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Multimodality MRI radiomics
analysis of TP53 mutations in
triple negative breast cancer

Kun Sun*, Hong Zhu, Weimin Chai and Fuhua Yan

Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China
Objectives: To explore the value of T1-weighted imaging (T1WI), T2-weighted

imaging (T2WI) and diffusion-weighted imaging (DWI) radiomics features

reflecting TP53 mutations in patients with triple negative breast cancer (TNBC).

Study design: This retrospective study enrolled 91 patients with TNBC with TP53

testing (64 patients in the training cohort and 27 patients in the validation cohort).

A total of 2832 radiomics features were extracted from the first phase of dynamic

contrast-enhanced T1WI, T2WI and ADCmaps. Analysis of variance (ANOVA) and

the Kruskal-Wallis-test were used for feature selection. Then, linear discriminant

analysis (LDA), multilayer perceptron (MLP), logistic regression (LR), LR with

LASSO, decision tree (DT), naïve Bayes (NB), random forest (RF), and support

vector machine (SVM) models were used for classification.

Results: The validation AUCs of the eight classifiers ranged from 0.74 (NB) to 0.85

(SVM). SVM attained the highest AUC (0.85) and diagnostic accuracy (0.82) of all

tested models. The top 3 ranking features in the SVMmodel were T1-square-first

order-skewness (coefficient: 1.735), T2-wavelet-LHH-GLCM-joint energy, and

T2-wavelet-LHH-GLCM-inverse difference moment (coefficient: -0.654,

-0.634).

Conclusions: Radiomics-based analysis with the SVM model is recommended

for the detection of TP53 mutations in TNBC. Furthermore, T1WI- and T2WI-

related features could be used as noninvasive biomarkers for predicting TP53

mutations.

KEYWORDS

radiomics, magnetic resonance imaging, machine learning, TNBC (triple negative breast
cancer, support vector machine
Abbreviations: T1WI, T1 weighted imaging; T2WI, T2 weighted imaging; DWI, Diffusion weighted imaging;

TNBC, Triple negative breast cancer; MLP, Multi-layer perceptron; LDA, Linear discriminant analysis; LR,

Logistic regression; LASSO, Least absolute shrinkage selection operator; DT, Decision tree; SVM, support

vector machine; RF, Random forest; ROC, Receiver operating characteristic; AUC area under the curve;

ANOVA, Analysis of variance; GLCM, Gray level co-occurrence matrix; GLDM, Gray level dependence

matrix; GLRLM, Gray level run length matrix; GLSZM, Gray level size zone matrix; NGTDM, Neighbouring

gray tone difference matrix; RFE, Recursive features elimination; VOIs, Volumes of interests; PCC, Pearson’s

correlation coefficient; PPV, Positive predictive value; NPV, Negative predictive value; PCA, Principal factor

analysis; IDM, Inverse difference moment.
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Introduction

Triple-negative breast cancer (TNBC) is a molecular subtype of

breast cancer defined by a lack of expression of hormonal and

human epidermal growth factor receptor-2 (HER2) receptors (1–3).

TNBC accounts for 15% of all invasive breast cancers and has a

worse prognosis than non-TNBC (4).

TP53 gene mutations are shown to be associated with breast

cancer (5). Moreover, breast cancer with TP53 mutations is more

likely to be aggressive and resistant to chemotherapy and

radiotherapy (5–7). A noninvasive method to detect TP53

mutations in TNBC might optimize treatment plans and improve

the prognosis of TNBC patients.

Radiomics analysis has been widely used in cancer detection,

diagnosis and prognosis (8, 9). Previous studies (10–12). have

shown that radiomics analysis can be used to detect TP53

mutations in cancers. Radiomics analysis combined with different

machine learning classifiers may improve the detection of TP53

mutations in TNBC.

