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Introduction: The search for biomarkers to predict radiosensitivity is important

not only to individualize radiotherapy of cancer patients but also to forecast

radiation exposure risks. The aim of this study was to devise a machine-learning

method to stratify radiosensitivity and to investigate its association with genome-

wide copy number variations (CNVs) as markers of sensitivity to ionizing

radiation.

Methods: We used the Affymetrix CytoScan HD microarrays to survey common

CNVs in 129 fibroblast cell strains. Radiosensitivity was measured by the surviving

fraction at 2 Gy (SF2). We applied a dynamic programming (DP) algorithm to

create a piecewise (segmented) multivariate linear regression model predicting

SF2 and to identify SF2 segment-related distinctive CNVs.

Results: SF2 ranged between 0.1384 and 0.4860 (mean=0.3273 The DP

algorithm provided optimal segmentation by defining batches of radio-

sensitive (RS), normally-sensitive (NS), and radio-resistant (RR) responders. The

weighted mean relative errors (MRE) decreased with increasing the segments'

number. The borders of the utmost segments have stabilized after partitioning

SF2 into 5 subranges.

Discussion: The 5-segment model associated C-3SFBPmarker with themost-RS

and C-7IUVU marker with the most-RR cell strains. Both markers were mapped

to gene regions (MCC and SLC1A6, respectively). In addition, C-3SFBP marker is

also located in enhancer and multiple binding motifs. Moreover, for most CNVs

significantly correlated with SF2, the radiosensitivity increased with the copy-

number decrease.

In conclusion, the DP-based piecewise multivariate linear regression method

helps narrow the set of CNVmarkers from the whole radiosensitivity range to the

smaller intervals of interest. Notably, SF2 partitioning not only improves the SF2
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estimation but also provides distinctive markers. Ultimately, segment-related

markers can be used, potentially with tissues’ specific factors or other clinical

data, to identify radiotherapy patients who are most RS and require reduced

doses to avoid complications and the most RR eligible for dose escalation to

improve outcomes.
KEYWORDS

radiosensitivity, surviving fraction at 2 Gy (SF2), dynamic programming, linear
regression, Affymetrix CytoScan HD microarrays, copy number variation
(CNV), radiogenomics
1 Introduction

Individual variation in radiosensitivity is well recognized in

clinical, epidemiological, and laboratory investigations and is

largely attributed to genetic factors (1, 2). The genomic basis of

radiosensitivity (radiogenomics) has a potential impact on

personalized medicine, both in the treatment of cancer patients,

where normal tissues and tumors differ in their response to

radiotherapy, and in cancer predisposition, where exposure in

occupational, diagnostic radiology, environmental and space

radiation exposures may have different carcinogenic susceptibilities

in populations (3, 4). Currently, the term radiogenomics is used

ambiguously to refer to genetic variation associated with response to

radiation (Radiation Genomics) or to cancer imaging features

attributed to gene expression profiling (Imaging Genomics).

An important step in the development of radiogenomics is to

devise statistical methods and algorithms that are capable of

identifying a few important genetic variations between millions

generated in genome-wide association studies (GWAS). Using twin

studies, we reported that certain SNPs and their transcriptomic

influence are associated with individual radiation sensitivity with a

heritability estimate of 66% (5). In a previous study, an association

between individual radiosensitivity, measured in vitro with

clonogenic survival, and certain genetic polymorphic variations

has been described that showed an increasing effect with an

increasing number of the identified risk alleles (6). Based on these

observations, a GWAS was initiated using the Affymetrix CytoScan

HD microarrays that also enable the quantification of the copy

number variation (CNV) in the genome. CNV is a type of structural

variation where a stretch of DNA experiences gains (CNV>2) or

losses (CNV<2) compared to the normal two copies (CNV=2),

which affects gene dosage (7). Pilot analysis underlined the

inadequacy and limitation of relying on the threshold value of

mean radiosensitivity measurement between radio-sensitive (RS)

and normally sensitive (NS) cell strains, which appeared as

theoretical and conventional (8). Here we extend this study using

a new strategy of combining qualitative and quantitative statistical

approaches to identify potential biomarkers, taking into

consideration not only the overall correlation between the
02
radiosensitivity measure and CNVs but also its differences

between RS, NS and radio-resistant (RR) cell strains.

The radiosensitivity of cell strains in culture is frequently

characterized by the surviving fraction at 2 Gy (SF2) radiation dose

assessed in a clonogenic survival assay (6). It represents the proportion

of cells that maintain their ability to grow into colonies after the dose of

2 Gy irradiation. SF2 is considered a gold standard for measuring cell

radiosensitivity, robust enough to be widely used in various radiation

research projects (9). In many studies, SF2 is a base for grouping cell

strains of similar sensitivity: usually denoted as RS and NS responders.

