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Objective: This study aimed to evaluate and validate the performance of deep

convolutional neural networks when discriminating different histologic types of

ovarian tumor in ultrasound (US) images.

Material and methods: Our retrospective study took 1142 US images from 328

patients from January 2019 to June 2021. Two tasks were proposed based on US

images. Task 1 was to classify benign and high-grade serous carcinoma in

original ovarian tumor US images, in which benign ovarian tumor was divided

into six classes: mature cystic teratoma, endometriotic cyst, serous

cystadenoma, granulosa-theca cell tumor, mucinous cystadenoma and simple

cyst. The US images in task 2 were segmented. Deep convolutional neural

networks (DCNN) were applied to classify different types of ovarian tumors in

detail. We used transfer learning on six pre-trained DCNNs: VGG16, GoogleNet,

ResNet34, ResNext50, DensNet121 and DensNet201. Several metrics were

adopted to assess the model performance: accuracy, sensitivity, specificity, FI-

score and the area under the receiver operating characteristic curve (AUC).

Results: The DCNN performed better in labeled US images than in original US

images. The best predictive performance came from the ResNext50 model. The

model had an overall accuracy of 0.952 for in directly classifying the seven

histologic types of ovarian tumors. It achieved a sensitivity of 90% and a

specificity of 99.2% for high-grade serous carcinoma, and a sensitivity of over

90% and a specificity of over 95% in most benign pathological categories.

Conclusion:DCNN is a promising technique for classifying different histologic types

of ovarian tumors in US images, and provide valuable computer-aided information.

KEYWORDS

deep convolutional neural network, deep learning, ultrasound, benign ovarian tumor,
high-grade serous carcinoma
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1 Introduction

Ovaries are an important part of the female reproductive

system. Ovarian tumors have many different histological types.

Over 80% of patients with ovarian tumors are benign lesions. The

histopathological types of benign ovarian tumors are mainly

concentrated in serous cystadenoma, endometriotic cyst, mature

cystic teratoma and mucinous cystadenoma, accounting for nearly

90% of patients operated for ovarian tumors (1). The treatments

vary from one to another according to the histologic types and

biological behavior of ovarian tumors, patient’s age and fertility

needs. The surgeon needs to figure out the tumor size, benign or

malignant, histologic type as clear as possible to make treatment

decision (2). It is of vital important to figure out the histological

types of ovarian tumors before surgery.

The preoperative diagnosis of ovarian tumors is highly

dependent on imaging tests. Ultrasonography is widely used in

the clinical diagnosis of ovarian tumors because of its simplicity,

non-invasiveness, non-radiation, safety and affordability (3–5).

Ultrasound images are interpreted manually by sonographers, and

their accuracy plays an important role in the diagnosis and

assessment of disease. However, variability in diagnostic results is

inevitable due to professional knowledge, clinical experience,

physiological fatigue, and subjective differences (6). With the

development of artificial intelligence technology, the combination

of computer technology and medical image analysis will be expected

to provide new solutions in terms of cost, efficiency, and accuracy.

In recent years, deep learning analysis has been widely used in

medical image processing (7). Scientists have proposed many

methods to process medical images using deep neural network

models, such as Convolutional Neural Networks (CNN) (8), Fully

Convolutional Networks (FCN) (9), or Recurrent Neural Network

(RNN) (10), which can segment and assisting diagnose diseases of

medical images. There are researches in brain (11), lung (12), breast

(13), liver (14), vascular artery (15), thyroid (16) and more. The

DCNN can assist in diagnosing diseases by pre-processing images

through algorithms.

However, research and application of deep learning-based US

image analysis in the field of ovarian tumors is rare. Current

researches focus on the benign and malignant classifications (17–

21), but the treatment is closely related to the specific pathological

categories. The subdivided pathological categories can be helpful to

the physician in making a surgical decision. In this project, based on

our ovarian ultrasound images, we propose to build a deep learning-

based prediction model of ovarian tumors, which can classify the

pathological categories in detail, and evaluate its clinical value in

assisting the diagnosis of ovarian tumors, using postoperative

histopathological examination results as confirmation criteria.
2 Material and methods

This retrospective study was approved by the institutional

review board of Beijing Shijitan Hospital, and written informed

consent was waived (approval number sjtky11-1x-2022 (085)).
Frontiers in Oncology 02
2.1 Dataset collection

This study retrospectively collected patients with benign and

malignant ovarian tumors who underwent surgery for ovarian

tumors at Beijing Shijitan Hospital from January 2019 to June

2021 and underwent preoperative ultrasound, and were confirmed

by postoperative histopathological examination.