Hence, the objective of this study was to explore the potential of

radiomics features from T1WI, T2WI and ADC maps to reflect the

TP53 status of TNBC and to propose the best classifier for

preoperatively assessing TP53 mutations.
Materials and methods

Study population

This study is a retrospective subanalysis of data acquired from a

prospective study. Institutional review board approval and written

informed consent from patients were obtained. A total of 91

patients (mean age, 52 years; age range, 21-77 years) who

underwent preoperative MRI, were histopathologically confirmed

to have breast cancer and underwent TP53 gene expression

profiling between January 2021 and March 2022 were included in

this study.
MR scanning

All MRI examinations were performed using a 1.5 T MRI

scanner (MAGNETOM Aera; Siemens Healthcare, Erlangen,

Germany) with a dedicated 16-channel bilateral breast coil. The

parameters of T2-weighted fast spin-echo imaging are shown in

Appendix A. Dynamic contrast enhanced (DCE) T1WI was

obtained using a fat-suppressed T1-weighted gradient-echo

sequence before and four times continuously after the injection of

gadolinium contrast medium (Magnevist, Bayer HealthCare

Pharmaceuticals Inc., Wayne, New Jersey, USA), which was

administered intravenously by a power injector at a dose of 0.1

mmol/kg body weight at a rate of 2.5 mL/s, followed by a 20-mL

saline flush at the same injection rate. The scan parameters of DCE

and DWI are in Appendix B.
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Image postprocessing and
lesion segmentation

All the data were assessed by SK and CWM (with 9 years and 13

years of experience in breast imaging, respectively) to identify all

lesions by using T2-weighted images (T2WI), precontrast T1-

weighted images (T1WI) and the first phase of postcontrast

T1WI. Specifically, the clinical information and X-ray and US

images were provided to the radiologists. The lesions were then

manually segmented in the subtraction images of postcontrast

T1WI and precontrast T1WI on all visible sections, T2WI, and

ADC maps, resulting in a three-dimensional image of the lesion.

The lesions were further segmented by using the inner border of the

lesion to minimize partial volume effects. Note that all volumes of

interests (VOIs) were manually segmented and labeled via a free

open-source software package (3D slicer, version 3.4.0).
Feature extraction

A total of 2832 radiomics features were obtained from each

segmented lesion, which were categorized into the following nine

groups: (1) 14 shape features, (2) 19 first-order features, (3) 24 gray

level co-occurrence matrix (GLCM) features, (4) 14 gray level

dependence matrix (GLDM) features, (5) 16 gray level run length

matrix (GLRLM) features, (6) 16 gray level size zone matrix

(GLSZM) features, (7) 5 neighbouring gray tone difference matrix

(NGTDM) features, (8) 93 square-related features, and (9) 744

wavelet related features. The details of the extracted radiomics

features are shown in Appendix C.
Feature selection

We selected 64 cases as the training dataset (46/18 = positive/

negative). We also selected another 27 cases as the independent

testing dataset (20/7 = positive/negative).

To remove the imbalance of the training dataset, we upsampled

the data by repeating random cases to balance positive/negative

samples. We applied normalization to the feature matrix. Each

feature vector was subtracted by the mean value of the vector and

divided by its length. Since the dimension of the feature space was

high, we compared the similarity of each feature pair. If the Pearson

correlation coefficient of the feature pair was greater than 0.9, which

means that the two features are the same, then we removed one of

them. After this process, the dimension of the feature space was

reduced, and each feature was independent of the others. Before

building the model, we used analysis of variance (ANOVA), and

recursive feature elimination (RFE) to select features. ANOVA is a

common method to explore the significant features corresponding

to the labels. The F value was calculated to evaluate the relationship

between features and the label. We sorted features according to the

corresponding F value and selected a specific number of features to

build the model. The goal of RFE is to select features based on

a classifier.
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Machine learning classification

