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Ferroptosis is a type of lipid peroxidation-induced, iron-dependent programmed

cell death. Emerging evidence suggests that ferroptosis is intimately connected

to tumorigenesis, development, treatment and plays a major role in tumor

immune regulation. This study focused on the connection between ferroptosis

and immune regulation, which may offer a theoretical basis for targeting

ferroptosis and tumor immunotherapy.
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1 Introduction

Unlike apoptosis, different types of necrosis, and autophagy, ferroptosis is a recently

identified type of programmed cell death that is regulated by iron-dependent lethal lipid

peroxidation (1). Ferroptosis mainly occurs as a result of reduced biological activity of

glutathione peroxidase 4 (GPX4), lipid peroxidation, and rise of reactive oxygen species

(ROS). A crucial factor in the occurrence of ferroptosis is GPX4. GPX4 inhibits ferroptosis

by reducing ROS to glutathione (GSH) (2). The cystine/glutamate antibody (system xc-)

made up of light chain subunit SLC7A11 and heavy chain subunit SLC3A2, which

exchange cystine and glutamate in equal amounts. The ingested cystine undergoes a

series of reactions to synthesize glutathione and maintain GPX4 activity. Tumor

immunotherapy is a prospective method to address the treatment of malignancies in

clinical practice, but only a small proportion of patients are benefited from this approach

(3). The tumor microenvironment (TME) also has a significant role in treatment outcome.

TME is a hypoxic, acidified, inflammatory, and immunosuppressive state. TME contains a

considerable number of immune cells, such as effector CD8 T cells with antitumor effects,

natural killer (NK) cells, dendritic cells (DCs), and regulatory T cells (Tregs) with

immunosuppressive functions, as well as myeloid-derived suppressor cells (MDSCs),

tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and

cancer-associated fibroblasts cells (CAFs). The combination of immunotherapy with
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other therapeutic modalities reverses the immunosuppressive state

and has a synergistic antitumor effect (4). In this case, targeted

ferroptosis combined with immunotherapy is a viable therapeutic

tool. This review describes the interaction between ferroptosis and

tumor immunotherapy in order to provide a theoretical reference

for the combination of targeted ferroptosis with immunotherapy.
1.1 Characteristics of TME

1.1.1 Hypoxia
Hypoxia is a common phenomenon in solid tumors, wherein

chronic hypoxia promotes tumor growth, metastasis (5), and therapy

resistance (6) by remodeling the microenvironment. The stabilization

of hypoxia-induced hypoxia-inducible factors (including HIF1a,
HIF2a, and HIF-3a) activate hypoxia target genes thereby regulating

angiogenesis, cell growth, glycolysis, DNA damage repair, and even

apoptosis (7). Under hypoxia, HIF regulates CD8 T cell infiltration and

activity via von Hippel-Lindau (VHL) (8). HIF-1a is the key promoter

of immunosuppressive TME (9). Hypoxic TME inhibits the activation

of cytotoxic T lymphocytes (CTLs), reduces interferon-gamma (IFNg)
production and release, promotes Treg activity (10, 11), promotes the

differentiation of MDSCs to immunosuppressive TAMs to enhance

immunosuppression (12), impairs DC (13) and NK cell (14, 15)

activation and function, and induces epithelial to mesenchymal

transition (EMT) (16, 17). In addition, hypoxia regulates the levels of

various microRNAs (miRNAs) and long non-coding RNAs

(IncRNAs), and these ncRNAs influence the activation of HIF-1a
and consequently create positive or negative feedbacks to regulate

hypoxic TME (18–21).

1.1.2 Acidification (lactate)
The weak acidity of TME is caused by the excessive consumption

of glucose by cancer cells, resulting in lactate accumulation. The

Warburg effect states that the energy of cancer cells is dominated by

glycolysis even under oxygen-sufficient conditions, producing large

amounts of lactate (22). The creation of lactate impairs the CTLs’

capacity to multiply and produce cytokines, which reduces their

cytotoxic activity (23), suppresses the production of IFNg by NK and

NKT cells, and reduces their antitumor function (24, 25), mediates

the differentiation of DCs (26), increases Treg activity (27), and

recruits macrophages and induces their functional polarization into

TAMs (28), leading to immunosuppression and promoting tumor

cell growth and metastasis.

