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Rac and Cdc42 inhibitors reduce
macrophage function in breast
cancer preclinical models
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Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
Background: Metastatic disease lacks effective treatments and remains the

primary cause of mortality from epithelial cancers, especially breast cancer.

The metastatic cascade involves cancer cell migration and invasion and

modulation of the tumor microenvironment (TME). A viable anti-metastasis

strategy is to simultaneously target the migration of cancer cells and the

tumor-infiltrating immunosuppressive inflammatory cells such as activated

macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The

Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both

cancer cell and immune cell migration, as well as their crosstalk signaling at the

TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target

immunosuppressive immune cells, in addition to cancer cells. Our published data

demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine

nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and

prevent breast cancer metastasis from pre-clinical mouse models without

toxic effects.

Methods: The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to

target macrophages was tested in human and mouse macrophage cell lines via

activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis

assays. Immunofluorescence, immunohistochemistry, and flow cytometry

were used to identify myeloid cell subsets from tumors and spleens of mice

following EHop-016 or MBQ-167 treatment.

Results: EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin

cytoskeletal extensions, migration, and phagocytosis without affecting

macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating

macrophages and neutrophils in tumors of mice treated with EHop-016, and

macrophages and MDSCs from spleens and tumors of mice with breast cancer,

including activated macrophages and monocytes, following MBQ-167

treatment. Mice with breast tumors treated with EHop-016 significantly

decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and
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the TME. This was confirmed from splenocytes treated with lipopolysaccharide

(LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS.

Conclusion: Rac/Cdc42 inhibition induces an antitumor environment via

inhibition of both metastatic cancer cells and immunosuppressive myeloid cells

in the TME.
KEYWORDS

Rac, Cdc42, MBQ-167, EHop-016, macrophage function, myeloid derived suppressor
cells (MDSCs), breast cancer
Introduction

Metastasis is the number one cause of death from breast cancer,

with few effective clinical strategies to prevent the accelerated

metastatic progression (1). During tumor initiation, growth, and

metastasis, the innate and adaptive immune systems modulate anti-

and pro-tumoral immune responses. Once established, tumor cells

hijack the immune system to induce metastatic cancer cell

migration into the circulatory system and evade immune-

mediated cancer cell apoptosis (2, 3).

Cancer cellmotility and invasion are essential driversofmetastasis,

where the first intravasation step involves migration away from the

primary tumor and extravasation into the new site of colonization

using motile mechanisms (1, 3). Rac and Cdc42 are homologous Rho

family GTPases that are essential for directed cell migration and

promote epithelial-to-mesenchymal transition, transcription, cell

proliferation, cell cycle progression, angiogenesis, apoptosis, vesicle

trafficking, and cell adhesions. and thus, therapy resistance (4–6).

Accordingly, deregulated expression/activity of Rac and Cdc42 is

associated with increased invasion and metastasis, leading to poor

patient prognosis. Even when Rac andCdc42 are not overexpressed or

mutated in cancer, they can be activated by a myriad of oncogenic cell

surface receptors and guanine nucleotide exchange factors (GEFs) that

exchange the GDP on inactive Rac/Cdc42 for a GTP.

In addition, immune cells such as macrophages, neutrophils, and

Myeloid-Derived Suppressor Cells (MDSCs) are recruited to the tumor

microenvironment (TME) to promote tumor cell invasion of the

surrounding tissue, intravasation and survival in the circulation, as

well as tumor cell arrest, extravasation, and persistent growth at

metastatic sites, and is correlated with poor patient prognosis (7–13).

Moreover, tumor-associated macrophages (TAMs) and neutrophils

suppress CD8+ T cell infiltration, and thus anti-tumor immunity, to

promote tumor progression and therapy resistance (14, 15). TAMs

may become activated via Toll-like receptor (TLR) engagement leading

to the secretion of cytokines and growth factors that promote an

immunosuppressive environment as well as the survival of tumor cells

(16, 17). Additionally, macrophages are phagocytic cells that after

uptake of tumor antigens or apoptotic tumor cells have the capacity to

modulate adaptive immune responses. Accordingly, therapies targeting
02
macrophage infiltration into the tumor may provide additional

treatment options for metastatic cancer patients (18).

