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Purpose: To investigate the use of multiparameter MRI-based radiomics in the

in-depth prediction of epidermal growth factor receptor (EGFR) mutation and

subtypes based on the spinal metastasis in patients with primary lung

adenocarcinoma.

Methods: A primary cohort was conducted with 257 patients who pathologically

confirmed spinal bone metastasis from the first center between Feb. 2016 and

Oct. 2020. An external cohort was developed with 42 patients from the second

center between Apr. 2017 and Jun. 2021. All patients underwent sagittal T1-

weighted imaging (T1W) and sagittal fat-suppressed T2-weight imaging (T2FS)

MRI imaging. Radiomics features were extracted and selected to build radiomics

signatures (RSs). Machine learning classify with 5-fold cross-validation were used

to establish radiomics models for predicting the EGFR mutation and subtypes.

Clinical characteristics were analyzed with Mann-Whitney U and Chi-Square

tests to identify the most important factors. Nomogram models were developed

integrating the RSs and important clinical factors.

Results: The RSs derived from T1W showed better performance for predicting

the EGFR mutation and subtypes compared with those from T2FS in terms of

AUC, accuracy and specificity. The nomogram models integrating RSs from

combination of the two MRI sequences and important clinical factors achieved

the best prediction capabilities in the training (AUCs, EGFR vs. Exon 19 vs. Exon

21, 0.829 vs. 0.885 vs.0.919), internal validation (AUCs, EGFR vs. Exon 19 vs. Exon

21, 0.760 vs. 0.777 vs.0.811), external validation (AUCs, EGFR vs. Exon 19 vs.

Exon 21, 0.780 vs. 0.846 vs.0.818). DCA curves indicated potential clinical values

of the radiomics models.
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Conclusions: This study indicated potentials of multi-parametric MRI-based

radiomics to assess the EGFR mutation and subtypes. The proposed clinical-

radiomics nomogram models can be considered as non-invasive tools to assist

clinicians in making individual treatment plans.
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Introduction

Lung cancer is one of the most common malignant tumors

worldwide, with non-small-cell lung cancer (NSCLC) composes

approximately 80% of all cases (1) (2). The most frequent type of

lung cancer is lung adenocarcinoma, accounting for about 40%

(3). It has been confirmed that the continuous activation of

epidermal growth factor receptor (EGFR) tyrosine kinase

domain in tumor tissues is caused by the mutation of EGFR in

lung adenocarcinoma (4) (5). Therefore, the mutation status of

EGFR is the key factor to determine the therapeutic effect of

EGFR-tyrosine kinase inhibitors (TKIs) (6). Clinical trials have

shown that patients with EGFR mutation often have a longer

progression free survival compared with those with wild type

EGFR (7). The main mutation sites of the EGFR gene were 18, 19,

20 and 21, and the exons 19/21 are the most common mutations

(8) (9). The overall survival time of targeted therapy patients with

exon 19/21 mutations is ranging from 41 to 44 months, which is

longer than that of patients with exon 18 mutation (19 months)

(10). Since the EGFR status lead to different prognosis,

determination of specific mutation subtypes plays a guiding role

in the subsequent treatment planning.

The spine is a common site of the metastatic spread in NSCLC

(11). The spinal metastases may cause erode of normal spinal

tissues, forming intratumor lesion regions. Although assessment

of the EGFR mutation status can be conducted with the biopsy

puncture, an accurate localization of the puncture is often difficult

to determine, and has a high false-positive rate (12) (13). Besides,

the puncture may cause damages to the nerves and lead to

metastasis (14) (15). Therefore, there is an urgent need for a non-

invasive method to assess the EGFR mutation status to assist

clinicians in making individual treatment plans.