Inclusion criteria were as follows: patients who had preoperative

diagnostic-quality US showing at least one persistent ovarian tumor

(excluding physiologic cysts), and underwent surgery with

subsequent histopathologic results.

Exclusion criteria were histopathologically confirmed uterine

sarcoma or non-gynecologic tumors, inconclusive histopathologic

results, or US images of ovarian tumor showed blurred boundary,

and the boundary of the lesions could not be delineated. The patient

flowchart is shown in Figure 1.
2.2 Data preprocessing

After sonographer training, lesions were delineated along

macroscopic lesion borders or anatomical structures using

labelme software. The delineation results of the lesions were

reviewed by the sonographer with more than five years of

experience. Given the limitations of medical image acquisition, we

applied data augmentation techniques to image processing to

reduce overfitting and improve generalization. Data enhancing

technology was used to randomly crop and flip the original

images. Gray features and texture information of the lesion

cannot be altered during this process. All augmented images were

resized to 256 * 256 pixels. Python (version 3.7.3) was used to

conduct all processing steps.
2.3 DCNN model training
and interpretation

The procedure used for image processing is shown in Figure 2.

Six representative DCNN architectures, VGG16, GoogleNet,

ResNet34, ResNext50, DensNet121 and DensNet201 (22–26),

were used to identify different histological types of ovarian

tumors based on US images. We classify US images into 7 classes:

the benign cohort was divided into six categories: mature cystic

teratoma, endometriotic cyst, serous cystadenoma, granulosa theca

cell tumor, mucinous cystadenoma, and simple cyst, and one

malignant category, high-grade serous ovarian cancer. Each

subgroup was sampled at 70%, 10%, and 20% and pooled

together to construct training, validation, and test data sets. They

were all trained and validated by the DCNN.

During training, the weights of the neural network were

updated using the Adam optimizer with an initial learning rate of

0.001 and a batch size of 16. All models were trained for 200 epochs;

the momentum is set to 0.9. An Intel(R) Xeon(R) E5-2690 v4 CPU

and Nvidia GeForce GTX 1080 GPU were used for models training.

For classification, the transfer learning methods of these networks
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were also used (27, 28). We then used back-propagation to fine tune

the parameters of the fully connected layer of the network on our

dataset. All programs were executed in Python version 3.7.3.

We used the Classifier Activator Map (CAM) method to

visualize the important regions leading to the decision of the deep

learning model in order to improve the interpretability of our model

(29). We obtained heat maps explaining which parts of an input US

image were focused by the DCNN. All heat maps were generated

using the OpenCV package (version 4.3.0.36).
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2.4 Statistical analysis

Our study investigated different DCNN models, obtained

experimental results, and calculated indicators based on them. The

area under the receiver operating characteristic curve, accuracy,

sensitivity, specificity, and F1 score were used to evaluate the

performance of the 7-class classification task. Differences between

models were considered statistically significant when P < 0.05. These

measures were calculated using the NumPy (version 1.16.2).
FIGURE 2

The flow diagram shows the image input and the main processing steps for algorithms based on deep learning.
FIGURE 1

Flowchart of the experimental design and patient recruitment.
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3 Results

3.1 Patient and US images characteristics

A total of 328 patients with ovarian tumors (290 benign ovarian

tumors, 38 high-grade serous carcinomas), were enrolled in this

study retrospectively. There were a total of 1142 individual US

images. And they were further divided into different pathological

categories. The characteristics of patients and image numbers of

different pathological categories are shown in Table 1.
3.2 Performance of the seven-class
classification task

On the original US image test sets, the performance of DCNN

models with transfer learning is shown in Table 2. The ResNext50

model achieved a higher accuracy of 0.811 in the test set with an

AUC of 0.95 (95% CI: 0.931, 0.969), a sensitivity of 70.2% and a

specificity of 96.7%.