Rac and Cdc42 also modulate the migration of macrophages

and neutrophils, as well as phagocytosis, differentiation, and

activation of M2-like macrophages and MDSCs, through the

modulation of actin cytoskeleton structures and receptor-

mediated signaling (19). Moreover, TLR signaling by invading

pathogens or during cancer-associated inflammation, activate

Rac1 and Cdc42 which leads to Nuclear Factor kB (NFkB)
transcriptional activity and secretion of inflammatory cytokines

such as interleukin-6 (IL-6) (20). Therefore, Rac is a pivotal

regulator of leukocyte migration and activation relevant for

immune suppression in the TME (2, 21–24).

We posit that Rac and Cdc42 orchestrate the cross-talk

signaling and invasion of immune cells that migrate into the

tumor and the metastatic cancer cells that leave the primary

tumor. Whether the novel Rac and Cdc42 inhibitors, developed

by our group, affect leukocyte migration and function, especially

during cancer development, remains to be determined.

In our program to develop Rac/Cdc42 inhibitors as anti-

metastatic cancer agents, we first characterized EHop-016, which

inhibits Rac activation by the GEFVav with a half maximal inhibitory

concentration (IC50) of 1 mM and inhibits tumor growth and

metastasis in mouse models (25). EHop-016 structure was

improved to yield MBQ-167, which inhibits Rac/Cdc42 activation

with 0.1 mM IC50. MBQ-167 induces a loss in cell polarity and cell

surface actin extensions, cell cycle arrest, and apoptosis without

affecting normal epithelial cells. MBQ-167 also inhibits metastatic

breast cancer cell proliferation and primary tumor growth and

strongly prevents metastasis (26, 27). Both EHop-016 and MBQ-

167 are not toxic to rodents and MBQ-167 has an excellent safety

profile in both rodents and dogs up to 1000 mg/kg BW. Moreover,

EHop-016 and MBQ-167 have acceptable bioavailability in mouse

plasma and tissue and MBQ-167 is available in tumors at sufficient

concentrations to exert anticancer effects (28). The objective herein

was to determine whether EHop-016 and MBQ-167 affect

macrophage migration and function in the context of breast cancer.

This study sheds light on the effects of Rac and Cdc42 inhibitors on

immune response modulation within the tumor microenvironment.
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Materials and methods

Reagents

Splenocytes were cultured in RPMI 1640 medium (from Fisher

Scientific, Waltham, MA) supplemented with 10% fetal bovine

serum, 50 units/mL penicillin, and 50 µg/mL streptomycin (from

Fisher Scientific, Waltham, MA). Lipopolysaccharide (LPS) was

obtained from Sigma-Aldrich (Burlington, MA). The following

antibodies were obtained from Biolegend (San Diego, CA) and

used for flow cytometry analysis: FITC anti-mouse CD11b (clone:

29F.1A12), PE-CF594 anti-mouse F4/80 (clone:BM8), PerCPCy5.5

anti-mouse CD11c (clone: N418), PE anti-mouse CD86 (clone: GL-

1), BV421 anti- mouse MHC-class II (clone: M5/114.15.2). The

following antibodies were obtained from Biolegend (San Diego, CA)