In recent years, radiomics has been an emerging field in the

oncology, which can quantitatively describe relationships between

imaging features and underlying tumor pathophysiology by

extracting and analyzing a large number of quantitative features

(16) (17) (18) (19). Previous investigations on evaluating the EGFR

mutation status in lung adenocarcinoma mainly focused on

primary tumors (20) (21) or brain metastases (22) (23). There are

relatively few predictions about EGFR mutation status and

mutation subtypes in spinal bone metastasis. A recent study has

revealed the association between MRI features derived from bone

metastasis and the EGFR mutation sites in exons (24). While, the

report enrolled a limited sample size and focused on differentiating
02
the exon 19/21 mutation sites. This study aims to evaluate features

from T1W and T2FS MRI and important clinical factors from lung

adenocarcinoma patients with spinal metastases, and to develop a

radiomics nomogram for prediction of the EGFR mutation

and subtypes.
Materials and methods

Patients

A total of 257 patients (mean age: 59.95; ranging from 29 to 89)

were included between Feb. 2016 and Oct. 2020 from our hospital

(Center 1) and used to build the internal validation set. A total of 42

patients (mean age: 60.12; ranging from 42 to 75) were collected

from another hospital (Center 2) between Apr. 2017 and

Jun.2021and used as an external validation set. The patients‘

primary lung adenocarcinoma was pathologically diagnosed. The

development of bone metastasis were identified by PET/MRI

imaging and patient follow-ups. The EGFR mutation status and

mutation subtypes were determined by DNA sequencing analysis.

Inclusion criteria were: (1) age exceed 18 years and (2) no treatment

was given before MRI scans. Exclusion criteria were: (1) suffering

from other tumor diseases; (2) received phosphate drug for bone

metastases or radiochemotherapy; (3) with vertebral compressed

fractures; and (4) with diffuse spinal metastasis. The inclusion

flowchart is shown in Figure 1. All patients were randomly

divided at a 2:1 ratio into training and internal validation sets by

stratified sampling. Clinical characteristics included gender, age,

smoking, performance status (PS), cytokeratin (CYFRA), serum

carcinoembryonic antigen (CEA) level, and neuron specific enolase

(NSE). This retrospective study was approved by the institutional

review board, and the requirement for informed consent

was waived.
Data acquisition and spinal metastases
segmentation

Before surgery, all patients were scanned using a Siemens 3.0T

MRI scanner (Siemens magnetic trio, Erlangen, Germany). MRI

parameters were: sagittal T1-weighted imaging (repetition time

[TR] = 500ms, echo time [TE] = 9ms). Sagittal fat-suppressed T2-

weight imaging (TR = 3000 ms, TE = 78 ms), sagittal slice thick-ness
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4 mm, scanning interval 4.4 mm; axial slice thickness 4.5 mm,

scanning interval 4.95 mm. A senior radiologist with 16 years of

experience was invited to the delineation of the spinal metastasis

(region of interest, ROI) border on each slice of the TIW and T2FS

MRI image, using the ITK-SNAP software (version 3.6.0). All ROI

segmentations were saved in an NII format.
Radiomics feature extraction and selection

Before the feature extraction, standarded preprocessing of the

MRI images were performed, which include normalization,

resampling, discretization and filtering of the images. Detailed

descriptions have been shown in Supplementary 1. We evaluated

1967 features for each MRI sequence using the pyradiomics

package (25) in Python v.3.6. The computational features consist

of original features and filtered features. The original features

include first-order statistical, shape and texture features. The

texture features contain gray level co-occurence matrix (GLCM),

gray level run length matrix (GLRLM), gray level size zone matrix

(GLSZM), neighbour gray tone difference matrix (NGTDM) and

gray level dependence matrix (GLDM). To obtain high

dimensional features, the original MR images were filtered with

wavelet, square, exponential, squareroot, gradient, logarithm,

localbinarypattern 2D/3D, and Laplacian of gaussian filters.

Then, first-order features and texture features are obtained from

these conversions. Details about the feature calculation protocols

were provided in the Pyradiomics document (available from URL:

https://pyradiomics.readthedocs.io/) and in a prior report

(26) (27).

Another radiologist independently manually segmented the

metastases in the MRI images of 30 randomly selected patients to

evaluate the feature consistency expressed by the inter-class

correlation coefficient (ICC) (28). High values (ICC > 0.8)
Frontiers in Oncology 03
indicate that results of independent evaluations by different

observers are consistent. All features with P< 0.05 were selected

using the Mann - Whitney U test. Then, the least absolute shrinkage

and selection operator (LASSO) algorithm was employed to identify

the most predictive features according to their associations with the

EGFR mutation and subtypes with 5-fold cross-validation using the

glmnet package in R language v3.6 (available from URL: https://

www.r-project.org). The extracted features were further picked

using the Max-Relevance and Min-Redundancy (mRMR) (29).

