD and the genes associated with the
downregulated H3K27ac peaks by siFOXD1#1 and siFOXD1#2 in BT549 cells. (H) Venn diagram showing overlaps between the genes downregulated
by FOXD1-KD and the genes associated with the downregulated H3K27ac peaks by siFOXD1#1 and siFOXD1#2 in Hs578T cells. (I) List of enhancer–
gene pairs. For Hs578T cells, only overlapping genes are included (other pairs are shown in Supplementary Table 6).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1156111
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kumegawa et al. 10.3389/fonc.2023.1156111
tumorigenicity of mesenchymal glioma stem cells by activating

ALDH1A3 transcription (38). A recent report also suggested that

FOXD1 enhances GLUT1 expression, leading to cell proliferation,

invasion, and metastasis by modulating aerobic glycolysis in

pancreatic cancer (15). Similarly, FOXD1 regulates histone

modification to promote tumor growth in clear cell renal cell

carcinoma (16). These results suggest that FOXD1 is involved in

tumor progression and is a promising target for multiple

cancer types.

In this study, we analyzed publicly available expression data

from clinical specimens, finding that elevated expression of FOXD1

is associated with poor outcomes in basal-like breast cancer but not

in other subtypes. Therefore, FOXD1 may be a lineage-specific

tumor-promoting TF in basal-like breast cancer. We also analyzed

gene expression and enhancer profiles in the BT549 and Hs578T

cell lines, finding that some enhancer-genes were regulated by

FOXD1. The binding motifs of EMT-associated TFs SNAI1/2

were enriched in the potential enhancers regulated by FOXD1,

suggesting that FOXD1 can modulate the enhancer activity

regulating dedifferentiation. These enhancer–gene pairs included

CDK6, [a key regulator of cell cycle and other tumor-promoting

programs (26)], SNED1 [a metastasis-promoting gene associated

with poor prognosis of triple-negative breast cancer (27)], and

MTDH [a gene involved in breast cancer initiation, metastasis,

and drug resistance (28)]. These findings are consistent with those

of previous reports regarding FOXD1 function associated with

tumor progression and metastasis. Further, they highlight that

FOXD1 may be an oncogenic TF that activates tumor-promoting

gene expression programs by modulating enhancers. Although

FOXD1-KD downregulated cancer-associated enhancer–gene

pairs, we did not observe any effect on the proliferation of either

of the cell lines (Supplementary Figure 2). This result may seem

contradictory to the RNA-seq results in Hs578T cells, which

showed that FOXD1-KD downregulated the expression of cell

cycle-associated genes (Figure 3G). However, we also observed

that enhancers downregulated by FOXD1-KD were associated

with EMT-related TFs (Figure 4A), suggesting that FOXD1 is

more closely related to metastatic features than to cell proliferation.

The present study and other studies suggest that targeting

FOXD1 is an attractive therapeutic approach for basal-like breast

cancer. Accordingly, inhibiting FOXD1 could potentially reduce

breast cancer metastasis by inactivating the enhancers associated

with EMT. Furthermore, recent studies have shown that molecular

targeting therapies can increase the sensitivity of established

treatments, such as chemotherapy and radiotherapy, in various

types of cancer (39–41). One of the primary challenges in

developing FOXD1-targeting therapies is the lack of available

FOXD1 inhibitors. TFs are generally not considered druggable,

but recent progress in developing proteolysis-targeting chimera

(PROTAC) technology has made it possible to target certain TFs.

For example, a clinical trial for ARV-471, an estrogen receptor (ER)

degrader, demonstrated significant clinical efficacy in patients with

ER-positive breast cancer (42). This implicates that FOXD1 specific

inhibitors could be developed using PROTAC technology.

Therefore, further research is warranted to develop specific
Frontiers in Oncology 08
FOXD1 inhibitors and determine the precise role of FOXD1 in

cancer using breast cancer preclinical models.

This study has a limitation of using only cell line models for

investigating FOXD1 function. Although cell lines are useful tools for

cancer biology, they may exhibit distinct features compared with

primary tumors. To address this limitation, further research should

focus on manipulating patient-derived models, such as patient-derived

organoids and xenografts. Despite this limitation, our study is clinically

relevant because it reveals the correlation between poor prognosis and

FOXD1 expression levels inbasal-like primary tumorsand indicates that

FOXD1 maintains specific enhancer–gene programs associated with

tumor progression.

In summary, we used integrative analysis of TCGA-BRCA

RNA-seq data and cell line experiments to highlight the

intertumor heterogeneity of gene expression in basal-like tumors

and identify a gene set associated with poor prognosis in basal-like

breast cancer. FOXD1 knockdown experiments revealed that

FOXD1 maintains the regulation of enhancers associated with

tumor-promoting gene expression in basal-like cell lines. Based

on our findings, we postulate that FOXD1 is a critical TF that

influences the epigenetic machinery underlying tumor progression

and may be a potential therapeutic target.
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resistance interactions with BET bromodomain inhibitors in triple-negative breast
cancer. Mol Cell (2020) 78:1096–1113.e8. doi: 10.1016/j.molcel.2020.04.027
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