and used for flow cytometry analysis: FITC anti-mouse CD11b

(clone: 29F.1A12), PE-CF594 anti-mouse F4/80 (clone: T45-2342),

BV605 anti-mouse Ly6C (clone: HK1.4), BV711 anti-mouse Ly6G

(clone: 1A8) PerCPCy5.5 anti-mouse CD11c (clone: N418), PE

anti-mouse CD86 (clone: GL-1), BV421 anti- mouse MHC-class II

(clone: M5/114.15.2).
Cell lines

RAW 264.7 (TIB-71), murine macrophage-like cells, and THP-

1 (TIB-202) cells were obtained from ATCC (Manassas, VA). The

RAW 264.7 cells were cultured with DMEM media with 1%

Penicillin/Streptomycin and 10% Fetal bovine serum (Fisher

Scientific, Waltham, MA), and the THP- 1 cells were cultured in

RPMI media. For experiments, the THP-1 monocytic cells were

differentiated into macrophages with 100 nM phorbol 12-myristate

13-acetate (PMA) for 2 days. Cell lines were authenticated

by ATCC.
Rac/Cdc42 activity assay

The GST-p21-binding domain of PAK1 conjugated to

glutathione-Sepharose was used to pulldown active GTP bound

Rac or Cdc42. The pulldowns (active Rac-GTP or Cdc42-GTP) and

total cell lysates were separated in a 12% SDS-PAGE gel and

identified by western blotting with anti-Rac specific or anti-Cdc42

antibodies (Cell Signaling, Inc., Danvers, MA). Integrated density of

positive bands of active and total bands was quantified using Image

J software, as per developer (NIH)’s instructions.
MTT assay

Promega (Madison, WI) CellTiter 96® Non-Radioactive Cell

Proliferation Assay (MTT) was used to quantify the viability of

macrophage cells treated with MBQ-167 and EHop-016 for 48 hrs.

After the incubation, the MTT reagent was added to the experimental

plates and left to incubate for 4 hrs at 37°C and 5% CO2. Results were
Frontiers in Oncology 03
obtained by reading the absorbance at 570 nm wavelength, and the

appropriate controls used, as per manufacturer’s instructions.
Wound-healing assay

RAW 264.7 cells were seeded in a 24-well plate until 95-100%

confluency, and serum starved overnight. A wound was created in

the center with a pipet tip and treated with vehicle, MBQ-167, or

EHop-016, for up to 48 hrs. Images were captured using a Keyence

Microscope system and a wound- healing size tool plug-in for

ImageJ software (US National Institutes of Health (NIH)) was used

to quantify the wound area, as per developer’s instructions. The

wound area was quantified at time 0 and 48hrs using the ImageJ

plugin for wound healing assays. The % wound closure was

calculated using the following formula: [Area of wound at 48hrs/

Area of wound at 0hrs]x100.
Immunofluorescence microscopy

THP-1 cells were seeded 1X105 cells/mL and differentiated as

described, then treated with vehicle, MBQ-167, or EHop-016 for 24

hrs. Cells were fixed with 3.7% formaldehyde and permeabilized

with 0.2% Triton-X 100. Rhodamine Phalloidin Reagent (ab235138,

Abcam, Cambridge, UK) was used to stain F-actin. Anti p-PAK (1/

2/3) Thr 423/402/421 antibody (ab62155, Abcam, Cambridge, UK)

conjugated to Alexa-488 (ab150077, Abcam, Cambridge, UK) was

used to stain p-PAK. The intensity of the p-PAK fluorescence from

the fluorescein-tagged secondary antibody specific for the primary

anti-p-PAK antibody was quantified using Image J software. The

image processing guidelines provided by the developers of Image J

was used to quantify fluorescence area and integrated density.
In vitro culture of splenocytes

Single-cell suspensions from extracted spleens of naïve SCID

mice were obtained after passing through a 70 µm cell strainer and

red blood cells were lysed with ACK lysis buffer obtained from

Abcam Gibco Thermo Fisher (Waltham, MA). Cells were cultured

at 1X106 cells/mL with or without LPS at 10 µg/mL and treated with

vehicle, MBQ-167, or EHop-016. After 24 hrs, supernatants were

collected for cytokine quantification by ELISA, as per

manufacturer’s instructions (R&D Systems, Minneapolis, MN)

and the cells were harvested for flow cytometry analysis.
Animal protocols

As published by us, immunocompromised mice were inoculated at

the mammary fat pad with a green fluorescent protein (GFP)-tagged

human metastatic cancer cell lines HER2++BM or MDA-MB-231,

while the immunocompetent BalB/c mice were inoculated with 4T-1

mouse breast cancer cells (27). Once the tumors reached ~100 mm3 in

Experiment 1, nude mice with HER2++BM tumors were treated with
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vehicle (12.5% ethanol, 12.5% Cremophor, Sigma-Aldrich, St. Louis,