1.1.3 Cancer-related inflammation
Strikingly, cancer-related inflammation is caused by

proinflammatory cytokines and chemokines produced by tumor cells,

resulting from cancer gene-mediated malignant transformation (29).

Chronic inflammation has been proven to be among the primary causes

of tumor occurrence and growth (30). Macrophages and lymphocytes

are the primary immune cells that infiltrate sites of persistent

inflammation, which can indirectly or directly promote tumor

development by releasing various cytokines. These cytokines are

categorized into proinflammatory cytokines [interleukin (IL)-1, IL-6,

IL-15, IL-17, IL-23, tumor necrosis factor-alpha (TNF-a), and IFN-g]
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and anti-inflammatory cytokines [IL-4, IL-10, IL-13, and tumor growth

factor-beta (TGF-b)] (31). Inflammation is an effective inducer of EMT

in tumors, TGF- b, TNF-a, IL‐1b, IL-6, IL-8, and other proinflammatory

cytokines play a role in the initiation and maintenance of tumor EMT,

increasing the invasiveness of cancer cells and promoting tumor

metastasis (32–35). Another mechanism of cancer-related

inflammation involves the emergence of damage-associated molecular

patterns (DAMPs). Various endogenous ligands of DAMPs are

produced in reacting to hypoxia, cell stress, and tissue damage and

then detected by pattern recognition receptors (PRRs) generated by

innate immune cells. These DAMPs include high-mobility group box-1

(HMGB1), heat shock protein, S100 protein, and ATP (36, 37).
1.2 Effect of TME on ferroptosis

1.2.1 Hypoxia with ferroptosis
Hypoxia upregulates iron regulatory protein 2 (IRP2) through a

post-translational mechanism to increase iron transport (TFRC) and

SLC11A2 while decreasing iron storage (FTH) (38). A vital cellular

regulator of tumor hypoxia, carbonic anhydrase IX (CAIX), controls

intracellular and extracellular pH and acidosis (39). CAIX prevents

cancer cells from undergoing iron death via the cystine/glutamate

antiporter xCT (40). A previous study has shown that hypoxia

protects cancer cells from iron death through multiple pathways.

Hypoxia-induced HIF-1a/lncRNA-PMAN prevents ferroptosis in

gastric cancer by enhancing SLC7A11 mRNA stability and

increasing the expression of SLC7A11 at the posttranscriptional

level (41). The CBSLR/CBS signal axis regulates the methylation of

ACSL4 to prevent ferroptosis in gastric cancer by polyubiquitination

(42). Blocking ferroptosis of hepatocellular carcinoma by inhibiting

METTL14 triggered YTHDF2-dependent silencing of SLC7A11 (43).

In addition, hypoxia reduces NCOA4 in macrophages, thereby

increasing FTMT and FTH and preventing ferroptosis (44).

Recently, Zhao et al. designed a dual hypoxia-sensitive polymeric

nanocarrier containing azobenzene and nitroimidazole, encapsulating

the small molecule ferroptosis inducer RSL3, and validated it in a nude

mouse model of ovarian cancer. The study also demonstrated that the

polymeric carriers depleted NADPH in tumor cells under hypoxic

conditions, leading to depletion of GSH and Trx and further inhibition

of GPX4 activity, thereby sensitizing tumor cells to ferroptosis.

Furthermore, it functions like a selective ferroptosis sensitizer solely

in hypoxic tumors, without damaging healthy organs (45). This study

provides a novel idea for efficacy enhancement and toxicity reduction

of ferroptosis antitumor therapy.