Finally, the remained features were treated with the logistic

regression (30) with Akaike Information Criterion (AIC) as the

stopping rule.
Construction and evaluation of the
radiomics signature, clinical model
and nomogram

Radiomics signatures (RSs) were established using the glmnet

package in R v.3.6 with logistic regression. Clinical factors of P<

0.05 were determined by Mann - Whitney U and Chi - Square tests,

and used to develop a clinical model. The clinical-radiomics

nomogram was established by combing of the selected features

and important clinical factors using the rms package in R. The

models were evaluated using the receiver operating characteristic

(ROC), calibration and decision curve analyses. The ROC curve was

drawn using the proc package in R, with the best cut-off values

evaluated by the Youden index (31). The calibration curve was

drawn using the rms package to evaluate the consistency between

the model-predicted and actual results. The clinical usefulness of

the radiomics models was evaluated by quantifying the net benefits

at different threshold probabilities using the rmda package to

perform decision curve analysis (32). The overall workflow of this

study was shown in Figure 2.
FIGURE 1

The patient selection and workflow.
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Results

Clinical characteristics

In the primary set, there were 60 patients carry EGFR mutation

in exon 19, 65 patients carry EGFR mutation in exon 21, and 12

patients carry EGFR mutation in exon 18/20. The rest 120 patients

in the primary cohort were with EGFR wild-type. In the external

validation set, there were 18, 11, 11 and 2 patients carry the EGFR

wild-type and EGFR mutations in exon 19, 21, and 18/20,

respectively. According to the univariate analysis, smoking was

the important influencing factor related to the EGFR mutation

(P<0.05). The exon 19 mutation is related to smoking and age

(P<0.05). While, the exon 21 mutation is related to age (P<0.05).

Table 1 presents the statistical analysis of the clinical characteristics.

Results of univariate analysis for smoking and age were provided in

Supplementary 2.
Feature selection and RS development

A total of 24 features were selected as the most important

predictors to detect the EGFR mutation, 12 from T1W and 12 from

T2FS MRI, and used to build the RS-EGFR-T1W and RS-EGFR-

T2FS, respectively. Similarly, fourteen features were selected from

the T1W (7 features) and T2FS (7 features) to locate the exon 19

mutation, and used to established the RS-Exon 19-T1W and RS-

Exon 19-T2FS, respectively. To detect the exon 21 mutation,

fourteen features were selected from T1W (7 features) and T2FS

(7 features), and used to build RS-Exon 21-T1W and RS-Exon 21-

T2FS, respectively. Figure 3 showed the selection of radiomics

features using the LASSO regression. Prediction performance of

each RS were compared and listed in Table 2. The Exons (Exon 19

and 21) were compared within the EGFR mutation group. RSs
Frontiers in Oncology 04
derived from T1W MRI generated higher values of AUC, accuracy

and specificity compared with those from T2FS MRI, for detecting

the EGFR mutation and subtypes.
Development and validation of
combined RSs

From two MRI sequences, 3934 (1967×2) were extracted and

selected by ICC analysis, Mann-Whitney U test, mRMR and LASSO

with AIC. A total of 8 features were selected and used to develop a

RS-Com-EGFR for detecting the EGFR mutation. For detections of

the exon 19 and exon 21 mutations, 9 and 8 features were selected

and used to develop a RS-Com-Exon 19 and a Rs-Com-Exon 21 for

detecting the exon 19 and exon 21 mutations, respectively.

Supplementary 3 listed the finally retained features and their

prediction performance to detecting the EGFR mutation

and subtypes.

As shown in Table 2, the combined radiomics signatures always

generated higher AUC, accuracy and specificity compared with

those from single MRI sequence, which indicated that the multi-

parametric MRI combined radiomics signature can effectively

detect the EGFR mutation and subtypes.