MO) or 30 mg/kg BW EHop-016 intraperitoneally (IP) 3X a week for

55 days, as described in (29). Mouse tumors were extracted at necropsy,

fixed in 10% buffered formaldehyde, and paraffin-embedded for

immunohistochemistry and immunofluorescence, as described below.

Experiment 2 GFP- tagged HER2++BM cells were inoculated at

the mammary fatpads of SCID mice. Mice were imaged in UVP iBox

In Vivo imaging system (Analytik Jena, Jena, Germany), and

fluorescence Tumor growth was analyzed by integrated density of

fluorescence intensity using image J software. When the tumors were

~100 mm3, the mice were treated with vehicle (12.5% ethanol, 12.5%

Cremophor) or 5 mg/kg BWMBQ-167 5X a week by IP for 60 days,

as described in (27, 30). At the end of the study, tumors and spleens

were processed for flow cytometry analysis as described below.

Experiment 3: Balb/C mice were inoculated at the mammary

fatpad with GFP-4T-1 cells, when the tumors reached 100 mm3, the

mice were treated with vehicle (0.5% methyl cellulose, 0.1% Tween

80 in PBS) or 50 mg/kg MBQ-167 per oral (P.O.) for 28 days (27).

At the end of the study, tumors and spleens were processed for flow

cytometry analysis, as described below.
Immunohistochemistry and
immunofluorescence of tumor tissue

Formalin fixed paraffin embedded (FFPE) tumor samples were

dewaxed in xylene and rehydrated in descending concentrations of

alcohol. Antigen retrieval was performed using heat and a citrate-

based Antigen Unmasking Solution (1:100 dilution) (Vector

Laboratories, Burlingame, Ca, USA). Endogenous peroxidase was

quenched with 3% v/v H2O2. The primary antibodies used were: F4/

80 (1:1000 dilution) (ab16911, Abcam, Cambridge; MA, USA) and

neutrophil elastase (1:1000 dilution) (ab68672, Abcam, Cambridge;

MA, USA). Immunohistochemistry was detected using Dako

Envision system-HRP (DAB) (anti-rabbit) (Dako; Glostrup,

Denmark) or Dako LSAB System-HRP (DAB) (anti-mouse)

(Dako; Glostrup, Denmark) according to the manufacturer’s

instructions. Hematoxylin was used as a counterstain.

For immunofluorescence, the secondary antibody used was

Alexa-Fluor 594 (anti-rabbit) 1:2000 (Molecular Probes, Life

Technologies, Carlsbad, CA, USA) and nuclei were stained with

DAPI 1:5000 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). To

quantify F4/80 and elastase, 3 random fields were chosen per slide

and the total number of positive cells was counted for 5 slides/

treatment. Statistical analysis was done using the Student’s T-test at

a 95% confidence interval. n = 5 representative tumors per group.
Flow cytometry

At the end of each in vivo experiment, tumors and spleens were

collected, and single-cell suspensions were obtained. The process

for obtaining single-cell suspensions on spleens is described above.

For isolation of tumor-infiltrating leukocytes (TILs), tumors were

minced and digested using 0.5 mg/mL of collagenase D, followed by

a Percoll gradient separation. The flow cytometry staining protocol
Frontiers in Oncology 04
was followed as described in (31). A cocktail of antibodies against

CD11b, F4/80, Ly6C, Ly6G, CD11c, CD86, MHC-class II was used

to quantify different myeloid cell populations and their activation

status. Live/Dead Aqua cell marker (Thermo Fisher, Waltham MA)

was used to exclude dead cells. Also, anti-CD16/CD32 antibody was

used to prevent non-specific binding of antibodies to Fc receptors.