1.2.2 Lactate with ferroptosis
The rapid proliferation of cancer cells relies on glycolysis as an

energy source, producing a large amount of lactic acid. The lactic acid

in the microenvironment provides energy for cell growth and

development, affects the biochemical function of proteins in cells as

a vital signaling molecule, regulates the biological functions of various

cells, and promotes the malignant proliferation and progress of

tumors (46). Luo et al. confirmed that lactic acid inhibits the

ferroptosis of hepatoma cells through in vivo and in vitro

experiments. Excessive lactic acid upregulated the expression of
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hydroxycarboxylic acid receptor 1 (HCAR1) and monocarboxylate

transporter 1 (MCT1) and inhibited ferroptosis of liver cancer cells by

reducing the lipid peroxidation of liver cancer. Strikingly, the

inhibition of HCAR1/MCT1 increases the proportion of AMP/ATP

in hepatoma cells, enhances the AMP-activated protein kinase’s

phosphorylation, downregulates the level of mature of sterol

regulatory element-binding protein 1 and its target gene stearoyl-

coenzyme A (CoA) desaturase-1, and enhances the ferroptosis

sensitivity of hepatoma cells (47). This finding suggested that

additional studies on the mechanism of lactic acid and ferroptosis

would identify the drug targets for tumor treatment and improve the

prognosis of patients.

1.2.3 Cancer-related inflammation
with ferroptosis

Proinflammatory factors in the TME may promote or inhibit

tumor initiation and progression by affecting tumor ferroptosis. In

head and neck squamous cell cancer, IL-6 inhibits ferroptosis by

transcriptionally increasing xCT expression through the JAK2/

STAT3 pathway (48). miR-539 directly triggers the SAPK/JNK

protein kinase through targeted TNF-a-induced protein 8 to

promote colorectal cancer ferroptosis (49). CircABCB10 silencing

promotes rectum cancer cell ferroptosis and apoptosis through

targeting the miR-326/CCL5 axis (50). Circ-IL-4 receptor controls

the miR-541-3p/GPX4 axis to inhibit ferroptosis and promote

carcinogenesis in hepatocellular carcinoma (51). HMGB1

regulates acute myeloid leukemia cell ferroptosis through the

RAS-JNK/p38 pathway (52).
1.3 Ferroptosis with immune effector cells

1.3.1 Ferroptosis with CD8 T cells
The main agents of antitumor immunity, CD8 T cells secrete

IL-2, IL-12, and (IFNg) in TME, which increases the ability of CD8
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T cells to target and destroy tumor cells. Interestingly, IFNg
produced by immunotherapy-activated CD8 T cells suppresses

the expression of SLC3A2 and SLC7A11, two components of the

glutamate-cystine anti-transport protein system xc-, and prevents

tumor cells from utilizing cystine, promoting lipid peroxidation and

ferroptosis in tumor cells (53, 54). Another study found that IFNg
generated in the TME by activated T cells paired with arachidonic

acid affected spontaneous antitumor immunity in vivo by inducing

tumor cell ferroptosis through acyl-CoA synthetase long-chain

family member 4 (ACSL4) (55). These studies highlighted that

targeting the metabolism associated with tumor ferroptosis can

improve the efficacy of cancer immunotherapy.

Recently, Ma et al. found that oxLDL in the TME induced iron

death and p38 phosphorylation by lipid peroxidation in CD8+ T

cells in a CD36-dependent manner. Also, the activation of P38

induced CD8 T cell death, suppressed IFNg and TNFa generation

in T cells, depleted CD8 T cells, and reduced antitumor effects (56,

57) (Figure 1). In addition, the research team also discovered that

anti-PD-1 antibodies and CD36 deletion in CD8 T cells together

showed superior antitumor effects to either treatment alone (57).

This research suggested that targeting CD36 and ferroptosis might

be a viable option for improving the antitumor efficacy of T-cell

based immunotherapy.

