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Development of a machine
learning framework for radiation
biomarker discovery and
absorbed dose prediction

Björn Andersson1†, Britta Langen2*†, Peidi Liu1

and Marcela Dávila López1*

1Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,
2Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas (UT)
Southwestern Medical Center, Dallas, TX, United States
Background: Molecular radiation biomarkers are an emerging tool in radiation

research with applications for cancer radiotherapy, radiation risk assessment, and

even human space travel. However, biomarker screening in genome-wide

expression datasets using conventional tools is time-consuming and underlies

analyst (human) bias. Machine Learning (ML) methods can improve the sensitivity

and specificity of biomarker identification, increase analytical speed, and avoid

multicollinearity and human bias.

Aim: To develop a resource-efficient ML framework for radiation biomarker

discovery using gene expression data from irradiated normal tissues. Further, to

identify biomarker panels predicting radiation dose with tissue specificity.

Methods: A strategic search in the Gene Expression Omnibus database identified

a transcriptomic dataset (GSE44762) for normal tissues radiation responses

(murine kidney cortex and medulla) suited for biomarker discovery using an ML

approach. The dataset was pre-processed in R and separated into train and test

data subsets. High computational cost of Genetic Algorithm/k-Nearest Neighbor

(GA/KNN) mandated optimization and 13 ML models were tested using the caret

package in R. Biomarker performance was evaluated and visualized via Principal

Component Analysis (PCA) and dose regression. The novelty of ML-identified

biomarker panels was evaluated by literature search.

Results: Caret-based feature selection and ML methods vastly improved

processing time over the GA approach. The KNN method yielded overall best

performance values on train and test data and was implemented into the

framework. The top-ranking genes were Cdkn1a, Gria3, Mdm2 and Plk2 in

cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 in medulla. These

candidates successfully categorized dose groups and tissues in PCA.

Regression analysis showed that correlation between predicted and true dose

was high with R2 of 0.97 and 0.99 for cortex and medulla, respectively.

Conclusion: The caret framework is a powerful tool for radiation biomarker

discovery optimizing performance with resource-efficiency for broad

implementation in the field. The KNN-based approach identified Brf2, Ddit4l,
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andGria3mRNA as novel candidates that have been uncharacterized as radiation

biomarkers to date. The biomarker panel showed good performance in dose and

tissue separation and dose regression. Further training with larger cohorts is

warranted to improve accuracy, especially for lower doses.
KEYWORDS

ionizing radiation, radionuclides, absorbed dose, biomarkers, transcriptomics, kNN (k
nearest neighbor), caret
Introduction

Ionizing radiation is an essential tool in the vast majority of

cancer treatments, either therapeutically, diagnostically or adjuvant.

Accurate knowledge of the relationship between a certain dose of

ionizing radiation and biological effect is paramount for successful

treatment planning and risk assessment. Radiation biomarkers are

an emerging tool that reflect dose-response or predict acute or long-

term outcomes after therapeutic, accidental, or occupational

exposures (1–4). While high-throughput techniques such as RNA

sequencing and mass spectrometry-based protein quantitation have

been increasingly used in the emerging discipline, biomarker

identification in large-scale gene expression data has been limited

by lack of analytical tools that adequately process the complexity of

so-called omics data. Machine Learning (ML) approaches can

overcome this limitation and vastly improve the robustness and

throughput in biomarker screening. In particular, ML approaches

prioritizes predictive power of biomarker candidates (genes,

protein, transcripts, or probes etc.) over functional association or

differential expression (fold-change). Moreover, a bottom-up

approach can detect relevant gene regulation in multi-

dimensional space without being limited by pre-determined

canonical pathways or functional association for a given stressor.

In the field of radiation research, a bottom-up approach is

particularly advantageous since key phenomena of biological

radiation effects are still topics of academic discourse where the

field has struggled to find clear consensus. A prominent example are

dose thresholds, meaning for instance whether certain low dose

exposures can be considered inconsequential or safe, as discussed in

detail by (5–10). A bottom-up approach to genome-wide expression

data analysis can unravel the complexity of biological responses and

identify molecular markers based on statistical features alone

without the analysis being limited by, e.g., pre-supposed

(canonical) pathways, (manual) database curation for enrichment

analysis, or presumed radiation dose categories.

Currently, mostly conventional analytical approaches have been

used for radiation biomarker discovery building on differentially

expressed gene (DEG) profiles, which poses critical limitations on

throughput, sensitivity, and specificity (11). ML has emerged in

radiation oncology and medicals physics as a technology to

overcome these limitations, but its application to radiation
02
biomarker screening and basic radiation biology is underexplored

(12–19). Early implementation of ML approaches into radiation

biomarker discovery workflows can be of tremendous benefit to the

field: ML-based frameworks can vastly reduce the analytical time

burden for researchers, increase analytical certainty (accuracy)

through improved specificity and sensitivity, and help establish

consensus guidelines for sample and data acquisition, such as group

size, replicates, batch effects, etc.

To the best of our knowledge, this work is the first

implementation of ML approaches for radiation biomarker

discovery for normal tissue exposure. The aim was to develop a

resource-efficient ML framework for detection of high-sensitivity

and high-specificity biomarker candidates within genome-wide

expression (omics) datasets. We performed a strategic literature

search to identify a suitable radiobiology dataset and implemented

the Genetic Algorithm combined with the k-Nearest Neighbors

(GA/KNN) approach as proof-of-concept. For framework

optimization, we tested thirteen different ML methods using the

caret package in R to determine optimal performance on such

datasets and implement into the framework. The top-ranking

radiation biomarker candidates (mRNA probes) were also

evaluated in their radiobiological context by strategic

literature search.
Methods

Strategic literature searches

A literature search was performed using the National Library of

Medicine at https://www.ncbi.nlm.nih.gov/gds/ to identify suitable

gene expression datasets. Flow diagram showing the database

search and selection procedure (Figure 1).