Stained cells were fixed with BD Cytofix/Cytoperm (BD Bioscences,

San Jose CA) and prepared for acquisition on a FACSCelesta

analyzer (BD Bioscences, San Jose CA). Data were analyzed using

FlowJo Software v10 (FlowJo, LLC, Ashland, OR).
ELISA assays

Concentrations of IL-6 on cell culture supernatants and mouse

plasma were quantified by using commercially available ELISA kits

from R&D Systems, as per manufacturer ’s instructions

(Minneapolis, MN).
Phagocytosis assays

Phagocytosis assays were conducted in RAW 264.7 cells,

following treatment with EHop-016 (1-2 mM) or MBQ-167 (250-

500 nM) for 6 hrs. Cells were then proceeded to phagocytize

fluorescently-tagged Zymosan particles for 2.5 hrs (Abcam,

Cambridge, UK). The fluorescence from the Zymosan particles

was quantified at 490/520nM in a Bio-Rad fluorescence microplate

reader using manufacturer’s directions for assay management,

analysis software, and performance verification tools (Bio-Rad,

Hercules, CA). Representative images were taken using a Keyence

digital microscope, as per instructions provided with the Keyence

software (Keyence, Corp, Osaka, Japan). The obtained values from

the microplate reader were first subtracted to the no-cell negative

control wells and the phagocytosis response calculated using:

[experimental phagocytosis sample/positive phagocytosis control]

x100 (Abcam, Cambridge, UK).
Results

Rac/Cdc42 inhibitors reduce Rac and
Cdc42 activation in macrophage-like
cell lines

We characterized the small molecule compound EHop-016 as a

specific inhibitor of the interaction between theGEFVav andRacwith

an IC50 of 1 mM for Rac activation in breast cancer and leukemia cells

(25, 32). EHop-016 inhibits Cdc42 activation and the viability of breast

cancer cell lines at much higher concentrations (~10 mM) (25). The

improved EHop-016 derivative MBQ-167 demonstrated 10X higher

efficacy at 100 nMIC50 for inhibitionofRac1 activation and 78 nMfor

Cdc42 activation in breast cancer cells (26). To determine whether

these inhibitors have similar effects on macrophages, we utilized the

THP-1 humanmonocyte-like cell line differentiated intomacrophages

with phorbol 12- myristate-13-acetate (PMA). THP-1 cells were
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treated with 0 – 4000 nM EHop-016 or 0 – 500 nMMBQ-167 and a

pulldown assay was performed using the Rac.GTP/Cdc42.GTP

binding domain of their downstream effector p21-activating kinase

(PAK). The westerns were probed with a pan Rac (1–3) antibody, but

we expect the positive bands to be mostly Rac2, since hematopoietic

cells, such as macrophages, predominantly express the Rac2 isoform
Frontiers in Oncology 05
(33). Rac andCdc42 activationwere only quantified from the adherent

differentiated macrophages and not the non-adherent non-

differentiated monocytes. Future studies will also ascertain if the

Rac/Cdc42 inhibitors affect the undifferentiated monocytes.

EHop-016 reducedRac-GTP levels by~60%at 2µMandby80%at

4 µM in THP-1 human macrophages, while active or total Cdc42
A

B

FIGURE 1

Effect of EHop-016 and MBQ-167 on macrophage Rac and Cdc42 activation. THP-1 monocytes were differentiated into macrophages, and adherent
cells were treated with (A) EHop-016 (0 – 4000 nM) or (B) MBQ-167 (0-500 nM) for 24 hrs. Rac or Cdc42 activation was quantified by incubation of
cell lysates with Sepharose beads containing GST-tagged p21-binding domain of PAK1. Pulldowns and total lysates were Western blotted with a pan
Rac (1–3) or Cdc42 antibody. Top panel, Representative Westerns (N=3) are shown, with actin as a loading control. Bottom panel, Positive bands
were quantified using ImageJ and Rac or Cdc42 activation quantified as Rac.GTP/total Rac or Cdc42.GTP/total Cdc42 relative to vehicle (1.0). N=5,
**p<0.005, ***p<0.0005, ****p<0.00005.
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remained unchanged up to 4 µM EHop-016 (Figure 1A). MBQ-167

reduced Rac-GTP levels by 20% at 250 nM and by 75% at 500 nM.