In that case, the mean (6) or median (10, 11) SF2 value serves as a

threshold since the SF2 distribution is approximately normal. The two

obtained groups varying in radiosensitivity are being statistically

compared in terms of features of interest like gene expression.

However, the mean- or median-based division may result in the

misassignment of cell strains of similar SF2 values surrounding the

threshold to the opposite categories. This may lead to the loss of some

significant information because cell strains close in their sensitivity can

be tested against each other. The solution would be to stratify SF2 by

extracting only cell strains that are unambiguously RS or RR and

compare them while discarding all cell strains that are intermediate in

their response to radiation. Various attempts have been made to

establish SF2 thresholds for radiosensitivity-based grouping of cell

lines. In the study by Bentzen (12), the SF2 cutoff value was

proposed to screen for patients overreacting to radiotherapy. This

was, however, based on the SF2 values generated from a log-normal

distribution. In the study by Story et al. (13), 90 skin fibroblast cell lines

were clustered into RS, NS, and RR subsets with the k-means

algorithm. Nevertheless, no widely used SF2 threshold exists.

Building a systems-biology model to predict SF2 is another

approach to identifying radiosensitivity-associated biomarkers (14).

This method allows for using SF2 as a continuous dependent

variable, reducing the risk that some information carried by SF2

is omitted due to categorization. In 2005, Torres-Roca et al. (15)

proposed a gene expression-based model for the prediction of

radiosensitivity characterized by SF2 in tumor cell lines. The

classifier included a significance analysis of microarrays (SAM)

gene selection and multivariate linear regression model. In 2014,

Zhang et al. (16) improved the quality of SF2 prediction with their
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nonlinear approach that consisted of SAM and support vector

machine (SVM) regression. In that model, gene expressions of

tumor cell strains were used. In 2020, He et al. (17) provided

multiple genomic data fused partial least squares deep regression

method (MGPLS) for SF2 prediction. In this study, both gene

expression and CNV of cancer cell lines were considered. All

those approaches were based on the entire range of SF2, without

any partitioning into smaller RS or RR subsets.

This research aimed to investigate the relationship between the

CNV and the sensitivity to ionizing radiation as measured

quantitatively by SF2. We intended to avoid early and arbitrary cell

strain grouping by treating radiosensitivity as the categorical variable.

Instead, we apply a multivariate linear regression for the rough

estimation of SF2. The radiosensitivity signature is based on the

selection of markers that allow for satisfactory estimation. We also

propose a method to optimally partition SF2 into subranges and fit a

separate model for each of them. In this manner, we define data-

driven SF2 thresholds for sensitive, normal, and resistant

radiosensitivity groups. The local piecewise approach, where the

analysis is performed for SF2 intervals (segments), reflects the

situation when different factors influence the response to

irradiation in sensitive and resistant cells. It allows for identifying

specific signatures for each radiosensitivity group.
2 Materials and methods

2.1 Data collection and preprocessing

Complete sets of data for 129 (55 males and 74 females) non-

transformed fibroblast cell strains were available for this study from

our cell line collections previously established from normal

individuals (6). The institutional review board (IRB) at King Faisal

Specialist Hospital and Research Centre has approved the study

(RAC-2120-003). Donors have voluntarily participated and signed

informed consent. Cells were maintained in a DMEM culture

medium supplemented with 15% fetal bovine serum, 100 units/ml

penicillin, and 0.1 mg/ml streptomycin and incubated at 37°C in 5%

CO2 humidified atmosphere. Cellular radiosensitivity measurement

using the clonogenic survival curves and the determination of the SF2

was described previously (6). Briefly, contact-inhibited (about 90% in

G0-G1) cultures were used, tested cells were trypsinized, counted, and

seeded to yield at least 50 colonies at different radiation doses

(ranging from 0 to 4 Gy) in each of three replicated flasks, and

colonies with at least 50 cells were scored as survivors after incubation

for 2-3 weeks and stained with crystal violet. Each cell strain

underwent three to five independent experiments. The average

plating efficiency was 28% (range 2% - 90%). Survival data were

fitted to the linear quadratic model of cell killing [SF = exp (- aD -

bD2)], and the surviving fraction at 2 Gy (SF2) was computed and

used to characterize the radiosensitivity of each cell strain.