Formulas of the RS-Com-EGFR, RS-Com Exon 19 and RS-Com

Exon 21 were shown as following:

RS − Com − EGFR = 4:161 − 7:881� wavelet _ LHL _ glszm _

SmallAreaLowGrayLevelEmphasis + 3:981�
wavelet _ LLH_ firstorder _ Skewness + 4:868� wavelet _ LHH_ glrlm

_ ShortRunLowGrayLevelEmphasis + 7:198�
log _ sigma _ 3 _ 0 _mm_ 3D_ firstorder _ TotalEnergy − 5:626

� gradient _ glcm _Correlation − 3:305�
log _ sigma _ 1 _ 0 _mm_ 3D_ glszm_ SmallAreaLowGrayLevelEmphasis

+ 9:492� wavelet _HLH_ firstorder _Mean − 3:082�
wavelet _HHH_ glszm_ LowGrayLevelZoneEmphasis
FIGURE 2

Overall workflow of this study.
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B

C D

A

FIGURE 3

Feature selections from the T1W and T2FS MRI with LASSO. (A, B), LASSO coefficient analyses of the features with 5-fold cross-validation for
selecting optimal log (l) in T1W (A) and T2FS (B) MRI, respectively. (C, D), LASSO coefficients plotted against the log (l) sequence in T1W (C) and
T2FS (D) MRI, respectively.
TABLE 1 Clinical characteristics of all patients in the training, internal validation and external validation sets.

Characteristic Training
(n = 171)

Internal validation
(n = 86)

External validation
(n = 42)

EGFR +
(n = 91)

EGFR -
(n = 80)

P EGFR +
(n = 46)

EGFR -
(n = 40)

P EGFR +
(n = 24)

EGFR -
(n = 18)

P

Age (Mean ± SD) 60.19 ± 9.99 59.28 ± 10.35 0.998 61.15 ± 11.77 59.60 ± 10.42 0.428 60.17 ± 7.63 60.06 ± 6.78 0.721

Gender, n (%) 0.661 0.841 0.107

Male 47 (51.4%) 44 (55.0%) 22 (47.8%) 20 (50.0%) 8 (33.3%) 9 (50.0%)

Female 44 (48.6%) 36 (45.0%) 24 (52.2%) 20 (50.0%) 16 (66.7%) 9 (50.0%)

Smoking, n (%) <0.001* 0.039* 0.021*

Yes 22 (24.2%) 41 (51.3%) 11 (23.9%) 18 (45.0%) 6 (37.5%) 8 (44.4%)

No 69 (75.8%) 39 (48.7%) 35 (76.1%) 22 (55.0%) 10 (62.5%) 10 (65.6%)

PS score 0.718 0.144 0.310

0 7 (7.7%) 4 (5.0%) 7 (15.2%) 1 (2.5%) 6 (25.0%) 5 (27.8%)

1 70 (76.9%) 65 (81.2%) 28 (60.9%) 32 (80.0%) 15 (62.5%) 11 (61.1%)

2 11 (12.1%) 10 (12.5%) 9 (19.6%) 5 (12.5%) 3 (12.5%) 2 (11.1%)

3 3 (3.3%) 1 (1.3%) 2 (4.3%) 2 (5.0%) 0 (0.00%) 0 (0.00%)

CEA (Mean ± SD) 121.40 ± 177.29 88.92 ± 176.06 0.423 110.27 ± 177.98 88.90 ± 148.75 0.979 70.69 ± 129.72 16.11 ± 15.65 0.128

CYFRA (Mean ± SD) 12.04 ± 19.61 6.63 ± 6.46 0.02* 11.33 ± 19.76 7.03 ± 7.35 0.445 77.80 ± 143.02 5.757 ± 3.22 0.087

NSE (Mean ± SD) 20.13 ± 19.00 19.10 ± 13.68 0.867 18.10 ± 9.67 16.93 ± 7.24 0.404 55.35 ± 86.55 41.74 ± 80.19 0.381
F
rontiers in Oncology
 05
 frontie
PS score, performance status score; CEA, carcinoembryonic antigen; CYFRA, cytokeratin; NSE, neuron specific enolase; *, P<0.05.
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RS − Com − Exon 19 = 83:9707 − 79:94451� logarithm_glszm_

LowGrayLevelZoneEmphasis − 237:98322�
wavelet _HHH_glcm_ InverseVariance − 7:69075�wavelet _