MBQ-167 also inhibited Cdc42 activation in THP-1 macrophage-like

cellsby~25%at250nMandby~40%at500nM.At500nM,MBQ-167

also reduced Cdc42 expression, which may be due to the previously

reported induction of anoikis byMBQ-167 at high concentrations (26)

or a specific effect on Cdc42 expression or stability (Figure 1B).

Therefore, EHop-016 and MBQ-167 inhibit Rac and Cdc42

activation in macrophage cell lines at concentrations ~5X higher

than the effective concentrations for Rac and Cdc42 inhibition in

breast cancer cell lines (See full length westerns in Supplementary

Figure S1). This result can be attributed to the higher expression of Rac

and Cdc42 inmacrophages compared to breast cancer cells. As shown

in Supplementary Figure S2, when equal protein was loaded from

macrophage orMDA-MB-231 TNBC cell lysates, as demonstrated by

equal Actin staining, a ~60% reduction in Rac expression and a 45%

reduction in Cdc42 expression was observed in TNBC cells compared

to THP-1 human macrophages (Supplementary Figure S2A).

Similarly, a 60% reduction in Rac expression and an 86% reduction

in Cdc42 expression in TNBC cells was observed when compared to

RAW264.7 mouse macrophages (Supplementary Figure S2B).
Rac/Cdc42 inhibitors do not
affect macrophage cell viability
at effective concentrations

To determine whether Rac/Cdc42 inhibitors affect the viability of

macrophages at the therapeutic window, i.e. IC50 of 1.1 µM for EHop-

016 and IC50 of 100 nM forMBQ-167 in breast cancer cells (25, 26), we

determined cell viability as measured by an MTT assay on RAW264.7

and THP-1 cell lines. In RAW 264.7 cells, MBQ-167 inhibited cell
Frontiers in Oncology 06
viability by 20% at 1 mM and by 25% at 2 mM, while EHop-016 had no

effect at similar concentrations (Figure 2A). A similar ~20% decrease in

cell viability was also observed at >1 mM MBQ-167 in THP-1

macrophage-like cells, with no response to EHop-016 at

concentrations up to 2 mM (Figure 2B). We found that EHop-016 at

10 mM inhibited RAW 264.7 mouse macrophage-like cell viability by

50%; however, EHop-016 at the same concentrationwasmore potent in

the 4T-1 mouse TNBC cell line (Supplementary Figure S3). Since the

MTT assay measures metabolic activity which may be affected by cell

death and/or proliferation, we quantified the frequency of dead RAW

264.7 cells by flow cytometry after 24 hrs of incubation with the

inhibitors. We determined that no effect on the percentage of live cells

was detected after treatment (Supplementary Figure S4). These data

demonstrate that the Rac/Cdc42 inhibitors MBQ-167 and EHop-016

inhibit Rac activity without affecting the viability of macrophage-

like cells.
Rac/Cdc42 inhibitors reduce downstream
signaling to the actin cytoskeleton and
inhibit cytoskeletal extensions, migration,
and phagocytosis

Activated (GTP bound) Rac and Cdc42 activate their common

downstream effector p21-activated kinase (PAK) via phosphorylation

to induce actin cytoskeleton reorganization into lamellipodia,

filopodia, and invadopodia required for directed cell migration and

invasion (34). Therefore, we wanted to determine the effect of Rac/

Cdc42 inhibitors on the actin cytoskeleton on differentiated THP-1

macrophages by staining with Rhodamine phalloidin, which

specifically stains F-actin filaments, and phosphorylated PAK (p-

PAK, Alexa 488 fluorescence). THP-1 differentiated macrophages
A B

FIGURE 2

Effect of EHop-016 and MBQ-167 on macrophage viability. RAW 264.7 mouse macrophage-like cells (A) or THP-1 monocytes differentiated into
macrophages (B) were treated with 0-2000 nM MBQ-167 or EHop-016 for 48hrs and the viability determined by an MTT assay (N = 5). N=5,
**p<0.005, ***p<0.0005, ****p<0.00005.
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A B