DNA was extracted from non-irradiated fibroblasts using the

Puregene DNA Purification Kit (Gentra System, Qiagen,

Minneapolis, MN, USA) according to the manufacturer’s

instructions. DNA was genotyped using the Affymetrix CytoScan
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HD microarrays (Affymetrix, ThermoFisher Scientific, Waltham,

MA, USA) according to the manufacturer’s instructions as described

elsewhere (18, 19). Preprocessing and quality control were performed

with Chromosome Analysis Suite 3.1 tool (Thermo Fisher Scientific

Inc., Waltham, Massachusetts, USA). The created data set was

deposited in the GEO database (http://www.ncbi.nlm.nih.gov/geo/) as

the GSE231621 series.

The CNV was obtained for each sample. Fold Change (FC)

value represents the sample CNV compared to the Affymetrix

reference genome. FC is the ratio of sample and reference signals

on a base-2 logarithmic scale, as given in the equation:

FC = log2
sample
reference

Thus, positive FC values indicate increased CNV in comparison to

the reference genome. On the contrary, negative FC corresponds to a

genomic loss. We used biomaRt R package to map markers to genes

and regulatory features based on the marker chromosomal start

position (20, 21). We considered only markers located at autosomes

to reduce the risk of sex-related bias and imbalance in cell strain groups

identified in further steps. The coverage of autosomalmarkers provided

by Affymetrix CytoScan HD microarrays equals 2,491,915.
2.2 Correlation analysis

We aimed to avoid treating cell radiosensitivity as a binary

feature. Hence, SF2 served as a continuous measure instead of being

resolved into only a base for individuals’ categorization. To

investigate the association between radiosensitivity and CNV, the

Pearson and Spearman rank correlation coefficients were calculated

between SF2 and FC for each marker. All correlation coefficients

were tested for significance. The results were corrected for multiple

testing with the Benjamini-Hochberg method (22).
2.3 Multivariate linear regression models

We aimed to create a global Multiple Input Single Output

(MISO) linear regression model for the rough SF2 estimation,

which allowed for treating the radiosensitivity characterization

quantitatively rather than qualitatively. The proper linear

regression model should include only FC values for markers that

provide significant information about SF2. Thus, selected features

are probably associated with cellular radiosensitivity. Consequently,

apart from the SF2 prediction, the model should allow for the

radiosensitivity signature identification based on the list of markers

that will make the satisfactory prediction possible.

To assess models’ quality, we kept randomly chosen 13 cell strains

as a validation set. The remaining 116 cell strains served as a training

set for model building. The validation set was selected in a balanced

manner so that the included cell lines were distributed equally in the

entire SF2 range. For this set only, we tested the Pearson correlation

between each FC and SF2. Only the Pearson correlation coefficient was

considered because it corresponds to the linear association. The set of
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potential features for every model consisted only of markers with the

strongest correlation between FC and SF2 (p<10-5). The rest was

rejected as their contribution to the model cannot be significant

when the correlation between FC and SF2 is weak.

Each MISO linear regression model was built with the forward

feature selection method with Bayes Factor (BF) as a criterion (23). A

new feature was added based on the highest BF among all models

considered in each step. The model was expanded until BF decreased

below 10. This threshold is interpreted as at least strong evidence in

favor of the more complicated model (24). The number of features in

the model must have been at least 10 times higher than the number of

cell strains used for fitting. Hence, for the whole training set, the

MISO regression model could maximally consist of 11 features.

We estimated the quality of each model as the Mean Relative

Error (MRE), with the Relative Error (RE) for the i-th cell strain

described by the formula:

REi =
SF2predictedi−SF2observedi
�
�

�
�

SF2observedi
�
�

�
�

We created the MISO linear regression model for the entire

training set that covered the whole range of SF2 values.
2.4 Piecewise linear regression

We suspect that the relation between SF2 and FC for many markers

may be non-constant for the entire range of SF2. Following the SF2

estimation with the global MISO model, we investigated whether fitting

different MISO linear regression models in SF2 intervals instead of the

whole range would be more accurate. For this reason, we adapted the

piecewise linear regression method so that the dependent variable is

partitioned instead of the independent one. Hence, we divided cell strains

into segments of similar SF2 values and created a separate local MISO

linear regression model for each batch in the manner described above.

This approach enables fine-tuning radiosensitivity estimation by

choosing specific markers for each SF2 subrange. Thus, it allows

investigating whether a response to irradiation is associated with

different features in cells varying in their sensitivity, which, as we

assumed, may represent diverse biological background.