The search string (“gene expression signature”[All Fields] OR

“gene expression”[All Fields] OR “gene expression changes”[All

Fields] OR “transcription”[All Fields] OR “biomarker”[All Fields])

AND (“radiation exposure”[All Fields] OR “ionizing radiation” [All

Fields] OR “radiotherapy”[All fields] OR “irradiation”[All fields])

AND (“microarray”[All Fields] OR “RNA-seq”[All Fields] OR

“sequencing”[All Fields]) AND (“Mus musculus”[Organism] OR

“Rattus norvegicus”[Organism] OR “Homo sapiens”[Organism])
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was used to identify relevant transcriptomic datasets from animal

and human cohorts exposed to any type and modality of ionizing

radiation and any tissue or cell type. The search was performed in

the repository Gene Expression Omnibus (GEO) at https://

www.ncbi.nlm.nih.gov/gds on January 26, 2023.

To evaluate the novelty of ML-based biomarkers candidates, the

database was searched at https://pubmed.ncbi.nlm.nih.gov/

(PubMed) with a broad and narrow search string. Search string 1

"(gene symbol) AND ((ionizing) OR (radiation)) AND

((biomarker) OR (absorbed dose) OR (dose) OR (dose

response))" was used to determine whether a gene was previously

proposed specifically for use in biodosimetry. Search string 2 "(Plk2)

AND ((ionizing) OR (radiation))" was used to determine whether a

gene had been previously associated with any form of radiation

research in the literature base. Both search strings were used on

January 26, 2023. In addition, the candidates were cross-referenced

with the radiation biomarker lists composed by Snyder & Morgan

(20) and Chaudhry (21) and conventional DEG analysis reported by

Schüler et al. (22).
Frontiers in Oncology 03
Data cohort

The transcriptomic microarray dataset GSE44762 was chosen as

a suitable dataset from the GEO series accession (GSE) database

search; the complete study design and results from conventional

(DEG) analysis were first described elsewhere (22). In brief, female

BALB/c nude mice (n = 3/group) were intravenously injected with

1.3, 3.6, 14, 45, and 140 MBq 177Lu-octreotate in physiological

saline, which resulted in absorbed dose to the kidneys (tissue of

interest) of 0.13, 0.34, 1.3, 4.3, and 13 Gy over 24 hours. The control

group received physiological saline only (i.e. 0 Gy). At 24 hours, the

animals were euthanized and the kidneys were excised and flash-

frozen in liquid nitrogen. Kidney cortex and kidney medulla tissues

were dissected in dry ice and mRNA was extracted, quality-assured,

and subjected to microarray analysis on MouseRef-8 Whole-

Genome Expression Beadchips (Illumina). Samples were analyzed

individually (non-pooled) and the total cohort consisted of 36

samples. Input variables for ML methods are Illumina probe

identifiers representing microarray probe sequences targeting
FIGURE 1

Schematic illustrating the database search to identify gene expression datasets for normal tissue radiation responses. Flowchart showing the
database search performed at the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) resource (https://www.
ncbi.nlm.nih.gov/geo/). The search was performed in March 2020 yielding 2895 transcriptional gene expression entries (mRNA, miRNA, lncRNA etc.)
that consisted to a large part of multiple entries. The remaining 1610 unique accessions were screened to identify normal tissue datasets from any
mammalian species subjected to any type of ionizing radiation (X-rays, alpha or beta particles, heavy ions, etc.), any source (external beams,
(partially) sealed radioactive sources, or injected radionuclides), and any form of exposure (external, internal, whole body or partial body irradiation,
etc.). Most of the accession numbers were unsuitable for normal tissue biomarker identification and excluded. The remaining accessions were
manually curated to delineate subsets of data with insufficient data quality such as low sample number, unspecified dosimetry, or time points. In
total, 108 suitable datasets for ML processing were identified.
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mRNA molecules (or fragments thereof) for detection and semi-

quantitative analysis.
Statistical analysis and machine
learning methods

All the analyses were performed using RStudio Server with R

version 4.0.2 (http://www.r-project.org) (23). For basic statistical

analysis, base R and tidyverse functions were used. For the machine

learning calculations, all models were trained and evaluated using

the caret (Classification and Regression Training) package version

6.0-86 (24).

The following ML methods were evaluated: C5.0 Decision Tree,

CART, Lasso/Elastic Net, KNN, GBM, Logistic Regression, Naive

Bayes, NNET, PLS, Penalized Discriminant Analysis, Random

Forest, SIMCA, and SVM. For Principle Component Analyses

(PCA), the data was scaled and centered; PCA was used to

identify potential confounders and/or deviating samples and

assess performance. To evaluate the dose response, cross validated

multi variable regression models were created after log-

transformation of the radiation biomarkers.
Data pre-processing

Prior to model creation, the data were inspected and pre-

processed for analysis. For data pre-processing the R-package

tidyverse was used in general. Rows with not significant detection

p-value, all NAs and zero variance predictors were removed.

Quantile normalization (R-package preprocess Core), scaling and

centering were performed on the variables. To remove redundant

and irrelevant features, as well as speed up the algorithm testing an

optimization, the most important genes were selected by first

running feature selection with the Recursive Feature Elimination

(RFE) rfe-function from the caret package. RFE makes it possible to

identify an ML model with less features but with similar model

performance. Feature selection was used to reduce dimensionality,

minimize noise and prevent collinearity. Recursive Feature

Elimination (RFE), was performed using the rfe-function from

the caret package, Cohen’s kappa was used for the selection of the

optimal subset based on size and performance with 10-fold cross-

validation, repeated 5 times using the random forest variable

importance selection. If two sets of features had similar kappa the

smaller one was selected.
Model testing and evaluation

To construct a model, the pre-processed data were split into a

train and a test set by randomly allocating 70% of cases to the

training data subset and 30% for the testing data subset. For proof-

of-concept, the Genetic Algorithm (GA) and k-Nearest Neighbor

(GA/KNN) approach was implemented as described elsewhere (18).

For optimization, all ML models listed above were tested and

evaluated using the caret package in R. To ensure stable and well
Frontiers in Oncology 04
performing models Repeated k-fold cross-validation (CV) was used

with k = 5 and 20 repeats. Due to imbalanced datasets, Cohen’s

kappa was selected as the main metric for evaluating the

performance of the classification models. Sensitivity and

specificity were considered by creating confusion matrixes

(package e1071) for both the train and test set and analyzed

based on the corresponding predictions and variable importance

(VIP) rankings were calculated on applicable models.
Statistical analysis and visualization

Univariate analysis revealed the statistical significance p < 0.05

of the top-ranking variables (transcripts). These were used as input

for the PCA plots as described elsewhere (18). Multivariable dose

regression was performed on both kidney cortex and medulla tissue

subsets, in similar manner as for classification above using log-

transformed radiation dose values. The caret rfe-function was used

for feature selection (10-fold cross-validation, repeated 5 times),

followed by using 10-fold cross-validated linear regression on the

train set and evaluated using the test set.
Biomarker candidate evaluation

Top-ranked ML-based biomarker candidates were used in PCA

to visualize classification performance by dose group and tissue.