D

E

C

FIGURE 3

Rac/Cdc42 inhibitors reduce PAK activity, cell surface actin structures, cell migration, and phagocytosis of macrophages. (A) Rac/Cdc42 inhibitors
reduce PAK activity and cell surface actin structures. THP-1 cells growing on coverslips were differentiated with PMA and treated with vehicle,
MBQ-167 (1000 nM), or EHop-016 (2000 nM) for 24hrs. Cells were fixed and F-actin was stained with Rhodamine Phalloidin (red) and active PAK
immunostained with phospho (p)-PAK Alexa 488 conjugated antibody (green). Left, representative images (400x). Right, representative images
(200x). (B) quantification of staining intensity using image J software (N = 4 from 10 microscopic fields/biological replicate). (C) PAK phosphorylation
in response to MBQ-167 and EHop-016. THP-1 macrophages were treated with 0, 250, or 500nM MBQ-167 or 0, 1, 2 mM EHop-016 for 24hrs and
lysed. Cell lysates containing equal protein (25 mg) were Western blotted for PAK or active phospho (p-) PAK with specific antibodies to PAK 1,2,3
isoforms. Actin is shown as a loading control. Left, Representative Western blots. Right, Quantification of the integrated density of positive bands
using Image J software. p-PAK/PAK relative to vehicle (100%) N=3. (D) Rac/Cdc42 inhibitors reduce macrophage cell migration. Raw 264.7 cells
were grown to confluence and treated with vehicle, MBQ-167 (500 nM), or EHop-016 (2000 nM). A wound was created with a pipet tip and cells
were allowed to migrate for 48hrs. Representative images (left) and image J quantification of wound area (right) for N=5 are shown. *p<0.05.
(E) MBQ-167 and EHop-16 inhibit phagocytosis. RAW 264.7 cells were treated with EHop-016 (2000 nM) or MBQ-167 (500 nM) for 6hrs, then
incubated with green fluorescent Zymosan particles for 2.5 hrs and imaged using a Keyence microscope system. Left, representative images (10x);
right, quantification of ingested fluorescent particles. N=5. For all graphs, *p < 0.05, **p<0.005, ***p<0.0005, ****p<0.00005.
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were treated with vehicle, EHop-016 or MBQ-167 for 24 hrs. Vehicle-

treated differentiated THP-1 macrophages with PMA showed F-actin

organized into cytoskeletal structures in polarized cells. p- PAK

fluorescence was also observed both in the cytoskeletal extensions

and in the cytosol and at the nuclear periphery. Treatment with

EHop-016 at 2 µM reduced p-PAK levels and actin cytoskeletal

structures compared to vehicle. F-actin was observed in a punctate

distribution in the cytosol, which was more evident following 500 nM

MBQ-167. MBQ-167 treatment resulted in loss of polarity in the

macrophage cells, similar to the phenotype previously reported in

breast cancer cell lines (26). This reduction in actin cytoskeletal

structures in response to MBQ-167 was paralleled by reduced p-PAK

staining intensity (Figures 3A, B). The reduction in p-PAK

immunostaining in response to MBQ-167 or EHop-016 was also

confirmed by Western blotting with antibodies to PAK or p-PAK.

Results show a ~70% decrease in p-PAK levels by 250 and 500nM

MBQ-167 and a 14% decrease by 1 mM and a ~30% decrease in p-

PAK levels by 2 mM EHop-016 (Figure 3C).

Since actin cytoskeleton reorganization is critical for cellular

migration, we next determined the effect of Rac/Cdc42 inhibitors on

cell migration. Wound-healing assays of RAW 264.7 cells show that

EHop-016 at 2 µM significantly inhibited macrophage cell

migration by 38.3%, while MBQ-167 at 500 nM significantly

inhibited macrophage cell migration up to 66.6% (Figure 3D).