We fitted separate models for two training set subgroups. We

used the training set’s SF2 mean value for the division, as it is a

threshold typically applied for the categorization of cell strains in

similar studies (6, 25). Moreover, we also examined other

breakpoints as well as different numbers of segments.
2.5 Segment identification by
dynamic programming

As stated above, SF2 mean- or median-based segment division

is arbitrary and does not separate sensitive and resistant cell strains

the best way. To verify whether the different breakpoint choice

improves prediction, we implemented a dynamic programming

(DP) (26) algorithm to identify the optimal segments (batches). Cell

strains sorted according to SF2 were partitioned into segments in a

manner to minimize the overall (weighted) MRE for the training

set. The overall MRE is an arithmetic mean of relative errors for
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each cell strain across all batches. It also represents the weighted

mean of batch MREs, with weights defined as a proportion of

observations assigned to each batch. The overall MRE is given by

the formula, where k is the segment index from 1 to K, and i is the

cell strain index from 1 to N.

MREoverall =  o
K

k=1

(MREk ·
nk
N

) =  o
N
i=1REi
N

Moreover, we examined if SF2 partitioning into a higher number of

batches increases the quality and perhaps gives a more comprehensive

insight into radiosensitivity signature. The selection of the utmost

segments was critical as they correspond to the most RS and RR cells. It

is their comparison in terms of the CNVs that seems to be crucial for

the study. We thus aimed to identify optimal data-driven SF2

breakpoints, as well as the number of segments that allow for the

selection of well-established outer batches. However, the number of

segments should not be too high to avoid having multiple overfitted

models for too few cell strains. Thus, we defined the minimal batch size

as 10. This value reflects the requirement for the model to include at

least 10 observations per one independent variable.
2.6 Comparative analysis

Comparative analysis was applied to determine markers

differing in their CNV between the RS and RR groups of cell

strains. Due to the large number of comparisons (n=2,491,915), the

Mann-Whitney U test was conducted with the significance level set

to 10-5. Differences between groups were also assessed with Glass

rank-biserial correlation (27), which is a non-parametric effect size

estimate. Interpretation of its absolute values is defined as small,

medium, large, and very large for the following thresholds: 0.1, 0.3,

0.5, and 0.7, respectively (28, 29).
3 Results

3.1 Surviving fraction after irradiation

Radiosensitivity measured by the SF2 ranged between 0.1384

and 0.4860, with a mean of 0.3273 and a median of 0.3490. The

standard deviation of SF2 equalled 0.0868, while the interquartile

range was 0.1105. The U Mann-Whitney test showed no significant

differences in SF2 between males and females (p=0.2521). The SF2

distribution is presented in Figure 1.
3.2 Association between radiosensitivity
and copy number variation

We assessed the correlation between SF2 and FC for each marker.

We observed a medium effect (|r|>0.3) for 7,889 and 7,670 markers

based on the Pearson and Spearman correlation coefficients,

respectively. However, after the Benjamini-Hochberg correction for

multiple testing, no result remained significant for the Pearson

correlation. As for the Spearman rank correlation coefficient, the
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association was significant for nine markers (S-3YLSD, C-7KGRE, C-

6ZIYI, C-6FQFW, C-7CYVD, S-3EJUZ, C-5XHWW, C-3EZUM, C-

3KFRW) (Supplementary Table 1), three with negative correlation (C-

7KGRE, C-7CYVD, C-5XHWW), for which the rise in the copy-

number is associated with increased radiosensitivity, and six with

positive correlation, for which the drop in the copy-number is

correlated with increased radiosensitivity. The six markers are located

in the introns (GABRA2, FAT4, RBFOX1, RRN3, and PDXDC1 genes),

exons (MS4A6A gene), or 3’-UTR regions (RRN3, PDXDC1 genes).

The remaining three markers are located in the intergenic regions at

chromosomes 2 and 17. The scatterplots of the SF2 versus FC for three

exemplary markers are presented in Figure 2.
3.3 Global multivariate linear regression
model

The division into training and validation sets is presented in

Figure 1. In total, the p-values of the Pearson correlation

significance test were lower than 10-5 for 299 markers. Those
Frontiers in Oncology 05
markers were selected as the potential features for all linear

regression models built in the study.

The final global MISO regression model fitted based on the

entire training set consisted of ten markers, seven of which were

mapped to gene regions (Table 1). Moreover, two markers were in

regions with regulatory potential (Table 1). MRE for this model was

equal to 0.1142 and 0.2253 for the training and validation

sets, respectively.
3.4 Local piecewise multivariate linear
regression models

The first piecewise MISO linear regression attempt was to

create separate models for RS and NS groups. That division was

based on the mean of SF2 for the training set, which is equal to

0.3273. The RS training set consisted of 46 cell strains, while the

NS training set included the remaining 70 cell strains. The model

fitted for the RS subrange included four markers, with three of

them mapped to the following gene regions: FAHD2A, DCC, ISX,
0
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FIGURE 1