HHL_gldm_SmallDependenceHighGrayLevelEmphasis − 17:05724�
lbp _ 3D_k _glcm_ClusterShade + 2:25838� lbp _ 3D −m2_ firstorder _

90Percentile + 0:74679�
log _ sigma_ 1 _0_mm_3D_ firstorder _ Skewness + 6:17158� logarithm_

glcm_ Imc2 − 25:50497�
log _ sigma_5_0_mm_3D_gldm_DependenceNonUniformityNormalized

+ 0:02124�wavelet _HLH_ firstorder _Maximum

RS − Com − Exon 21 = 27:55874 + 5:62779� lbp _ 3D _ k _ firstorder _ Variance

− 11:49092� wavelet _ LHH_ glszm_ SmallAreaLowGrayLevelEmphasis +

0:01118� wavelet − LLL _ firstorder _Minimum − 12:83371� gradient _ glcm _

Imc2 + 0:15562� wavelet − LLH _ firstorder _Median − 23:67674� wavelet _

HHL _ glcm _ Idmn + 56:93538� lbp _ 3D _ k _ glcm _ Imc2 − 15:75006

� wavelet _ HLH_ glcm _MCC
Development and valuation of the
radiomics nomogram

Figure 4A showed the developed nomogram models

incorporating the combined RS-Com-EGFR and smoking to

detect the EGFR mutation. Figure 4D demonstrated the

nomogram based on the RS-Com-Exon19, smoking and age to
Frontiers in Oncology 06
locate the exon 19 mutation site. Figure 4G exhibited the nomogram

consists of RS-Com-Exon 21 and age to locate the exon 21 mutation

site. Calibration curves (Figures 4B, C, E, F, H, I) proved whether

the predicted values of the nomogram models were consistent with

actual values. Figure 5 shows ROC curves of the developed models.

For predicting the EGFR mutation, the Clinical model-EGFR, Rs-

Com-EGFR and Radiomics nomogram-EGFR were developed by

using smoking status, combination of T1W and T2FS MRI, and

integration of smoking status with RS-Com-EGFR, respectively. For

predicting the Exon 19 mutation, the Clinical model-Exon 19, Rs-

Com-Exon 19 and Radiomics nomogram-Exon 19 were developed

by using smoking and age, combination of T1W and T2FS MRI,

and integration of smoking and age with Rs-Com-Exon-19,

respectively. For predicting the Exon 21 mutation, the Clinical

model-Exon 21, Rs-Com-Exon 21 and Radiomics nomogram-Exon

21 were developed by using age, combination of T1W and T2FS

MRI, and integration of age with Rs-Com-Exon-21, respectively.

The nomogram models always outperformed the combined

radiomics signatures and clinical models for predicting the EGFR

mutation and subtypes. Table 3 compares prediction capabilities of

each model. For predicting the EGFR mutations in exon 21, the

clinical models were significantly different (P<0.05) from the

nomogram models by the Delong test. Figure 6 depicts the

decision curves of each model, which shows that our nomogram

can obtain better prediction performance on judging whether the

patient is carrying the EGFR mutation and the mutation subtypes.
TABLE 2 Comparisons of the developed RSs for detecting the EGFR mutation and subtypes.

Training Internal validation External validation

AUC Acc Spe Sen P AUC Acc Spe Sen P AUC Acc Spe Sen P

EGFR
Mutation

RS-EGFR-T1W 0.756 0.740 0.725 0.714 0.742 0.738 0.850 0.652 0.729 0.698 0.771 0.679

RS-EGFR-T2FS 0.753 0.716 0.688 0.754 0.682 0.696 0.650 0.696 0.697 0.672 0.697 0.724

RS-Com-EGFR 0.806 0.732 0.863 0.670 0.745 0.704 0.725 0.696 0.738 0.709 0.755 0.687

RS-EGFR-T1W
vs.

RS-EGFR-T2FS

0.381 0.109 0.279

Exon 19 RS-Exon 19-T1W 0.840 0.737 0.775 0.784 0.758 0.720 0.750 0.692 0.819 0.711 0.731 0.742

RS-Exon 19-T2FS 0.828 0.702 0.700 0.863 0.754 0.715 0.750 0.731 0.801 0.709 0.728 0.857

RS-Com-Exon 19 0.872 0.762 0.700 0.922 0.760 0.758 0.550 0.962 0.825 0.736 0.739 0.869

RS-Exon 19-T1W
vs.