ResNext50 achieved a sensitivity of 80.00% - 90.41% in most of

the subdivided pathological categories. In high-grade serous

carcinoma (class 7), the sensitivity was 80%, the specificity was

98.6% and the F1 score was 0.762 (Table 3). The confusion matrix is

shown in Figure 3.

Furthermore, we put the masked US images into different

DCNN models, and obtained better diagnostic results than that of

the original US images. The ResNext50 model using transfer

learning methods also showed the best discrimination

performance, with an AUC of 0.997 (Figure 4), a sensitivity of

89.5%, a specificity of 99.2% and F1 score of 0.905 (Table 4). The

AUC in each model was not significantly different from the other, as

p-value > 0.05 in each comparison.
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ResNext50 achieved sensitivity greater than 90% in subdivided

pathologic categories. The sensitivity was 90% and the specificity

was 99.2%, and the F1-Score was 0.947 in the class high-grade

serous carcinoma (Table 5). The confusion matrix is shown

in Figure 5.
3.3 Visualizing and understanding DCNN

CAM heatmaps (Figure 6) show that a map of such a

localization is completely generated by the fully trained

ResNext50 model without any manual annotation. The red and

yellow area represents an area which has the greatest predictive

significance in the ResNext50 model; the blue and green

backgrounds reflect areas with weaker predictive values. Redder

feature colors indicate a higher DCNN score. For the images that

were correctly diagnosed, the DCNN focused on the same areas as

the clinicians did.
4 Discussion

Diagnosing the pathological categories of ovarian tumors from US

images can help physicians select more appropriate treatments. In this

study, we used six DCNNs: VGG16, GoogleNet, ResNet34, ResNext50,

DensNet121, and DensNet201 on ovarian tumor US images and set up

7 classification tasks in which benign ovarian lesions were divided into

mature cystic teratoma, endometriotic cyst, serous cystadenoma,

granulosa theca cell tumor, mucinous cystadenoma, and simple cyst.

The DCNN model was evaluated on the original and labeled ovarian

tumor US images. The results showed that ResNext50 had the highest

overall accuracy. And better results were obtained in the segmented

ultrasound images without noise interference.
TABLE 1 Characteristics of patients and image numbers of different pathological categories in the Training, Validation, and Test Sets.

Category Patients’ characteristics Images

Training and Validation sets Test sets

Total number 328 914 228

Age (y) Median
Range

56
(18–85)

55
(18–84)

56
(20–85)

Histological types Class group

Endometriotic cysts Class 1 80 (24.4) 231 (25.3) 58 (25.3)

Serous cystadenomas Class 2 66 (20.1) 173 (18.9) 43 (18.8)

Mature cystic teratoma Class 3 92 (28.0) 268 (29.4) 67 (29.3)

Granulosa-theca cell tumor Class 4 27 (8.2) 71 (7.8) 18 (7.9)

Simple cyst Class 5 21 (6.4) 48 (5.3) 12 (5.2)

Mucinous cystadenoma Class 6 25 (7.6) 80 (8.8) 20 (8.7)

High-grade serous carcinoma Class 7 17 (5.2) 42 (4.7) 11 (4.4)

Maximum lesion diameter (mm)* 57.0 (41.3–80.6) 58.0 (40.0–80.1) 56.0 (39.0–81.0)
Data in parentheses are percentages. *Data are medians; data in parentheses are IQRs.
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In recent years, medical image analysis based on convolutional

neural networks has been widely applied to computer-aided diagnosis

of diseases. Resnet achieved the highest classification accuracy in the

2015 ImageNet competition. In ovarian tumor ultrasound images,
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previously developed models have mostly been used to discriminate

between benign and malignant ovarian lesions. There has been no

study on the classification of ovarian tumors into different pathological

categories, which is important for the selection of treatment and
TABLE 3 Diagnostic Performances of ResNext50 models seven-class classification in original ultrasound images.