We used linear discriminant analysis (LDA), multilayer

perceptron (MLP), logistic regression (LR), LR with LASSO,

decision tree (DT), naïve Bayes (NB), random forest (RF), and

support vector machine (SVM) models. LDA is a linear classifier

that fits class conditional densities to the data and uses the Bayes

rule. MLP analysis is based on a neural network with multi-hidden

layers and is used to find the mapping from inputted features to the

label. Here, we used 1 hidden layer with 100 hidden units. The

nonlinear activation function was a rectified linear unit function,

and the optimizer was Adam with step 0. 001. LR is a linear classifier

that combines all of the features. LR with LASSO constraint is a

linear classifier based on logistic regression. The L1 norm is added

in the final loss function, and the weights are constrained, which

makes the features sparse. The DT method is a nonparametric

supervised learning method that can be used for classification with

high interpretation and is a kind of probabilistic classifier based on

Bayes theorem. The NB method requires the number of parameters

to be linear in the number of features. The RF is an ensemble

learning method that combines multiple decision trees at different

subsets of the training dataset. RF is an effective method to avoid

overfitting. SVM was an effective and robust classifier to build the

model. The kernel function has the ability to map the features into a

higher dimension to search the hyperplane for separating the cases

with different labels. Here, we used the linear kernel function

because it better explained the coefficients of the features for the

final model. To determine the hyperparameter (e.g., the number of

features) of the model, we applied 10-fold cross validation on the

training dataset. The hyperparameters were set according to the

models’ performance on the validation dataset.
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Statistical analysis

Continuous variables are expressed as the mean value ±

standard deviation (SD). The performance of the model was

evaluated using receiver operating characteristic (ROC) curve

analysis. The area under the ROC curve (AUC) was calculated for

quantification. The accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) were

also calculated at a cutoff value that maximized the value of the

Youden index. We also estimated the 95% confidence interval by

bootstrapping with 1000 samples. All of the processes were

implemented with FeAture Explorer Pro (FAEPro, V 0.4.4) (13)

in Python (3.7.6) or with SPSS version 23.0 software. A P value less

than 0.05 was regarded as a significant difference. An overview of

the workflow used in this study is illustrated in Figure 1.

Results

Clinical characteristics

There were no significant differences in demographic

characteristics between TNBC patients with TP53 mutation (mean

age, 51.2 ± 12.4 years) and TNBC patients without TP53 mutation

(mean age, 54.9 ± 13.3 years; p = 0.215). Details are shown in Table 1.
Pathological features

Of the 91 TNBC lesions, 66 lesions with TP53 mutations, and

other 25 lesions without TP53 mutations. Cases of TNBC with and

without TP53 mutations are shown in Figures 2, 3.
FIGURE 1

Workflow of image processing. 1) T1WI, T2WI, and ADC data of 91 breast cancer patients. 2) 3D segmentations of lesions shown as surface-shaded
3D renderings. 3) Extraction of radiomic features, i.e., first-order, shape, texture features, square and wavelet features 4) feature selection. 5) Eight
machine learning classifications were all performed. 6) ROC analysis was used to assess the diagnostic performance of the radiomics model in the
detection of TP53 mutations in TNBC.
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Performance of the LDA, MLP, LR, LR with
LASSO, DT, NB, RF, and SVM models for
the training and testing cohorts

The predictive performance of the LDA, MLP, LR, LR with

LASSO, DT, NB, RF and SVMmodels are shown in Table 2. For the

LR and LDA classifiers, only 1 feature was selected for predicting

TP53 mutation in TNBC. The accuracy and area under the curve

(AUC) of the LR classifier for TP53 mutations in the training cohort

were 72%, and 0.72, respectively, while those in the testing cohort

were 85%, and 0.75, respectively. The accuracy and AUC of the

LDA classifier for TP53 mutations in the training cohort were 72%,

and 0.72, respectively, while those in the testing cohort were 85%,

and 0.75, respectively. The selected feature in the LR and LDA

models was T2-wavelet-LHH-GLCM-JointEnergy (coefficient:

-5.119, -4.486).

For the RF classifier, 19 features were selected for predicting

TP53 mutation in TNBC. The accuracy and AUC for TP53

mutations in the training cohort were 100%, and 1.00,

respectively, while those in the testing cohort were 74%, and 0.83,

respectively. The selected features in the RF classifier are shown in

the Appendix D.

For the SVM classifier, 18 features were selected for predicting

TP53 mutation in TNBC. The accuracy and AUC for TP53

mutations in the training cohort were 73%, and 0.75, respectively,

while those in the testing cohort were 82%, and 0.85, respectively.

The ROC curves are shown in Figure 4. The selected features in the

SVM classifier are shown in the Figure 5.

For the MLP classifier, 16 features were selected for predicting

TP53 mutation in TNBC. The accuracy and AUC for TP53

mutations in the training cohort were 75%, and 0.72, respectively,
Frontiers in Oncology 04
while those in the testing cohort were 70%, and 0.85, respectively.