RS-Exon 19-T2FS

0.447 0.376 0.397

Exon 21 RS-Exon 21-T1W 0.854 0.781 0.767 0.812 0.758 0.721 0.727 0.792 0.804 0.719 0.732 0.807

RS-Exon 21-T2FS 0.835 0.769 0.721 0.812 0.722 0.690 0.818 0.708 0.746 0.713 0.729 0.736

RS-Com-Exon 21 0.913 0.780 0.837 0.875 0.799 0.771 0.864 0.750 0.811 0.723 0.714 0.786

RS-Exon 21-T1W
vs.

RS-Exon 21-T2FS

0.501 0.318 0.401
frontier
The first column is the models detecting EGFR mutation, Exon 19 and Exon 21. The second column is the model established by T1W sequence, T2FS sequence, and combined of two sequences to
predict EGFR mutation, Exon 19 and Exon 21.
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Discussion

In this study, values of multi-parametric MRI-based radiomics

for assessment of the EGFR mutation and subtypes based on the

spinal metastasis were analyzed. We found that the developed RSs

derived from T1W generated higher AUC, accuracy and specificity

compared with those from T2FS for predicting the EGFR mutation

and subtypes. This may be explainable since the T1W MRI can

reflect the anatomical structure, which is helpful to show the deep-

seated information within the tumor area. While, the T2FS MRI

reflects high signal intensities of the metastasis by suppressing fat

hyperintensities of the bone marrow. The combined RSs based on

the combination of the two MRI sequences can improve the

predictive performance in regard to AUC values, which may be

because complementary information can be obtained from the two

modalities. There were recent studies related to our work, Jiang et al.

and Ren et al. previously proposed machine learning models to

predict the EGFR mutation based on the bone metastasis in lumbar

(33) and thoracic spine (34), respectively. While, the reports only

explored radiomics approaches to evaluate the overall mutation
Frontiers in Oncology 07
status of the EGFR gene, and failed to predict the mutation

subtypes. Besides, the studies were lack of external validation sets,

which inhered their clinical values. A previous study evaluated

values of radiomics for differentiating EGFR mutations in exon 19

and exon 21 (24). However, the study has inherent bias with a

limited sample size (n=76) from a single center. Different from the

previous study, this work enrolled 299 patients from two centers

and comprehensively explored multiparameter MRI-based

radiomics for predicting the EGFR mutations (exon 18/19/20/21)

and exon 19/21.

We finally selected a total of 8, 9 and 8 most predictive features

for predicting the EGFR mutation, exon 19 and exon 21,

respectively. All features belong to the first-order and textural

feature categories. The first-order feature quantifies the

distribution of voxel intensity (35). While, the textural feature

(36) calculates the thickness of the tumor texture, which reflects

the heterogeneity within the tumor. The majority of the features (18

of 25) were textural features, which may suggest that the

intertumoral heterogeneity might be highly related to the EGFR

mutation and subtypes. All predictive features belong to the filtered
B C

D E F

G H I

A

FIGURE 4

Nomogram models for predicting the EGFR mutation and subtypes. (A–C), nomogram for predicting the EGFR mutation. calibration curves of
nomogram in the training (B) and internal validation (C) set. (D–F), nomogram for predicting the exon 19 mutation. calibration curves of nomogram
in the training (E) and internal validation (F) set. (G–I), nomogram for predicting the exon 21 mutation. Calibration curves of nomogram in the
training (H) and internal validation (I) set. The red dotted line indicates the nomogram-predicted performance, whereas the blue line indicates an
ideal prediction.
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FIGURE 5

ROC curves for predicting the EGFR mutations and subtypes. (A–C), ROC curves of the models for predicting the EGFR mutation in the training (A),
internal validation (B) and external validation (C) cohorts. (D–F), ROC curves of the models for predicting the EGFR mutation in exon 19 in the
training (D), internal validation (E) and external validation (F) cohorts. (G–I), ROC curves of the models for predicting the EGFR mutation in exon 21 in
the training (G), internal validation (H) and external validation (I) cohorts.
TABLE 3 Comparisons of the combined radiomics signatures, clinical models and nomogram models.