SEN SPEC F1-score

Endometriotic cysts 0.831 [0.798,0.864] 0.97 [0.955,0.985] 0.867 [0.837,0.897]

Serous cystadenomas 0.867 [0.837,0.897] 0.902 [0.876,0.928] 0.765 [0.728,0.802]

Mature cystic teratoma 0.904 [0.878,0.93] 0.961 [0.944,0.978] 0.91 [0.885,0.935]

Granulosa-theca cell tumor 0.846 [0.814,0.878] 0.986 [0.976,0.996] 0.815 [0.781,0.849]

Simple cyst 0.143 [0.112,0.174] 0.982 [0.97,0.994] 0.167 [0.134,0.2]

Mucinous cystadenoma 0.524 [0.48,0.568] 0.981 [0.969,0.993] 0.611 [0.568,0.654]

High-grade serous carcinoma 0.8 [0.765,0.835] 0.986 [0.976,0.996] 0.762 [0.725,0.799]
TABLE 2 Diagnostic performance of six Deep convolutional neural networks (DCNN) models for classification of multiple histologic types of ovarian
tumors in the original ultrasound image test set.

VGG16 GoogleNet ResNet34 ResNext50 DensNet121 DensNet201

SEN 0.679 [0.638,0.72] 0.563 [0.52,0.606] 0.695 [0.655,0.735] 0.702 [0.662,0.742] 0.576 [0.533,0.619] 0.702 [0.662,0.742]

SPEC 0.958 [0.94,0.976] 0.943 [0.923,0.963] 0.961 [0.944,0.978] 0.967 [0.951,0.983] 0.947 [0.927,0.967] 0.96 [0.943,0.977]

ACC 0.768 [0.731,0.805] 0.671 [0.63,0.712] 0.763 [0.726,0.8] 0.811 [0.777,0.845] 0.693 [0.653,0.733] 0.768 [0.731,0.805]

AUC 0.95 [0.931,0.969] 0.87 [0.841,0.899] 0.95 [0.931,0.969] 0.95 [0.931,0.969] 0.92 [0.896,0.944] 0.96 [0.943,0.977]

PPV 0.715 [0.675,0.755] 0.607 [0.564,0.65] 0.645 [0.603,0.687] 0.708 [0.668,0.748] 0.586 [0.543,0.629] 0.734 [0.695,0.773]

NPV 0.959 [0.942,0.976] 0.944 [0.924,0.964] 0.958 [0.94,0.976] 0.967 [0.951,0.983] 0.948 [0.929,0.967] 0.959 [0.942,0.976]

F1-Score 0.693 [0.653,0.733] 0.571 [0.528,0.614] 0.662 [0.621,0.703] 0.7 [0.66,0.74] 0.578 [0.535,0.621] 0.711 [0.671,0.751]
Data in brackets are 95% CIs. ACC, accuracy; SEN, sensitivity; SPEC, specificity; AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive
predictive value.
FIGURE 3

Confusion matrix of ResNext50 models for seven-class classification in original ultrasound images.
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surgical procedure. We found that ResNext50 achieved better overall

accuracy in the test set with an area under the receiver operating

characteristic curve (AUC) of 0.997 (95% CI: 0.992,1), sensitivity of

89.5% and specificity of 99.2%. Among them, the sensitivity (90% vs

96%), specificity (99.2% vs 87%), and AUC (0.99 vs 0.97) for malignant

ovarian tumor reached a similar result as the expert assessment by

Chen et al. (18).
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From the confusion matrix in Figure 4, we can see that the high-

grade serous carcinoma has a 10% chance of being misclassified as a

serous cystadenoma, which is likely to occur in the early stages of

the carcinoma. In this condition, further radiographic evaluation is

needed, such as contrast-enhanced ultrasound. Simple cysts can be

easily classified as serous cystadenomas because of the similarities in

the ultrasound appearance of the two lesions. Endometriotic cyst,
FIGURE 4

Receiver operating characteristic (ROC) curves show the diagnostic performance of six DCNN models.
TABLE 4 Diagnostic performances of six deep convolutional neural network models for classifying multiple histologic types of ovarian tumors in the
in the labeled ultrasound images test set.