The candidates were also used in dose regression to determine

performance of dose prediction with tissue-specificity. To evaluate

the novelty of ML-based biomarker candidates, strategic literature

searches were performed on all KNN-based candidates with

additional searches in biomarker panel reviews and previous DEG

analysis (20–22). A novelty score from 0 to 2 was applied with

regard to literature documentation: 0 for genes discussed as

biomarker candidates in vast literature; 1 for genes proposed

as candidates in some literature; 2 for genes not yet proposed as

candidates in literature.
Results

We performed a strategic literature search to frame the field of

omics-based radiation biomarker discover and to identify suitable

RNA-based expression datasets allowing for feature combination.

Around 1,600 unique transcriptional gene expression datasets with

mRNA, micro-RNA, long non-coding RNA, or total RNA have

been deposited at the Gene Expression Omnibus in conjunction

with the term ‘radiation’ (Figure 1). However, more than 1,300

entries did not use ionizing radiation and over 160 entries

comprised some form of inadequate normal tissue model such as

non-healthy patient-derived or stem-cell specific. After removing all

irrelevant GSE accessions and redundant super series, we obtained

104 suitable accessions that were manually curated to create data

subsets whenever multiple features were used in the same accession,

such as different radiation sources or exposure conditions, male or

female specimen or different age groups, or different tissues
frontiersin.org
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analyzed within the same cohort. Upon curation, around 199

subsets were composed for normal tissue ionizing radiation

biomarker screening. These subsets were further assessed for

quality and 91 subsets were excluded with insufficient

information, e.g., unspecified radiation type, age, or sex, or

sample number less than 3. Among the remaining 108 data

subsets, we chose GSE44762 from murine kidneys since it offered

two tissues (cortex and medulla) obtained from the same organ

and specimen.
ML approaches

After pre-processing of the data, 36 samples and 9783 variables

remained. (Please note the initial dataset contained 25,697 features

(genes) that were filtered for i) delete rows that have detection p-

value > 0.05 and ii) columns that have all NAs (also samples that

have only 0 as expression values). These were used as input with a

randomly assigned 0.7 train to 0.3 test ratio for the respective

models; for analysis between tissues we used one tissue as train and

one for test. The assignment of the data into train and test datasets

was stratified using the function create Data Partition from the R

package caret. The project workflow from phenotype file creation

over proof-of-concept to pipeline optimization and final

implementation is illustrated in Figure 2. GA/KNN as proof-of-

concept was first implemented following Li and co-authors (18) and

successfully identified 9 biomarker candidates (12 probes) for

kidney cortex and 3 candidates (3 probes) for kidney medulla

(Table 1). Among these candidates, only Per2 was previously
Frontiers in Oncology 05
identified by conventional DEG analysis as reported elsewhere

(22); rendering the vast majority of KNN-based biomarkers as

novel hits that were not identified by conventional DEG analysis.

Despite candidate performance, a key disadvantage of the

original Genetic Algorithm-based KNN implementation was its

high resource demand in terms of processor time. The GA/KNN

method is a C program language implementation and

computationally intensive, as it searches for many near-optimal

solutions (chromosomes) based on the nature of randomness. For

example, a typical run would take several weeks on a 16 GB RAM

Intel Xenon server even for a small number of samples. To resolve

this bottleneck and lower resource barriers for broad

implementation in the field, we optimized the ML pipeline and

tested several different ML models using the resource-friendly caret

package in R and compared their performance using a set of

parameters such as accuracy, kappa, sensitivity, specificity,

prediction values, and detection rate (Please see Table 2 for more

details and performance of all models). In contrast to GA/KNN, the

RFE/caret framework could be run in just a few seconds after the

RFE step. Thirteen models were built including the caret-based

KNN algorithm, i.e. C5.0 Decision Tree, Classification And

Regression Trees (CART), Lasso/Elastic Net, Gradient Boosting

Machine (GBM), Logistic Regression, Naive Bayes, Neural

Networks (NNET), Partial Least Squares (PLS), Penalized

Discriminant Analysis, Random Forest, Soft Independent

Modelling by Class Analogy (SIMCA), and Support Vector

Machine (SVM). The models were built with all the variables,

irrespective of their statistical significance. When analyzing the

variable importance of the two best performing models, the results
FIGURE 2

Flowchart of machine learning approaches and gene expression analysis. The Genetic Algorithm/k-Nearest Neighbors (GA/KNN) approach as
described elsewhere (18) was used to implement the proof-of-concept using the GSE44762 transcriptomic microarray dataset. The previous DEG
analysis is described elsewhere (22). To develop a framework and decrease resource demand, the caret package in R was used and thirteen ML
algorithms were performance-tested on training (0.7 ratio) and test (0.3 ratio) data subsets created from GSE44762, i.e. Logistic Regression, Genetic
Algorithm/k-Nearest Neighbors, Penalized Discriminant Analysis, Elastic Net, C5.0 Decision Tree, Soft Independent Modelling by Class Analogy,
Partial Least Squares, Naive Bayes, Random Forest, Neural Networks, Gradient Boosting Machine, Classification And Regression Trees (CART), and
Support Vector Machine. The KNN method outperformed all other ML methods and optimized the ML framework by drastically reducing
computational cost compared with original GA/KNN implementation and was integrated into the ML framework as illustrated.
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were generally similar to those of the univariate analysis (data not

shown). Optimal biomarker panel size was determined by

resampling performance over subset size. For dose prediction,

acceptable Root Mean Square Error (RMSE) values below 30.0

were achieved by panels between 3 and 25 variables. The lowest

RMSE was achieved by the 10-variable panel (23.83) closely

followed by the 5-variable panel (24.20) (Table 3). Similarly, for
Frontiers in Oncology 06
tissue prediction, RMSE was lowest for the 10-variable panel

(0.9733) followed by the 5-variable panel (0.9700) (Table 4).