1.3.2 Ferroptosis with NK cells
NK cells are nature leukomonocytes that are essential for tumor

surveillance and control and in tumor immunotherapy due to their

ability to kill abnormal cells without any antigenic stimulation and

persistent immune memory. NK cells trigger stressed cell death

primarily by the release of perforin, granzyme, and other lytic

granule molecules (58). In addition, NK cells have a cytotoxic

capacity similar to that of CD8 T cells, regulating immunity and

killing tumor cells by releasing IFN-g (59). Another study

demonstrated that activating mitochondrial apoptosis in cancer

cells enhances NK cell death. Thus, initiating mitochondrial
FIGURE 1

IFNg produced from CD8 T cells triggered by immunotherapy downregulated SLC3A2 and SLC7A11 activity and aided ferroptosis in tumor cells. IFNg
produced by activated T cells paired with AA-induced tumor cell ferroptosis via ACSL4. CD36 mediated the uptake of oxLDL by CD8 T cells to
induce ferroptosis and P38 phosphorylation and inhibited IFNg production in T cells.
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apoptosis via BH3 mimics can synergize with NK cells to kill cancer

cells (60). Moreover, the synergistic effect of BH3 mimetic drugs in

combination with ferroptosis induces cancer cell death (61). Then,

targeted ferroptosis combined with NK cell therapy may also be a

viable strategy. Kim et al. found that the use of clinical-grade iron

oxide nanoparticles (ferumoxytol) to mediate ferroptosis in prostate

cancer activated NK cells and increased the cytotoxic function of

NK cells. Furthermore, in the therapy of ferroptosis+NK cells,

tumor cells expressed HMGB1 and PD-L1, and a clear regression

of tumor volume after ferumol-mediated ferroptosis and NK cell

treatment was observed in a prostate cancer mouse model (62).

These findings suggested that ferroptosis can improve NK

cell activity.

1.3.3 Ferroptosis with DCs
DCs are robust antigen-presenting cells (APCs) in the organism

that promote immunization or tolerance by sampling and presenting

antigens to T cells as well as transmitting immunomodulatory signals

via cell-cell interaction and cytokines. promoting immunity or

tolerance by sampling and presenting antigens to T cells and

delivering immunomodulatory signals through cell-cell contact and

cytokines (63). DCs consist of exogenous antigens on major

histocompatibility class I (MHC-I) molecules and initiate CD8 T-

cell antitumor immunity via antigen cross-presentation (64). The

activation of DCs can be achieved by PRRs on DCs that recognize

pathogen-associated molecular patterns (PAMPs) or DAMPs (65).

However, a new research study found that although ferroptosis is

capable of releasing cytokines and DAMPs, it does not activate

antitumor immune responses, inhibits cross-presentation of soluble

antigens to DCs, impairs DCmaturation, and inhibits phagocytosis of

tumor cells by DCs (66). According to this phenomenon, cancer cells’

ferroptosis may not represent an immunological type of cell death.
1.4 Ferroptosis with
immunosuppressive cells

1.4.1 Ferroptosis with tregs
Tregs are essential for maintaining self-tolerance and immune

cell homeostasis, and their mediated immunosuppression is a

major obstacle to tumor immunotherapy. Tregs exhibit their

immunosuppressive function through various mechanisms,

including inhibition of APCs via cytotoxic T lymphocyte antigen-4

(CTLA-4), suppression of cytokine secretion (IL-10, TGF-b, and IL-

35), and competitive depletion of IL-2. Oxidative stress-induced

apoptosis of Treg cells in tumors amplifies their immunosuppressive

effects and abolishes the efficacy of PD-L1 blockade therapy (67). A

current research revealed that GPX4 prevents lipid peroxidation and

ferroptosis in Tregs and that GPX4-deficient Tregs promote

mitochondrial superoxide production and IL-1b production, thereby

promoting T helper 17 (Th17) responses. Furthermore, GPX4

deficiency, rather than intra-tumor Treg cell apoptosis, enhances

antitumor immune function and inhibits tumor growth by inducing

ferroptosis (68). The current results indicated that induction of iron

death in Treg cells could be an effective strategy to improve

cancer therapy.
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1.4.2 Ferroptosis with MDSCs
MDSCs constitute a group of immunosuppressive immature