Distribution of surviving fraction at 2 Gy (SF2) values. (A) – Histogram showing counts of SF2 values for all cell strains (N=129) in the study. (B) –
Error bars per histogram bin representing SF2 mean values ± standard deviation. (C) – Distribution of SF2 values indicating training (n=116) and
validation (n=13) sets. Each point corresponds to one cell strain. Some points are vertically shifted to avoid overlapping.
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and RP1-272J12.1. The model for the NS group consisted of FC

for five markers, three of which were located inside the following

genes: PROZ, FOXP1-AS1, FOXP1, CTD-3012A18.1, and RP11-

460B17.3 (Supplementary Table 2). Moreover, binding motifs

were also identified for three markers (Supplementary Table 3).

The overall MRE was better than for the model fitted on the

entire training set. However, we observed that the model

performance was lower for the RS subrange than for the NS

response group (Table 2).
Frontiers in Oncology 06
To select optimal breakpoints for segmented regression, we

fitted the models with the dynamic programming (DP) approach.

The obtained SF2 breakpoints and the overall MRE values for

different numbers of segments are presented in Table 3. The MREs

calculated separately for each subrange can be found in

Supplementary Table 4. The MRE decreases as the number of

batches increases. However, the borders of the utmost segments

stabilized after partitioning SF2 into five subranges (Figure 3). Thus,

the MISO regression model with five batches was assumed to
−0.50

−0.25

0.00

0.25

0.50

0.1 0.2 0.3 0.4 0.5
SF2

FC

C−6FQFW
A

0.1 0.2 0.3 0.4 0.5
SF2

S−3EJUZ
B

0.1 0.2 0.3 0.4 0.5
SF2

C−7CYVD
C

Set Training Validation

FIGURE 2

Scatterplots of the surviving fraction at 2Gy (SF2) and fold change (FC) values for the exemplary markers with the significant Spearman rank
correlation. (A) – Marker C-6FQFW located in the GABRA2 gene intron. (B) – Marker S-3EJUZ located in the MS4A6A gene exon. (C) – Marker C-
7CYVD located in the FAT4 gene intron. Data points correspond to cell strains in the training and validation sets as indicated.
TABLE 1 Linear regression parameters with gene and functional annotations. All cell strains in the training set (n=116) were used for fitting and the
entire SF2 range was considered.

Marker Gene
Genomic
region

Regulatory feature
Regression coef-

ficient
P-

value

Intercept – – – 0.3460 <0.0001

S-4LQMA DCC Intron – -0.0834 0.1917

C-7NZOT KAZN Intron Binding Motifs:
ENSM00894371323, TEAD4::SOX15;
ENSM00894371323, POU2F1::DLX2

0.0573 0.0003

C-4DHPL – Intergenic – -0.2337 <0.0001

C-6FQFW GABRA2 Intron – 0.1743 0.0001

C-5ZTNW PHF14 Intron – -0.1602 0.0005

C-7KDQH LINC01090 Intron – -0.2120 0.0001

S-3SHPD TSNAX-DISC1, DISC1 Intron,
Intron

– 0.1700 0.0018

C-5TMHZ – Intergenic – -0.1227 0.0005

S-4CYFP – Intergenic – 0.1295 0.0007

S-3LRAO CTD-3012A18.1, RP11-
460B17.3

Intron,
Intron

Promoter Flanking Region:
ENSR00001533279
Binding Motif:
ENSM01015619192, CUX1::NHLH1

-0.1509 0.0021
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provide an adequate division into segments and a satisfactory

section of the markers associated with the radiation response

within each subgroup. Moreover, the utmost breakpoints served

as thresholds to identify the most RS and RR cell strains.

The selected piecewise linear regression model with five

segments included one marker for each utmost batch

corresponding to the most RS and the most RR cell strains

(Table 4). Both those markers (C-3SFBP and C-7IUVU,

respectively) were mapped to gene regions: MCC in the RS group

and SLC1A6 in the RR group, respectively (Table 4). In addition, the

C-3SFBP marker used in the low SF2 local model was also located in

the enhancer region (ENSR00001697205). Furthermore, 18 binding

motifs were found in this genomic position, including those

associated with the evolutionarily conserved RFX transcription

factor family (Supplementary Table 5). We assessed the pairwise

association between FC of markers included in various local models

with the Pearson correlation coefficient (Figure 4).
3.5 Comparison of most sensitive and most
resistant cell strains