A 5-variable panel was chosen as the optimal panel size since a

factor of 2 results in a large reduction of experimental cost for

validation or clinical implementation at comparable RMSE. (Please

note that biomarker implementation would employ probe-specific

(gene-specific) setups, not whole-genome transcriptional quantitation).
TABLE 1 Radiation biomarker candidates in murine kidneys identified via DEG analysis or GA/KNN approach.

Identified in Tissue Identified via

Gene Symbol Kidney Cortex Kidney Medulla Conventional DEG Analysis* GA/KNN Approach

Actb x x

Adipoq x x

Angptl4 x x x

BC052040 x ILMN_1227874

Car3 x x x

Ccng1 x ILMN_2500276

ILMN_2702233

Cdkn1a x x x

Cfd x x

Ckb x x

Cyp24a1 x x x

Cyp27a1 x x Cortex: ILMN_2620326, ILMN_2960108

Medulla: ILMN_2960114

Dbp x x x

Gdf15 x x x

Havcr1 x x x

Hes1 x ILMN_1247691

Hist1h4j x ILMN_1256989

Hmgcs2 x x x

Mup2 x x

Nfil3 x ILMN_2595732

Nupr1 x x

Per2 x x x Cortex: ILMN_298786, ILMN_2987862

Rbm4 x ILMN_2769133

Rtkn x ILMN_3143266

S100a6 x x

Slc12a6 x ILMN_2716511

Tef x x

Upk1b x x x Medulla: ILMN_2676052
List of genes identified in transcriptomic microarray data (GSE44762) frommurine kidney cortex and medulla tissues irradiated with 0.13–13 Gy absorbed dose from i.v. injected 177Lu-octreotate
over 24 hours including unirradiated controls.
DEG, differentially expressed gene(s); x, identified; void, not identified; ILMN, Illumina probe identifier.
*as previously reported in Schüler et al., 2014 (22); please note ILMN identifiers were not given in the publication.
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TABLE 2 Performance results of different machine learning algorithms.

d-
gy

Partial
Least

Squares
(PLS)

Naive
Bayes

Random
Forest

Neural
Networks
(NNET)

Gradient
Boosting
Machine
(GBM)

Classification and
Regression Trees

(CART)

Support
Vector
Machine
(SVM)

m_pls m_nb m_parRF m_nnet m_gbm m_rpart m_svm

0.87 0.87 0.80 0.78 0.78 0.75 0.79

0.54 0.48 0.00 0.40 0.40 0.20 0.00

0.70 0.70 N/A 0.59 0.59 0.49 N/A

0.53 0.42 0.00 0.62 0.62 0.36 0.00

0.97 0.99 1.00 0.82 0.82 0.86 1.00

0.86 0.98 N/A 0.53 0.53 0.40 N/A

0.89 0.87 0.80 0.89 0.89 0.84 0.79

0.86 0.98 N/A 0.53 0.53 0.40 N/A

0.53 0.42 0.00 0.62 0.62 0.36 0.00

0.11 0.09 0.00 0.13 0.13 0.08 0.00

0.75 0.71 0.50 0.72 0.72 0.61 0.50

0.86 0.86 0.86 0.81 0.81 0.81 0.81

0.35 0.35 0.35 0.00 0.00 0.24 0.00

0.25 0.25 0.25 0.00 0.00 0.25 0.00

1.00 1.00 1.00 1.00 1.00 0.94 1.00

m kidney cortex and medulla irradiated with 0.13 – 13 Gy absorbed dose from i.v. injected 177Lu-octreotate over 24 hours including

A
n
d
e
rsso

n
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
3
.115

6
0
0
9

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
7

Logistic
Regression

k-Nearest
Neighbors
(KNN)

Penalized Dis-
criminant Analy-

sis (PDA)

Lasso/
Elastic
Net

C5.0
Decision
Tree

Soft Independent Mo
elling by Class Analo

(SIMCA)

Measure m_glm m_kknn m_pda m_glmnet m_C5 m_CSimca

Train data

Accuracy 0.56 0.86 0.87 0.87 0.74 0.42

Kappa 0.11 0.47 0.54 0.53 0.24 0.10

F1 0.43 0.67 0.73 0.68 0.52 0.40

Sensitivity 0.62 0.43 0.56 0.49 0.42 0.85

Specificity 0.54 0.97 0.96 0.98 0.83 0.31

Pos_Pred_Value 0.27 0.85 0.82 0.90 0.42 0.28

Neg_Pred_Value 0.86 0.87 0.89 0.88 0.84 0.93

Precision 0.27 0.85 0.82 0.90 0.42 0.28

Recall 0.62 0.43 0.56 0.49 0.42 0.85

Detection_Rate 0.13 0.09 0.12 0.10 0.09 0.18

Balanced_Accuracy 0.58 0.70 0.76 0.73 0.63 0.58

Test data

Accuracy 0.48 0.86 0.81 0.86 0.67 0.52

Kappa -0.02 0.49 0.00 0.35 0.01 0.21

Sensitivity 0.50 0.50 0.00 0.25 0.25 1.00

Specificity 0.47 0.94 1.00 1.00 0.76 0.41

Thirteen different ML approaches were tested using train and test data subsets created from transcriptomic microarray (GSE44762) data fro
unirradiated controls.
N/A, not available.
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Model performance on the train and
test set

The built models were tested on a randomly allocated sub

datasets (0.7 train/0.3 test ratio). The data structure was partly

imbalanced, i.e. the proportion of radiated samples versus controls.