bone marrow cells that promotes tumor progression through

various non-immune mechanisms to suppress antitumor immunity

and support tumor growth and are essential for encouraging tumor

immune escape (69). N-Acyl sphingomyelin hydrolase (ASAH2) is

overexpressed in MDSCs of colon cancer and protects MDSCs from

ferroptosis by regulating p53 stabilization and inhibiting Hmox1

expression from reducing lipid ROS. The novel MDSC-targeting

medication NC06 induces MDSC ferroptosis by activating the p53-

Hmox1 pathway and decreases MDSC accumulation to stimulate

T-cell tumor infiltration and inhibit tumor growth in vivo (70). Thus,

induction of MDSC ferroptosis is a potentially effective therapy for

tumor immunotherapy.

1.4.3 Ferroptosis with TAMs
Macrophages can be divided into two subtypes based on their

function and activation. M1macrophages (driven by bacterial products

and interferons produced during type 1 immune responses activated by

type 1 T helper and innate lymphoid cells) kill tumor cells and M2

macrophages (driven by type 2 T helper and innate lymphoid cells,

such as IL-4 and IL-13) promote cancer progression and

immunosuppression (71). TAMs are widely considered to be M2

macrophages, and the M2-like TAMs prevent CD8 T-cell antitumor

effect and DC development by secreting transforming growth factor-

beta (TGF-b) and IL-10 (72). Several studies have focused on targeting

macrophages, and Wang et al. showed that ZVI-NP selectively triggers

ferroptosis in lung cancer cells by inhibiting the NRF2-mediated

cytoprotective program, shifts pro-tumor M2 macrophages to

antitumor M1, enhances antitumor immunity by increasing the

cytotoxic function of CD8 T cells and decreasing the Tregs ratio

(73). Gu et al. found that MIL88B/RSL3 nano preparations inhibited

metastatic tumor activity by polarizing macrophages from pro-tumor

M2 to antitumor M1 phenotypes via a ferroptosis-enhanced metabolic

program (frommitochondrial oxidative phosphorylation to glycolysis),

activated of numerous proinflammatory signals, and greatly inhibited

tumor angiogenesis (74). Xu et al. demonstrated that downregulation

of matrix remodeling-associated protein 8 (MXRA8) induced

ferroptosis in gliomas by elevating Fe levels and attenuating M2

macrophage infiltration to inhibit tumor progression (75). Li et al.

found that dihydroartemisinin produced ferroptosis in TAM-induced

ROS/LPO, resulting in DNA damage, which in turn activated

downstream NF-kB to remodel TAM to M1 phenotype, and that the

remodeled M1 macrophages exerted antitumor effects (76). Tang et al.

discovered that macrophages with xCT deletion dramatically reduced

TAM infiltration, blocked M2-like phenotypic changes in HCC tumor

tissue, activated and elevated ferroptosis activity, and hampered tumor

growth and metastasis. Moreover, PD-L1 expression in macrophages

was markedly elevated by xCT-mediated macrophage ferroptosis,

which also enhanced the anti-tumor effectiveness of anti-PD-L1

therapy (77). According to research by Hao et al., blocking APOC1

can encourage M2 macrophages to become M1 macrophages through

the iron-sparing pathway, modifying the TME and enhancing the

effectiveness of anti-PD1 immunotherapy for hepatocellular carcinoma

(78). However, some studies have shown drawbacks in ferroptosis-

mediated cancer treatment. The study also demonstrated that, although
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ferroptosis increases immune cell activation and infiltration, it

attenuates the antitumor cytotoxic killing effect. Conversely, TAMs

infiltration are reduced and converted TAM to M1-like phenotype

when ferrostatin-1 and anti-PD1/L1 antibodies are combined (79)

(Figure 2). The above results suggested that ferroptosis plays a major

role in TAM infiltration and activation in TME.