We selected the most RS and the most RR cell strains with two

approaches: based on piecewise regression breakpoints (DP-based)

and quartile values (Q-based). CNVs of the most RS and the most

RR cell strains were compared with the Mann-Whitney U test. In

both cases (DP- and Q-based), we detected no statistically

significant differences after the Benjamini-Hochberg correction

for multiple testing due to a large number of comparisons

(n=2,491,915). However, Mann-Whitney U test p-values were

lower than 10-5 for 39 and 110 markers in DP-based and Q-based
Frontiers in Oncology 07
approaches, respectively. The observed Glass rank-biserial

correlation effect was at least large for 3,382 markers in the Q-

based comparison (Figure 5A). In total, 2,224 introns, 142 exons, 66

3’-UTRs, and ten 5’-UTRs were identified within those markers. For

the Q-based approach, only two markers had a very large effect: one

located in the GABRA2 gene and the other in the intergenic

sequence. No regulatory functions were identified for both of

those markers. Comparatively, at least a very large effect was

observed for 2,116 markers in the DP-based variant model

(Figure 5B). Those markers were mapped to 1383 intron regions,

78 exon regions, 42 3’-UTR regions, and seven 5’-UTR regions in

total. For both approaches, genomic positions of differentiating

markers were distributed uniformly across all chromosomes

(Figures 5A, B). There were only 442 (8.74%) common markers

identified in both Q- and DP-based comparisons (Figure 6).
4 Discussion

Inter-individual variations in radiosensitivity are well

recognized and impact not only medical radiology patients but

also the risks of radiation exposure in the human population at large

(30). Efforts to develop quantitative methods to better measure

radiosensitivity have been ongoing for decades with stagnating

advancements. It is, therefore, not surprising that applications of

biological endpoints and mathematical modeling have played

prominent roles in the characterization of radiosensitivity in cell

lines in vitro and in radiotherapy patients in vivo. In general, to

model the relationship between SF2 and FC, an assumption needs

to be made about its shape for each marker, which was a challenge

given the large number of markers and the unknown optimal
TABLE 3 The weighted Mean Relative Errors (MREs) of piecewise MISO linear regression models along with the SF2 breakpoints defined with the
dynamic programming (DP) algorithm.

Number of segments SF2 breakpoints*
Weighted MRE

Training set Validation set

2 0.3168 0.0712 0.1828

3 0.2508/0.3490 0.0488 0.1093

4 0.1996/0.2835/0.3599 0.0356 0.1044

5 0.1996/0.2835/0.3613/0.4197 0.0275 0.0812

6 0.1996/0.2496/0.3276/0.3613/0.4197 0.0222 0.0686
* The breakpoint was defined as the highest SF2 value among the cell strains included in the given segment as determined by the DP algorithm.
TABLE 2 The Mean Relative Errors (MREs) of piecewise MISO linear regression model along with the mean SF2 for the training set serving as the
breakpoint.

Cell strains SF2
MRE

Training set Validation set

NS* group >0.3273 0.0499 0.0774

RS** group <0.3273 0.1140 0.3109

All (weighted MRE) 0.0753 0.1851
*NS, normally sensitive to irradiation; **RS, radio-sensitive.
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number of SF2 subranges. We overcome these challenges by using a

piecewise multivariate linear regression with a dynamic

programming approach. Furthermore, subdividing SF2 into

subranges and fitting separate models not only improved the

prediction of SF2, but also made it safe to assume that the

relationship between FC and SF2 is locally linear. In this study,

we put forth a multivariate piecewise linear regression model to

categorize cell strains based on their radiosensitivity and group-

wisely investigate its association with the CNVs obtained from

GWAS experiments. Fitting local models allows us to identify CNV
Frontiers in Oncology 08
markers specific for cell strains similar in their radiation response,

in particular for radio-sensitive and radio-resistant. Hence, we

potentially address the challenge of adjusting the radiotherapy not

only to over- but also under-responders.

For the global MISO linear regression model fitted for the entire

SF2 range, the MREs were 0.1142 and 0.2253 for the training and

validation sets, respectively. The root-mean-square error (RMSE)

values were equal to 0.0405 and 0.0879 for the training and

validation sets, respectively. These results are smaller than 0.094

and 0.16 reported by He et al. (17) and Zhang et al. (16),
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TABLE 4 Parameters with gene and functional annotations for piecewise MISO linear regression model.