On the test set, most models achieved accuracy above 0.74, with

only Logistic Regression and SIMCA scoring low with 0.56 and

0.42, respectively (Table 2). The highest accuracy was seen in the

PDA, Elastic Net, PLS, and Naive Bayes (0.87 all), closely followed

by KNN (0.86). Upon evaluation with the train set, the best model

performance (no overfitting, stability) was achieved by KNN with

an accuracy of 0.86, a kappa of 0.49, a sensitivity of 0.50, and a

specificity of 0.94 using 5 predictors for dose and tissue

classification. The second-tier models, i.e. Elastic Net, PLS, Naive

Bayes, and Random Forest, all achieved the same accuracy with
Frontiers in Oncology 08
0.86, but a decidedly lower kappa and sensitivity values of 0.35 and

0.25, respectively. (Please refer to Table 2 for a comprehensive

overview of performance values for all models.) Accordingly, the

KNN model was integrated into the radiation biomarker

identification pipeline.
KNN-based biomarker performance
and evaluation

The top 5 ranking biomarker candidates for dose prediction in

kidney cortex and medulla with their relative importance levels

(scaled between 0 and 100) are shown in Table 5. Tissue-specific

biomarker candidates are given in Table 6. The identified top

ranking biomarkers for cortex were Cdkn1a (two probes), Gria3,

Mdm2 and Plk2. For medulla, Brf2, Ccng1, Cdkn1a, Ddit4l, and

Gria3 were top-ranking. Most of these genes were not identified in

previous DEG analysis from the same data or proposed in radiation

biomarker reviews. Among the seven identified genes

(corresponding to 9 microarray probes with 1 probe identified in

both tissues), Brf2, Ddit4l, and Gria3 had a novelty score of 2 with

no previous report in literature.

Overall, these biomarker candidates achieved accurate

categorization by dose and tissue as visualized by PCA analysis

(Figure 3). There was a slight overlap in cortex tissue in the low dose

range between 0.13 and 1.3 Gy, and in medulla tissue between 1.3

and 4.3 Gy. However, this overlap was resolved when cortex and

medulla samples were analyzed together achieving clear separation.

These candidates reproducibly differentiated the untreated (0 Gy)

samples from any irradiated sample across PC1 by a relatively large

distance. Similarly, the panel achieved clear tissue categorization

and separation across PC1 irrespective of dose. The panel was also

tested for dose prediction in each tissue via cross-validated

multivariable dose regression analysis (Figure 4). Correlation

between observed and predicted dose (injected activity) was high

for both cortex and medulla with an R2 of 0.97 and 0.99,

respectively. It should be noted, however, that the accuracy of

dose prediction warrants further improvement, since error

margins as observed for this data cohort are within the 1 Gy

range, i.e. considered highly relevant for a radiobiological context

(dose-response) and for biodosimetry (triage of unexposed vs. any

exposed). Taken together, the biomarker panel performed well in

feature categorization and dose prediction when tested in

regression analysis.
Discussion

ML includes a wide array of approaches and it is paramount to

test a range of different methods in the exploratory phase to

determine which one performs best on the data also considering

resource demand for broad implementation. In our setting, GA/

KKN performed well in terms of biomarker identification but

drastically underperformed in terms of resource-efficiency. To

avoid overfitting, feature selection and rigorous cross-validation

was performed. We also closely monitored the performance
TABLE 3 Resampling performance over subset size for recursive feature
selection for dose biomarkers.

Variables RMSE MAE RMSE SD MAE SD

1 32.65 28.83 30.36 27.05

2 30.80 26.50 27.75 24.00

3 27.41 23.64 25.15 20.73

4 24.84 21.59 22.96 19.49

5 24.20 20.83 22.74 19.34

10 23.83 20.67 19.39 16.99

15 25.47 21.92 18.72 15.81

20 27.29 24.31 19.38 17.09

25 27.81 24.76 20.14 17.49

9783 40.83 38.02 23.07 21.06
The accuracy of ML model performance in dependence of variable panel size is shown for
cortex. Results for medulla were similar (not shown). Variables refer to microarray probes.
MAE, Mean Absolute Error; RMSE, Root Mean Square Error; SD, standard deviation.
TABLE 4 Resampling performance over subset size for recursive feature
selection for tissue biomarkers.

Variables Accuracy Kappa Accuracy SD Kappa SD

1 0.9033 0.800 0.19660 0.4041

2 0.9333 0.868 0.16836 0.3347

3 0.9600 0.920 0.13702 0.2740

4 0.9700 0.940 0.11995 0.2399

5 0.9700 0.940 0.11995 0.2399

10 0.9733 0.940 0.10838 0.2399

15 0.9633 0.920 0.12729 0.2740

20 0.9633 0.920 0.12729 0.2740

25 0.9633 0.920 0.12729 0.2740
The accuracy of ML model performance in dependence of variable panel size is shown.
Variables refer to microarray probes.
Kappa, Cohen’s kappa; SD, standard deviation.
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measure sensitivity, specificity and kappa at each step. For possible

feature clinical use model parsimony and simplicity was prioritized,

wherefore feature selection was applied since the models showed

similar performance after RFE was applied. In our study all models
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were built on the same uniformly preprocessed. Different models

may perform better with different preprocessing methods, that is,

model specific data preparation may lead to improved individual

model performance.
TABLE 5 Top-ranking biomarker candidates identified through the ML framework.

Previously Reported in

Gene
Symbol ILMN ID Prediction

Rank
(Importance

Level)

Conventional
DEG Analysis*

Radiation
Biomarker
Reviews§

No. of Refer-
ences from

Gene-Specific
Literature
Searches

(String 1; String
2)

Main Biolo-
gical Function

Novelty
Score†

Brf2 ILMN_1258583
Dose
Medulla

5 (0.0) No No 1; 2
Transcriptional
initiation

2

Ccng1 ILMN_2702233
Dose
Medulla

4 (13.6) No Yes 19; 33
Cell cycle
regulation

0

Cdkn1a ILMN_2634083 Dose Cortex 2 (91.3) Yes Yes 426; 1,151
Cell cycle
regulation

0

Dose
Medulla

5 (100)

ILMN_2846775 Dose Cortex 1 (0.0)

Ddit4l ILMN_2695819
Dose
Medulla

2 (44.8) No No 0; 2
Stress response
(pro-apoptotic)

2

Gria3 ILMN_2638066 Dose Cortex 3 (19.2) No No 0; 1
Neurotransmission
(glutamate
receptor)

2

ILMN_2638066
Dose
Medulla

3 (19.4)

Mdm2 ILMN_1250774 Dose Cortex 4 (5.2) No Yes 212; 926
Negative regulator
of p53 (oncogene)

0

Plk2 ILMN_1260448 Dose Cortex 1 (100) No No 6; 10
Cell division
(serine/threonine-
protein kinase)