The ROC curves are shown in Figure 4. The selected features in the

MLP classifier are shown in the Appendix E.

For the LR with LASSO classifier, 3 features were selected for

predicting TP53 mutation in TNBC. The accuracy and AUC for

TP53 mutations in the training cohort were 56%, and 0.76,

respectively, while those in the testing cohort were 85%, and 0.76,

respectively. The selected features in the LR with LASSO classifier

are shown in the Appendix F.

For the DT classifier, 18 features were selected for predicting

TP53 mutation in TNBC. The accuracy and AUC for TP53

mutations in the training cohort were 100%, and 1.0, respectively,

while those in the testing cohort were 78%, and 0.76, respectively.

The selected features in the DT classifier are shown in the

Appendix G.

For the NB classifier, 18 features were selected for predicting

TP53 mutation in TNBC. The accuracy and AUC for TP53

mutations in the training cohort were 72%, and, 0.71 respectively,

while those in the testing cohort were 70%, and 0.74, respectively.

The selected features in the NB classifier are shown in the

Appendix H.
Discussion

In our study, we investigated the value of radiomics features

based on T2WI, T1WI, and ADC maps in identifying TP53

mutations in triple negative breast cancer (TNBC). Our results

revealed that radiomics features combined with SVM could achieve

a better predictive performance than other models for TP53

mutations in TNBC, with an AUC of 0.85. Furthermore, T1WI-
TABLE 1 The clinico-pathological features of TNBC patients with TP53 mutations and without TP53 mutations.

Characteristic TP53 mutations Without TP53 mutations p

Clinical features

Mean age 51.2 ± 12.4 54.9 ± 13.3 0.215

Menstrual status 0.801

Premenopausal 31/66 (47%) 11//25 (44%)

Postmenopausal 35/66(53%) 14/25 (56%)

T stage of MRI 0.657

<=1 0/66 (0) 1/25 (4%)

1-2 24/66 (36%) 9/25 (36%)

> 2 42/66 (64%) 15/25 (60%)

MRI-BI-RADS 0.105

4 27/66 (41%) 15/25 (60%)

5 39/66 (59%) 10/25 (40%)

Pathological features

Lymphovascular invasion 10/66 (15%) 5/25 (20%) 0.580

Lymph nodes metastasis 20/66 (30%) 6/38 (16%) 0.555
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square features and T2WI-wavelet features with higher coefficients

were recommended as noninvasive biomarkers for the prediction of

TP53 mutations in TNBC.

TP53 somatic mutations are one of the most common genetic

abnormalities associated with cancer (5, 14). The value of TP53

mutation status for predicting tumor response to treatment and

patient outcome has been evaluated in numerous cancers, especially

breast cancer (2). Many of those studies (5, 15, 16) have shown that

TP53 mutations are associated with a poorer prognosis. Hence, in
Frontiers in Oncology 05
this research, we wanted to determine whether multimodality MRI

biomarkers are associated with TP53 mutations in TNBC using

various machine learning classifiers.

Radiomics analysis has already been used in several studies of

TP53 mutations in breast cancer (10, 17). Moon et al. (17) used

texture and morphology analysis to evaluate TP53 mutations and

found that texture analysis could be used to identify TP53

mutations. However, in their research, all types of breast cancer

were included. In our research, we wanted to find the relationship
FIGURE 2

Example images of a 29-year-old woman with TNBC with TP53 mutation in the right breast (A-D). (A): T2-weighted-image. (B): the first phase of
T1WI after contrast enhancement. (C): diffusion-weighted image of b1000. (D): apparent diffusion coefficient (ADC) map.
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FIGURE 3

Example images of a 70-year-old woman with TNBC without TP53 mutation in the right breast. (A-D). (A): T2-weighted-image. (B): the first phase of
T1WI after contrast enhancement. (C): diffusion-weighted image of b1000. (D): apparent diffusion coefficient (ADC) map.
TABLE 2 Predictive performance for LDA, RF, SVM, LR, LR-LASSO, MLP, DT, and NB in the training and testing cohorts.