Batch
ID

Marker
Gene
name

Genomic
region

Regulatory feature
Regression coeffi-

cient
P-

value

1
Intercept – – – 0.4412 <0.0001

C-7IUVU SLC1A6 Intron – -0.1035 0.0017

2

Intercept – – – 0.3776 <0.0001

S-4BQJJ – Intergenic Enhancer (ENSR00001567932) 0.0780 <0.0001

C-4QDUE – Intergenic – 0.1105 <0.0001

S-4RYXA – Intergenic – 0.0835 0.0001

3

Intercept – – – 0.3285 <0.0001

C-3AYCQ BBS9 Intron – -0.1305 0.0002

S-3FJGU ST6GALNAC3 Intron – -0.0934 0.0019

S-3HXEG – Intergenic
Promoter Flanking Region

(ENSR00001504317)
0.0744 0.0055

4

Intercept – – – 0.2790 <0.0001

C-6SACB – Intergenic – 0.1293 <0.0001

S-3NWRM ROBO1 Intron – 0.1330 0.0033

5
Intercept – – – 0.1713 <0.0001

C-3SFBP MCC Intron Enhancer (ENSR00001697205) 0.1821 <0.0001
F
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respectively, which were achieved in their linear approaches. Their

nonlinear models performed better, with RMSE equal to 0.0025 and

0.011, respectively. Nevertheless, despite high MRE in the validation

set (0.2253), our global linear regression model provided the

selection of markers associated with SF2 in the whole SF2 range.

The Spearman rank correlation between FC and the whole SF2

range was significant for nine CNV markers (S-3YLSD, C-7KGRE,

C-6ZIYI, C-6FQFW, C-7CYVD, S-3EJUZ, C-5XHWW, C-3EZUM,

C-3KFRW). Although the results showed that radiosensitivity could

be associated with loss and gain in CNVs, for most of those markers,

the correlation between SF2 and FC was positive, meaning the
Frontiers in Oncology 10
increased radiosensitivity was associated with a drop in the copy

number. Using Affymetrix 6.0 SNP arrays to survey common CNVs

in a cohort of 50 RS lymphoblastoid cell lines, Li et al. (31) reported

a dominance of chromosomal gains over losses, which the authors

deemed as inconsistent with the traditional concept of the

molecular basis of RS. Nevertheless, the various findings of the

CNV studies enrich the molecular mechanisms of RS by

highlighting that chromosomal loss and gain may be an

important pathway in regulating the radiosensitivity phenotype.

Dividing the cell strains based on the mean SF2 and fitting two

separate linear regression models improved the SF2 estimation.
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Weighted MRE for both training and validation sets was lower than

for the model built for the entire SF2 range (Table 2). Moreover, we

observed that MRE values were lower for the RR subrange than for

the RS one. Hence, SF2 could be estimated more accurately in its

high values. The satisfactory prediction was harder to obtain for

more RS cell strains also in other studies. All models proposed by

He et al. (17), Zhang et al. (16), and Torres-Roca et al. (15) perform

more poorly for low SF2 values, corresponding to RS cell strains.

What is more, RR and RS models differ in the selected markers,

which suggests that various factors influence the response to

irradiation in sensitive and resistant cells. This conclusion and the

improvement of performance due to SF2 partitioning supports the

decision to use segmented linear regression for the local

identification of CNV associated with sensitivity. Due to the

difficulties in the prediction of low SF2, we decided to use MRE

for the model quality estimation. The relative error does not

discriminate against the wrong estimation for RS cell strains,

while RMSE does. If the observed SF equals 0.1 and the predicted

SF2 is two times higher, the impact on the RMSE value is the same

as when the predicted SF2 equals 0.8 instead of 0.7.

We compared the weighted MREs of two two-segment models:

the first one with the breakpoint defined by mean SF2 (0.0753 and

0.1851 for the training and validation sets, respectively; Table 2),

and the second one with a breakpoint obtained with DP approach

(0.0712 and 0.1828 for the training and validation sets, respectively;

Table 3). Even though SF2 thresholds used for splitting in both

approaches were very similar (the mean 0.3273 compared to

0.3168), there was a slight decrease in the overall MRE. Thus, the

data-driven SF2 breakpoint increased prediction quality. Weighted

MRE decreased as the number of segments increased (Table 3). The

border for the RS segments remained constant for the number of

batches from 4 to 6 (Figure 3). For 5 and 6 batches, the thresholds

for both utmost salient segments stay the same. Hence, we chose the

division into 5 batches as the optimal solution. For this local MISO

linear regression model, RMSE equalled 0.0107 and 0.0279 for the

training and validation sets, respectively. The prediction is thus

similar to Zhang et al. (16) nonlinear approach but worse than for

the nonlinear model proposed by He et al. (17). Both RMSE and

MRE decreased substantially in comparison with our global model

for the entire SF2 range. Moreover, the segmented regression

approach provided separate markers related to sensitivity to

radiation in various specific SF2 intervals.

The highest SF2 included in the RS batch was 0.1996. This value

is similar to the cutoff SF2 equal to 0.19 for over-responders screening

proposed by Bentzen (12). With the k-means approach, Story et al.