1

fro
List of biomarker candidates (microarray probes) identified in the datasets (GSE44762) from murine kidney cortex and medulla irradiated with 0.13 – 13 Gy absorbed dose from i.v. injected
177Lu-octreotate over 24 hours including unirradiated controls. To determine the novelty of KNN-based biomarker candidates, the gene symbols were searched within previous conventional
DEG analysis, within literature reviews on radiation biomarker candidates, and additional gene-specific literature searches in context with radiation and biodosimetry to determine whether the
genes have been proposed for biodosimetry in previous work.
Relative importance levels scaled between 0 and 100.
No., number; ILMN, Illumina probe identifier; IR, ionizing radiation.
*As reported in Schüler et al., 2014 (22).
§ As reported in Snyder & Morgan (2004) (20), and Chaudhry (2008) (21).
†Novelty score: 0, reported as IR biomarker candidate in vast literature; 1, proposed as IR biomarker candidate in some literature; 2, not yet proposed as IR biomarker candidate in the literature.
TABLE 6 Top-ranking biomarker candidates for tissue-specificity identified through the ML framework.

Gene Symbol ILMN ID Prediction Rank Main Biological Function

Atp2a3 ILMN_2900462 Tissue 5

Itgav ILMN_1238119 Tissue 2

Napsa ILMN_2657867 Tissue 3

Pla1a ILMN_2722024 Tissue 1

ILMN_2974343 Tissue 4
List of biomarker candidates (microarray probes) identified in the datasets (GSE44762) to predict tissue type. The dataset comprised murine kidney cortex and medulla irradiated with 0.13 – 13
Gy absorbed dose from i.v. injected 177Lu-octreotate over 24 hours including unirradiated controls.
ILMN, Illumina probe identifier.
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The ML pipeline included training and testing stages that can be

adapted to different features (experimental parameters) based on

the given study design. While these steps can be processed

automatically, data input still requires a manual step of

phenotype file preparation from GSE (or similar) files. Since

processor time was vastly reduced in the caret-based KNN

approach, the algorithm can be easily trained for a new feature,

e.g. radiation type or biological sex, or previously trained iterations

can be readily tested on comparable datasets with the same features.

Our work further demonstrated the use of molecular biomarkers

for dose prediction in normal tissues after radiation exposure. The

identified candidate genes had highest sensitivity and specificity for the

investigated irradiation setting, i.e. radiation exposure ranging from

lower doses (0.13 and 0.34 Gy) over moderate doses (1.3, 4.3) to higher

dose (13 Gy) protracted over 24 hours. Almost half of the genes in the

dose biomarker panel are novel candidates with no previous radiation

association in the literature. Brf2 (b-related factor 2) is the 50 kDa

subunit of the RNA Polymerase III Transcription Initiation Factor and

its regulation may represent the overall transcriptional orchestration of

stress-induced (radiation-induced) cellular responses in the kidneys

after 24 hours. Ddit4l (DNA-damage-inducible transcript 4-like) is a

stress-responsive protein and a negative regulator of mTOR sensitizing

towards cell death (25). Gria3 (glutamate receptor, ionotropic, AMPA3

(alpha 3)) is part of the glutamate receptor family that is predominantly

involved in neurotransmission in the central nervous system. Recent

work showed that Gria3 is also expressed in several peripheral tissues,
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including the kidneys, where the glutamate-receptor-transporter

system appears to play a role in the pathogenesis of various diseases,

which may be induced at higher radiation doses (26, 27). Plk2 had a

score of 1 with studies proposing its use in radiation biomarker panels

for human lymphocytes after irradiation with gamma rays and alpha-

particles emitted from astatine-211, as well as for primary human

fibroblasts after gamma irradiation (28–30). Plk2 (polo like kinase 2) is

a serine/threonine-protein kinase that functions in cell division and

may indicate stress-induced regulation of proliferation. Ccng1, Cdkn1a,

andMdm2 scored 0 as well-established radiation responsive genes with

implementability in biomarker panels. Their main function resides

within cell cycle regulation. Ccng1 (cyclin G1) regulates the activity of

cyclin-dependent protein kinases (CDKs) for cell cycle regulation,

while Cdkn1a (cyclin-dependent kinase inhibitor 1A) –also known

as P21–functions as a regulator of cell cycle progression at G1 and S

phase. Mdm2 (transformed mouse 3T3 cell double minute 2) is a key

negative regulator of the tumor suppressor p53, which is involved in

cell cycle regulation. Since Mdm2 functions as an oncogene, it can be

speculated that its transcriptional gene regulation may indicate a very

early step in the process of carcinogenesis initiated within 24 hours

after irradiation. Data sets from long-term studies are needed to

investigate whether these biomarker candidates are stable over time

and can be assayed after days, weeks, or even months; or whether this

candidate panel is time-point specific for 24 hours. In this context, it

should be noted that radiation dose was protracted over time in

contrast with acute dose delivery (single-dose over short time spans,
B

C D

A

FIGURE 3

Dose and tissue specificity of KNN-based biomarker candidates in murine kidney tissues. Subsets of train and test data created from the
transcriptomic microarray dataset GSE44762 (murine kidney cortex and medulla). The KNN method identified Cdkn1a (two probes), Gria3, Mdm2
and Plk2 for cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 for medulla as radiation biomarker candidates between 0–13 Gy. (Please cf. Table 5
for probe identifiers). The biomarkers successfully identified dose groups in kidney cortex (A), kidney medulla (B), and combined for both tissues (C).
Atp2a3, Itgav, Napsa, and Pla1a (two probes) were identified as tissue biomarker candidates achieved clear tissue separation across the PC1
dimension (D). (Please cf. Table 6 for probe identifiers.) Note that only radiation dose groups are included for tissue separation, i.e. 0 Gy control
samples are excluded here.
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i.e. seconds to minutes). This entails that a radiation dose-rate response

underlies the gene expression response in the dataset, which may be

specific for protracted dose. In the same light, the panel was identified

for a radionuclide (lutetium-177) that emits high-energy beta radiation.

The physical properties and resulting interactions with biomolecules

differ between beta radiation and other types of ionizing radiation such

as alpha-particles, X-rays, or accelerated heavy ions, which affects

the biological response and in turn the biodosimetric efficacy of the

candidate panel. In future work, it should be established whether the

candidates function as a radiation- and time point-specific biomarker

panel, or if they are general markers for other exposure and

sampling settings.