Training Internal validation External validation

AUC Acc Spe Sen p AUC Acc Spe Sen p AUC Acc Spe Sen p

M1 0.806 0.732 0.863 0.670 0.745 0.704 0.725 0.696 0.738 0.709 0.755 0.687

M2 0.635 0.601 0.758 0.512 0.605 0.616 0.761 0.550 0.653 0.637 0.720 0.614

M3 0.829 0.747 0.675 0.846 0.760 0.792 0.650 0.804 0.780 0.728 0.754 0.673

M1 vs M2 0.040 0.265 0.106

M1 vs M3 0.384 0.637 0.249

M2 vs M3 0.009 0.157 0.103

M4 0.872 0.762 0.700 0.922 0.760 0.758 0.550 0.962 0.825 0.736 0.739 0.869

M5 0.700 0.618 0.600 0.784 0.606 0.587 0.600 0.692 0.699 0.653 0.651 0.766

(Continued)
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features that cannot be detected by radiologists (37). This may

explain why radiologists can hardly evaluate the EGFR mutation

status by visual observations on MRI data of the bone metastasis.

Some clinical factors, such as gender and smoking, have been

shown to be associated with the EGFR mutation in NSCLC (38)

(39). Some studies showed that the smoking and EGFR mutation

subtypes are highly correlated (38) (40). In this study, we found

that the smoking is highly correlated with the EGFR mutation. For

locating the EGFR mutation sites, the smoking and age were

found to be independent predictive factors. While, the age was

previously considered invalid for predicting the EGFR subtypes

(39). To explore potential values of the clinical factors, we

integrated important clinical factors with combined radiomics

signatures to construct nomogram models (41), which

significantly improved the prediction performance. This suggests

that important clinical factors and imaging features may be

complement. Comparisons of each model by DCA further

proves that our nomogram has better clinical applicability (42).

Therefore, we believe that our nomogram can be used as an

effective non-invasive tool to detect the EGFR mutation and

subtypes in NSCLC patients with bone metastasis.

This study has some limitations. First, although we included an

independent validation set from another center, the amount of
Frontiers in Oncology 09
samples was still small and the ethnic group was single. Second,

Some serum biomarkers were not included in this study due to

missing clinical data. Finally, this study only assessed the EGFR

mutation and subtypes. Other important mutation types (e.g.

KRAS, ALK and ROS1) that were also important for the

treatment planning in NSCLC were not assessed due to data

collection challenges.
Conclusion

In conclusion, we developed and externally validated multi-

parametric MRI-based radiomics to predict the EGFRmutation and

subtypes. The constructed nomogram provide a potential non-

invasive method that may help clinicians to make individualized

treatment for NSCLC patients.
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TABLE 3 Continued

Training Internal validation External validation

AUC Acc Spe Sen p AUC Acc Spe Sen p AUC Acc Spe Sen p

M6 0.885 0.813 0.900 0.725 0.777 0.791 0.650 0.808 0.846 0.801 0.744 0.795

M4 vs. M5 0.162 0.247 0.199

M4 vs. M6 0.379 0.674 0.324

M5 vs. M6 0.076 0.045 0.017

M7 0.913 0.780 0.837 0.875 0.799 0.771 0.864 0.750 0.811 0.723 0.714 0.786

M8 0.655 0.608 0.744 0.562 0.548 0.597 0.773 0.583 0.503 0.559 0.608 0.697

M9 0.919 0.830 0.837 0.854 0.811 0.782 0.955 0.708 0.818 0.801 0.846 0.800

M7 vs M8 0.032 0.176 0.018

M7 vs M9 0.563 0.612 0.753

M8 vs M9 0.011 0.027 0.044
frontier
M1, RS-Com-EGFR; M2, Clinical model-EGFR; M3, Nomogram-EGFR; M4, RS-Com-Exon 19; M5, Clinical model-Exon 19; M6, Nomogram-Exon19; M7, RS-Com-Exon 21; M8, Clinical
model-Exon 21; M9, Nomogram-Exon 21.
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FIGURE 6

DCA curves for the developed radiomics models in the training (A), internal validation (B) and external validation (C) cohorts.
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