(13) suggested cell strains with SF2<0.26 to be RS and cell strains with

SF2>0.36 to be RR. Those thresholds are in agreement with the ones

we obtained for three batches (SF2 ≤ 0.2508 and SF2>0.3490) and

four batches (the highest SF2 in the RS group equaled 0.1996 and the

lowest SF2 in the RR group equaled 0.3599).

The most RS and RR groups defined based on the DP approach

were more extreme in their response and less numerous than the

categories obtained with the SF2 quartiles. Those factors led to an

increased effect size (as determined by the Glass rank-biserial

correlation) so that we identified more markers with at least large

and very large effects (Figures 5, 6). The Glass rank-biserial
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correlation was more appropriate for the comparative analysis

than the Mann-Whitney U test due to a large number of markers.

Since the number of comparisons was very high, corrections for

multiple testing gave insignificant results. Nevertheless, at least a

very large effect was detected for 2,116 markers of differential

radiosensitivity in DP-based approach compared to 3,382 markers

with at least large effect in the Q-based model. Only 442 (8.74%)

markers were common in both comparisons (Figure 6).

Differentiating markers were mapped to various genomic regions

including introns, exons, 3’- and 5’-UTR regions and were

distributed uniformly across all chromosomes (Supplementary

Tables 6 and 7 for Q-based and DP-based approach, respectively).

The data used in this study was collected using Affymetrix

CytoScan HD microarrays, which provide measurements for nearly

2.7 million markers, including 2,491,915 autosomal markers. They

are distributed across the genome, hence many of the measured

markers were located in introns or intergenic regions.

Consequently, most of the potential predictive features for our

models were intergenic or intron. However, many of these

intergenic/intron markers were annotated with regulatory regions

such as enhancers or potential transcription factor binding motifs

(see Table 1). This suggests that alterations in these fragments may

indirectly (through regulation of gene expression) affect various

cellular processes, related to response to stress and irradiation.

Although the marker identification described here requires

biological validation to ascertain the involvement of the genes

associated with the CNV markers, it is beyond the scope of the

present report. Nevertheless, evidence of mechanistic involvement

is mounting from studies in radiotherapy patients. A CNV analysis

in prostate cancer patients has identified seven genomic regions

associated with proctitis following radiotherapy (32). However,

there are still limitations in CNV studies mainly related to small

sample size, few populations studied, and the potential transitional

nature of copy number signatures due to the diversity of mutational

processes that give rise to these alterations (33). Therefore, larger

studies in multiple populations are required to validate these results

particularly in radiotherapy patients in a similar way to the multi-

centers radiogenomic consortium that had identified genetic

variants associated with radiation toxicities in prostate cancer

patients following radiation therapy (34). Furthermore, many

other non-genomic assays (such as DNA repair, cell death,

proliferation, hypoxia, etc.) had been tested and found to be

variably correlated with cellular, clinical radiosensitivity, and

potentially susceptibility to radiation-induced cancer (4).

Indeed, different cell types and tissues could have distinct

biomarker profiles that influence their radiation responses. As such,

any potential clinical application of our findings would need to be

integrated with a broader range of factors, including tissue-specific

considerations and other relevant clinical data. Nevertheless, the

findings of this study is a step forward and may have important

clinical implications for individualizing radiotherapy of cancer

patients. Once validated and applied in clinics, this approach could

potentially enable the stratification of radiotherapy patients into

groups of mild, moderate, and severe responders. This information

can help clinicians determine the optimal dose of radiation for each

patient to minimize complications and improve outcomes. This
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would greatly simplify and streamline the process of individualizing

radiotherapy for cancer patients and estimate the risks of radio-

susceptibility of exposed individuals. Eventually, this approach has

the potential to improve patient outcomes and minimize the risks

associated with radiation exposure.
5 Conclusions

In this study, we described a machine learning data-driven method

for the classification of sensitive, normal, and resistant radiation

responders. We created the global and local multivariate linear

regression models using the CNV measurements. Feature selection

while fitting the model produced the set of CNV markers associated

with cellular radiosensitivity for both: the whole investigated SF2 range

and the smaller intervals of interest, with the use of the dynamic

programming algorithm. Notably, SF2 partitioning not only improves

the SF2 prediction but also provides separate narrow lists of

radiosensitivity-related features in cells varying in their radiation

response. Ultimately, segment-related markers, along with potential

tissues’ specificities and clinical data, can be used to identify

radiotherapy patients who are most sensitive and require reduced

dose to avoid normal tissue complications and the most resistant,

eligible for dose escalation to improve local tumor control.
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