Despite successful pipeline development, the ML approach still

requires some refinement and model performance must be evaluated

with similar datasets in future iterations. This quality assurance mostly

concerns input data quality and experimental testing. The overlap in

PCA clusters for certain dose groups is understood to result mainly

from small sample size, i.e. statistical train/test issues, rather than

underperformance of the chosen (KNN) ML method or identification

process. Similarly, despite good correlation coefficients in regression,

the dose accuracy for individual sample classification warrants further

improvement to achieve high sensitivity and specificity in a

biodosimetric setting where only a single sample (case study) is

available that needs to be categorized accurately. While this error

margin is a concern especially in the low dose regimen or between

small dose differentials (here, 0 Gy vs. 0.13 Gy, and 0.13 Gy vs 0.34), it

should be noted that PCA differentiated (clustered) unexposed samples

from any irradiated sample across PC1 by comparably large distance.

This is particularly important in the context of triage in a radiation

hazard event: despite biological variation in gene expression levels in

the absence of stressor (induction of pathway regulation), the untreated

specimen clustered together reproducibly without overlap, i.e. for either

tissue and when combined. Accordingly, if reliable reference samples
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could be established for biodosimetric purposes, a relative

categorization could be achieved by a comparative approach.

Nevertheless, we conclude that further discovery optimization

resides more in the experimental realm than in silico. It should be

noted in this context that the input data was obtained from

transcriptomic microarray assays where more than one nucleotide

probe (sequence) can target the same mRNA for detection. In our

setting, a radiation biomarker candidate (Cdkn1a) and a tissue

biomarker (Pla1a) were identified by two variables, meaning different

microarray probe sequences, which indicates splicing variants. RNA

sequencing approaches have larger dynamic range than microarrays

and are more accurate for quantitating splicing variants; despite the

higher cost, sequencing data might elucidate whether these variants

show differential performance at lower or higher dose intervals, or if

they are fully redundant in their predictive performance. The strategic

literature study revealed that most radiobiology study designs cover a

certain radiation type, model system, and dose range, which limits the

statistical power during training and subsequent testing, but also

restricts the application of candidate panels on other exposure

settings. Bearing in mind the budget cost for high-throughput study

designs, the synergy field of radiation-bioinformatics would benefit

from access to larger datasets with decidedly larger group sizes.

Moreover, replicate studies are needed to validate (reproduce)

biomarker candidates experimentally, ideally including setups where

blinded test datasets are processed by the ML pipeline.

Moreover, the KNN method identified novel radiation-associated

genes that have not been described in context with ionizing radiation

before. Accordingly, the ML-pipeline may not only serve as an

automated analytical platform, but also as an exploratory tool to

unravel the complexity of radiation induced responses that have, for

the most part, been investigated building on canonic pathways and a

priori statements. Further, the pipeline should be trained (and tested)

with fixed biological model parameters (species and strain of origin,
FIGURE 4

Dose prediction using KNN-based biomarker candidates in murine kidney tissues. The biomarker candidates (Cdkn1a (two probes), Gria3, Mdm2 and
Plk2 for cortex; Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 for medulla (cf. Table 5)) predicted dose in kidney cortex and medulla in test data subsets
(created from GSE44762). Note that units are given as injected activity to animals, i.e. 1.3–140 MBq 177Lu-octreotate, corresponding to 0.13–13 Gy to
kidney tissue absorbed over 24 hours including unirradiated (0 Gy) controls.
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specimen age and sex, etc.) but across different physical parameters

such as radiation type, exposure settings, and dose intervals in order to

elucidate the sensitivity and specificity of candidate panels in

dependence of physical parameters. In essence, whether (certain)

candidates are general biomarkers for any ionizing radiation

exposure, or specific for a certain type of exposure. This question

also translates to the time dimension; transcriptional biomarkers can

have a comparatively short turnover and the stability or time-window

of detection needs to be established for a given candidate panel.

Conversely, time course-dependence can be employed to project

time-of-exposure in hazard scenarios where time of irradiation is

unknown but important for medical evaluation (triage) and

decision-making.

With regard to the chosen omics data type, transcriptional gene

expression has proven to be an effective molecular ecosystem for

radiation biomarker discovery (11, 22, 31–43). From a bioinformatics

perspective, training on sequencing data instead of microarray or on

high-throughput protein mass-spectrometry (proteomics) data is

comparable if phenotype files are properly curated and input data

correctly formatted. Additional data type-specific pre-processing and

filtering is required, but not a limitation for the ML framework as long

as input datasets and variables are properly denoted. The ML pipeline

could also be applied to samples (data) originating from non-normal

tissues, for instance radiotherapeutic responses in irradiated tumors,

but additional optimization during feature elimination and training is

warranted. Cancer is a heterogeneous disease with large intra- and

inter-tumoral variations, heterogeneous tumor microenvironments,

and phenotype selection during the course of treatment, to name a

few–all of which result in larger biological variation in gene

expression. Accordingly, even larger cohorts are required compared

with normal tissue datasets to achieve sufficient statistical performance.

From a bioinformatics perspective, our framework can be easily

adapted to other applications within the field of radiation research

and radiotherapy.

Conclusions

Caret-KNN drastically improved radiation biomarker

identification and vastly reduced analytical cost. The established ML

pipeline integrated gene expression data pre-processing with an

optimized algorithm to automatically identify a gene panel for

radiation dose prediction and tissue classification. The ML

framework is a new technology in the field of radiation biodosimetry

that can be translated to personalized radiotherapy and risk assessment.