VGG16 GoogleNet ResNet34 ResNext50 DensNet121 DensNet201

SEN 0.854 [0.823,0.885] 0.787 [0.751,0.823] 0.814 [0.78,0.848] 0.895 [0.868,0.922] 0.862 [0.832,0.892] 0.876 [0.847,0.905]

SPEC 0.982 [0.97,0.994] 0.974 [0.96,0.988] 0.985 [0.974,0.996] 0.992 [0.984,1] 0.982 [0.97,0.994] 0.988 [0.978,0.998]

ACC 0.899 [0.873,0.925] 0.855 [0.824,0.886] 0.912 [0.887,0.937] 0.952 [0.933,0.971] 0.895 [0.868,0.922] 0.934 [0.912,0.956]

AUC 0.99 [0.981,0.999] 0.98 [0.968,0.992] 0.99 [0.981,0.999] 0.997 [0.992,1] 0.991 [0.983,0.999] 0.995 [0.989,1]

PPV 0.863 [0.833,0.893] 0.824 [0.791,0.857] 0.804 [0.769,0.839] 0.918 [0.894,0.942] 0.866 [0.836,0.896] 0.924 [0.901,0.947]

NPV 0.983 [0.972,0.994] 0.976 [0.963,0.989] 0.985 [0.974,0.996] 0.992 [0.984,1] 0.982 [0.97,0.994] 0.989 [0.98,0.998]

FI-Score 0.856 [0.825,0.887] 0.803 [0.768,0.838] 0.81 [0.776,0.844] 0.905 [0.879,0.931] 0.856 [0.825,0.887] 0.895 [0.868,0.922]
TABLE 5 Diagnostic Performance of ResNext50 models seven-class classification in labeled ultrasound images.

SEN SPEC F1-score

Endometriotic cysts 0.966 [0.95,0.982] 0.995 [0.989,1] 0.983 [0.972,0.994]

Serous cystadenomas 0.977 [0.964,0.99] 0.967 [0.951,0.983] 0.926 [0.903,0.949]

Mature cystic teratoma 0.972 [0.958,0.986] 0.987 [0.977,0.997] 0.973 [0.959,0.987]

Granulosa-theca cell tumor 0.923 [0.9,0.946] 0.993 [0.986,1] 0.96 [0.943,0.977]

Simple cyst 0.571 [0.528,0.614] 0.986 [0.976,0.996] 0.571 [0.528,0.614]

Mucinous cystadenoma 0.952 [0.933,0.971] 0.99 [0.981,0.999] 0.976 [0.963,0.989]

High-grade serous carcinoma 0.9 [0.874,0.926] 0.992 [0.984,1] 0.947 [0.927,0.967]
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mature cystic teratoma, granulosa theca cell tumor and mucinous

cystadenoma can be correctly diagnosed with more than 95%

accuracy, demonstrating the excellent performance of the

ResNext50 model.

A heatmap of CAM output was also provided in Figure 6. Most

ovarian tumors are cystic solid tumors. The degree of malignancy

increases with the number of solid components present in the

ultrasound images. Figure 6 shows that DCNN focuses on the

extent of the lesion and even the solid component of the tumor.

In this study, images were manually cropped. The DCNN

produced better diagnostic results on the labeled US images than

on the original US images. It is important to help the computer

locate the lesion in advance. Despite the fact that most medical deep

learning studies use manual ROI selection (30), the potential benefit

of auto-segmentation should be explored in future studies.
Frontiers in Oncology 07
Our study has several limitations. First, our study is a single-

center study and a multi-center evaluation is needed to further

develop and validate our model. Second, this is a retrospective

study, and the data set is limited. Prospective studies are necessary

to make further improvements. Third, our study is based on single-

modal US images to trained the DCNNmodels. Multiple US images

are used in clinical practice to diagnose ovarian cancer, including

gray scale, color Doppler, and power Doppler. Investigating the

performance of DCNN in multiple US images could be a next step.

It is important to emphasize that computer-assisted image analysis

should only be used as an aid in the triage of patients and should not be

used to make a definitive diagnosis. Nevertheless, we demonstrate that

deep learning algorithms based on ultrasound images can predict the

type of ovarian tumors, which have the potential to be clinically useful

in the triage of women with an ovarian tumor.
FIGURE 5

Confusion matrix of ResNext50 models for seven-class classification in labeled ultrasound images.
B C DA

FIGURE 6

Examples of the mapping of class activation using the ResNext50 model. The model identified endometriotic cyst (A), mucinous cystadenoma (B),
and high-grade serous ovarian cancer (C, D) correctly.
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5 Conclusions

In conclusion, we demonstrated that DCNNs can achieve high

accuracy in distinguishing multiple pathological categories from

ovarian ultrasound images. The DCNN-based model may prove to

be a powerful clinical decision-support tool with more samples and

further model calibration.
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