Models
Training cohort Testing cohort

AUC ACC SEN SPE PPV NPV AUC ACC SEN SPE PPV NPV

LDA 0.72 72% 76% 61% 83% 50% 0.75 85% 100% 43% 83% 100%

RF 1.0 100% 100% 100% 100% 100% 0.83 74% 65% 100% 100% 50%

SVM 0.75 73% 78% 61% 84% 52% 0.85 82% 80% 86% 94% 60%

LR 0.72 72% 76% 61% 83% 50% 0.75 85% 100% 43% 83% 100%

LR-LASSO 0.76 56% 39% 100% 100% 39% 0.76 85% 100% 43% 83% 100%

MLP 0.72 75% 80% 61% 84% 55% 0.85 70% 60% 100% 100% 47%

DT 1.0 100% 100% 100% 100% 100% 0.76 78% 80% 71% 89% 56%

NB 0.71 72% 76% 61% 83% 50% 0.74 70% 70% 71% 88% 45%
F
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between radiomics features and TP53 mutations in TNBC. In our

previous study (10), we only used radiomics features of T1WI

images to identify breast cancer with or without TP53 mutations.

We found that the clinicopathological-radiomics features combined

with SVM model could be used as non-invasive biomarker for the

prediction of TP53 mutations. However, in this study, we enrolled

multi-modality MRI data, and focused on TNBC with various

machine learning classifiers. We wanted to identify the most

important feature and the best classifier to predict TP53

mutations in TNBC.

Many machine learning methods can be used for classification

(18–21). In this research, we examined eight commonly used
Frontiers in Oncology 07
classifiers with the goal of identifying the best classifier detect

TP53 mutations in TNBC. In our research, the SVM and MLP

classifiers achieved the highest AUCs, while the SVM classifier had

relatively higher accuracy than the MLP classifier. The SVM

classifier (19) has strong generalization power and was easily

solves limited sample problems, which makes it outstanding

compared to other classifiers. Hence, SVM was recommend for

the TP53 mutations in TNBC.

T1WI, T2WI and DWI are the most commonly used MRI

sequences for breast cancer diagnosis (22). In our research, T1WI-

square features and T2WI-wavelet features were the most

important features associated with TP53 mutations in TNBC.

Features based on ADC maps were not selected in any of these

models, which means that in the high-order feature groups, the

value of ADC maps was less than those of T1WI and T2WI. The

reason might be that, both TNBC with or without TP53 mutations

are associated with central fibrosis and necrosis, the whole tumor

analysis of ADCs might not show the differences.

T1-square-first order-skewness, T2-wavelet-LHH-GLCM-joint

energy, and T2-wavelet-LHH-GLCM-IDM were the significant

selected features in the SVM model for the TP53 mutations in

TNBC. T1WI-square-first order-skewness measures the square of

asymmetry of the distribution of the mean T1WI intensities, which

may correlate more with tumor heterogeneity than the other

features. Wavelet transform (23, 24) applies a high- or low-pass

filter in all three dimensions in 3D images to obtain eight different

wavelet features. Energy is a measure of homogeneous patterns in

the T2WI. A greater energy implies that there are more instances of

intensity value pairs in the T2WI that neighbor each other at higher

frequencies. IDM is a measure of the local homogeneity of T2WI.

IDM weights are the inverse of the contrast weights (25). These two

GLCM features based on T2WI were related to TP53 mutations

in TNBC.

Our study has several limitations. First, our study is a single-

center retrospective study. Second, even though we had enrolled all
A B

FIGURE 4

Receiver operating characteristic curve (ROC) analysis for the SVM (A) and MLP (B) model.
FIGURE 5

The selected features and coefficients in the SVM.
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TNBC patients with TP53 testing one year in our hospital. TNBC

only accounts for 15% (4), and only limited TNBC with TP53

testing resulting in 91 patients enrolled in our study. The limited

sample size of patients may result in data imbalance. Further study

with larger sample size is recommended.

In conclusion, radiomics-based analysis with the SVM model is

recommended for the detection of TP53 mutations in TNBC.

Furthermore, T1WI-square and T2WI-wavelet related features

could be used as noninvasive biomarkers for predicting

TP53 mutations.
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