The next iteration will make the ML pipeline available online to lower

cross-disciplinary barriers and facilitate broad implementation in the

field of molecular biomarker discovery.
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30. Kis E, Szatmári T, Keszei M, Farkas R, Esik O, Lumniczky K, et al. Microarray
analysis of radiation response genes in primary human fibroblasts. Int J Radiat Oncol
Biol Phys (2006) 66(5):1506–14. doi: 10.1016/j.ijrobp.2006.08.004

31. Amundson SA. Transcriptomics for radiation biodosimetry: progress and
challenges. Int J Radiat Biol (2021) 21:1–9. doi: 10.1080/09553002.2021.1928784

32. Amundson SA. The transcriptomic revolution and radiation biology. Int J
Radiat Biol (2022) 98(3):428–38. doi: 10.1080/09553002.2021.1987562

33. Larsson M, Rudqvist N, Spetz J, Parris TZ, Langen B, Helou K, et al. Long-term
transcriptomic and proteomic effects in sprague dawley rat thyroid and plasma after
internal low dose 131I exposure. PloS One (2020) 15(12):e0244098. doi: 10.1371/
journal.pone.0244098

34. Langen B, Rudqvist N, Spetz J, Helou K, Forssell-Aronsson E. Deconvolution of
expression microarray data reveals 131I-induced responses otherwise undetected in
thyroid tissue. PloS One (2018) 13(7):e0197911. doi: 10.1371/journal.pone.0197911

35. Rudqvist N, Spetz J, Schüler E, Parris TZ, Langen B, Helou K, et al.
Transcriptional response to 131I exposure of rat thyroid gland. PloS One (2017) 12
(2):e0171797. doi: 10.1371/journal.pone.0171797

36. Langen B, Rudqvist N, Helou K, Forssell-Aronsson E. Microarray studies on
211At administration in BALB/c nude mice indicate systemic effects on transcriptional
regulation in non-thyroid tissues. J Nucl Med (2017) 58(2):346–53. doi: 10.2967/
jnumed.116.176958

37. Langen B, Rudqvist N, Spetz J, Swanpalmer J, Helou K, Forssell-Aronsson E.
Non-targeted transcriptomic effects upon thyroid irradiation: similarity between in-
field and out-of-field responses varies with tissue type. Sci Rep (2016) 6:30738. doi:
10.1038/srep30738

38. Rudqvist N, Spetz J, Schüler E, Langen B, Parris TZ, Helou K, et al. Gene
expression signature in mouse thyroid tissue after 131I and 211At exposure. EJNMMI
Res (2015) 5(1):59. doi: 10.1186/s13550-015-0137-8

39. Rudqvist N, Spetz J, Schüler E, Parris TZ, Langen B, Helou K, et al.
Transcriptional response in mouse thyroid tissue after 211At administration: effects
of absorbed dose, initial dose-rate and time after administration. PloS One (2015) 10(7):
e0131686. doi: 10.1371/journal.pone.0131686

40. Langen B, Rudqvist N, Parris TZ, Schüler E, Spetz J, Helou K, et al.
Transcriptional response in normal mouse tissues after i.v. 211At administration -
response related to absorbed dose, dose rate, and time. EJNMMI Res (2015) 5:1. doi:
10.1186/s13550-014-0078-7

41. Rudqvist N, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Dose-
specific transcriptional responses in thyroid tissue in mice after 131I administration. Nucl
Med Biol (2015) 42(3):263–8. doi: 10.1016/j.nucmedbio.2014.11.006

42. Schüler E, Rudqvist N, Parris TZ, Langen B, Spetz J, Helou K, et al. Time- and
dose rate-related effects of internal 177Lu exposure on gene expression in mouse kidney
tissue. Nucl Med Biol (2014) 41(10):825–32. doi: 10.1016/j.nucmedbio.2014.07.010

43. Langen B, Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E.
Comparative analysis of transcriptional gene regulation indicates similar physiological
response in mouse tissues at low absorbed doses from i.v. administered 211At. J Nucl
Med (2013) 54:990–8. doi: 10.2967/jnumed.112.114462
frontiersin.org

https://doi.org/10.1016/0305-7372(85)90037-4
https://doi.org/10.1097/HP.0b013e31829cf221
https://doi.org/10.1016/j.canlet.2019.12.004
https://doi.org/10.1371/journal.pone.0198851
https://doi.org/10.1088/0952-4746/33/3/573
https://doi.org/10.1016/j.envres.2016.12.006
https://doi.org/10.1016/j.jenvrad.2013.04.002
https://doi.org/10.1016/j.jenvrad.2013.04.002
https://www.icrp.org/publication.asp?id=ICRP%20Publication%2099
https://www.icrp.org/publication.asp?id=ICRP%20Publication%2099
https://doi.org/10.1016/j.ijrobp.2005.06.013
https://doi.org/10.1186/1471-2164-12-2
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s42256-020-0173-6
https://doi.org/10.1007/s13277-016-5057-3
https://doi.org/10.3390/ijms17020250
https://doi.org/10.1186/s12864-020-06869-4
https://doi.org/10.1093/bioinformatics/17.12.1131
https://doi.org/10.1038/npjgenmed.2016.38
https://doi.org/10.1023/B:CANC.0000031765.17886.fa
https://doi.org/10.1007/s11373-008-9253-z
https://doi.org/10.1016/j.nucmedbio.2013.12.001
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=caret
https://doi.org/10.1038/cdd.2014.149
https://doi.org/10.1093/ndt/gfv028
https://doi.org/10.1016/j.ejphar.2016.05.009
https://doi.org/10.1080/09553000902838541
https://doi.org/10.1080/09553000802029886
https://doi.org/10.1016/j.ijrobp.2006.08.004
https://doi.org/10.1080/09553002.2021.1928784
https://doi.org/10.1080/09553002.2021.1987562
https://doi.org/10.1371/journal.pone.0244098
https://doi.org/10.1371/journal.pone.0244098
https://doi.org/10.1371/journal.pone.0197911
https://doi.org/10.1371/journal.pone.0171797
https://doi.org/10.2967/jnumed.116.176958
https://doi.org/10.2967/jnumed.116.176958
https://doi.org/10.1038/srep30738
https://doi.org/10.1186/s13550-015-0137-8
https://doi.org/10.1371/journal.pone.0131686
https://doi.org/10.1186/s13550-014-0078-7
https://doi.org/10.1016/j.nucmedbio.2014.11.006
https://doi.org/10.1016/j.nucmedbio.2014.07.010
https://doi.org/10.2967/jnumed.112.114462
https://doi.org/10.3389/fonc.2023.1156009
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction
	Introduction
	Methods
	Strategic literature searches
	Data cohort
	Statistical analysis and machine learning methods
	Data pre-processing
	Model testing and evaluation
	Statistical analysis and visualization
	Biomarker candidate evaluation

	Results
	ML approaches
	Model performance on the train and test set
	KNN-based biomarker performance and evaluation

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