1.4.4 Ferroptosis with TAN
As the main component of TME, TAN promotes tumor

progression and metastasis in communication through a variety of

growth factors, chemokines, inflammatory factors, and other immune

cells (80). Similar to macrophages, neutrophils can polarize into an

antineoplastic (N1) or tumor-promoting (N2) phenotype. N1 TAN

exerts antitumor activity through direct or indirect cytotoxicity,

while N2 TAN stimulates immunosuppression, tumor growth,

angiogenesis, and metastasis through DNA instability or the release

of cytokines and chemokines (81). Li et al. demonstrated that tumor

lesions occurring during early tumor progression (i.e. ischemia) draw

neutrophils to the areas of tissue injury, where neutrophils destroy

tumor cells by ferroptosis, resulting in necrosis. In addition, a cycle of

positive feedback between necrosis and neutrophil infiltration

increases intratumoral necrosis and speeds up glioma mortality (82).

1.4.5 Ferroptosis with CAFs
CAFs are critical components of TME and sources of cytokines,

growth factors, and exosomes (83). CAF-secreted exosomes influence

tumor phenotypes, whereas exosomes released by tumor cells activate

CAFs (84). CAFs derived exosomes transmit biological information via

miRNAs, lncRNAs, circRNAs, lipids, and proteins and promote tumor

growth (85), invasion (86, 87), metastasis (88), and angiogenesis (89),

induce EMT (90, 91), endow tumor with chemical (92, 93) and

radiation resistance (94), impede the action of tumor-infiltrating
Frontiers in Oncology 05
immune cells (95), and regulate TME’s antitumor immunological

state. A recent study found that CAFs suppress ALOX15 expression

by secreting exosomal miR-522, affecting lipid-ROS production in

tumors to suppress ferroptosis in gastric cancer cells. In addition,

chemotoxicity affects tumor growth and attenuates cisplatin

chemotherapeutic efficacy by boosting miR-522 release from CAFs

through triggering the USP7/hnRNPA1 pathway, whereas preventing

miR-522 secretion could inhibit tumor growth and enhance sensitivity

to cisplatin (96). The present study illustrated that CAFs-derived

exosomes regulate tumor ferroptosis by transporting special signaling

information and triggering cell ferroptosis in tumors by blocking the

packaging of specific miRNAs into exosomes could be a viable novel

therapeutic approach.
2 Prospects

Immunotherapy is a potential method for treating cancer that

achieves tumor clearance through reshaping the TME and activating

antitumor immune responses. Current studies with immunotherapy

alone have failed to demonstrate significant survival benefits, possibly

because of TME’s intricate immunosuppressive nature.The tumor

microenvironment inhibits the anti-tumor effects of CTL, NK, and DC

due to its hypoxia, acidification, and inflammatory characteristics. It also

increases the activity of immunosuppressive cells, puts the tumor

microenvironment in an immunosuppressive state, and prevents the

ferroptosis of tumor cells(Figure 3). Therefore, reversing the

immunosuppressive state of the TME is critical to the success of

tumor therapy. Ferroptosis can be promoted or inhibited by immune

cells that attack the tumor microenvironment, and the identification of

ferroptosis offers fresh hope for halting tumor growth. The combination

of targeting the TME and ferroptosis enhances the antitumor effect by
FIGURE 2

Ferrostatin-1 and anti-PD1/L1 together diminish TAM infiltration and change the M2-like phenotype into the M1-like phenotype, which strengthens
the anticancer impact.
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promoting the activation and presentation of effector T cells and

dendritic cells, inhibiting the activity of immunosuppressive cells and

relieving the immunosuppressive state of the tumor microenvironment.

Although the combination of targeted ferroptosis therapy with

immunotherapy may improve efficacy, the potential drug resistance of

ferroptosis cannot be ignored. Consequently, a thorough investigation of

ferroptosis’ function in the TME is necessary to build a creative strategy

for the creation of fresh cancer treatment options
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