This data suggests that Rac/Cdc42 inhibitors impair actin

cytoskeleton reorganization to impede migration of macrophages.

Since phagocytosis is an essential function of macrophages, which

involves Rac and Cdc42 regulated actin cytoskeletal rearrangement

(35), we tested the effect of Rac/Cdc42 inhibitors on the

phagocytosis of fluorescent beads. Figure 3E shows that 500 nM

MBQ-167 reduced phagocytosis of RAW 264.7 macrophages by

50%, while 2 mM EHop-016 exerted a 75% decrease in phagocytosis.
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Rac and Cdc42 inhibitors reduce myeloid
cell activation and infiltration into
mammary tumors

To determine whether Rac and Cdc42 inhibitors affect leukocyte

migration in vivo, we quantified leukocytes by immunofluorescence

or flow cytometry in tumors or spleen in preclinical breast cancer

mouse models. Immunocompromised athymic nude mice were

implanted with GFP-HER2-BM human cancer cells in mammary

fat pads and treated with vehicle or 30 mg/kg BW EHop-016 by

intraperitoneal (IP) route 3 times a week for 55 days. We previously

published that EHop-016 treatment resulted in ~90% reduction in

tumor growth, angiogenesis, and metastasis (29). At the end of the

study, GFP-fluorescent tumors (as ascertained by in situ fluorescence

imaging) were extracted, fixed, and immunostained for macrophages

(F4/80 positive). Results show reduced macrophage infiltration in

tumors from EHop-016 treated mice compared to vehicle-treated

mice (Figure 4A). We also observed decreased neutrophil infiltration

in EHop-016 treated mice as quantified in immunostained tissues for

elastase (Figure 4B).

The effect of MBQ-167 treatment on myeloid cell activation was

also determined from spleens and tumors of imuunocompromised

SCID mice implanted with GFP-HER2-BM cells in the mammary fat

pad. When the tumors reached 100 mm3, mice were treated with 0 or

5 mg/kg BWMBQ-167 by intraperitoneal route 5 times per week. As

reported by us, MBQ-167 treatment resulted in a 70% reduction in

tumor growth and ~90% reduction in metastasis (30). At the end of

the study (55 days), spleens and tumors were extracted and processed

to quantify CD11b+F4/80+ macrophages, CD11b+Ly6G+ MDSCs

and CD11b+Ly6C+ monocytes by flow cytometry using the gating

strategy depicted on Supplementary Figure S5. Results show a ~30%

significant decrease in spleen macrophages but not tumor
A B

FIGURE 4

Effect of EHop-016 on leukocyte infiltration into mammary tumors. As described in (29), mammary fat pad tumors were established from GFP-
HER2-BM cells in nude mice and treated with vehicle or 30 mg/kg BW EHop-016 by i.p. 3X a week for 55 days. Primary tumors were fixed and
processed by immunostaining for (A) macrophages (F4/80) or (B) neutrophils (elastase) (right). Representative micrographs and quantification of
positive staining is shown for N=5, *p<0.05. Scale bar 50mM.
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macrophages in response to MBQ-167. When relative M1 (CD206

negative) or M2 (CD206 positive) macrophages were differentiated

from spleens of SCID mice following MBQ-167, we did not find a

distinction between M1 vsM2macrophages in response toMBQ-167

treatment (Data not shown). When spleen extracts were analyzed for

MDSCs, there was no significant change in CD11b+Gr1+ cells in

spleens following MBQ-167 treatment; however, tumor MDSCs were

significantly reduced by ~57% in response toMBQ- 167 treatment. In

contrast, no differences in monocyte frequencies were observed in

tumors or spleen after MBQ-167 (Figure 5).

In addition, we implanted immunocompetent Balb/c mice with

4T-1 mouse breast cancer cells and treated them with vehicle, 5 mg/

kg, 25 mg/kg, 50 mg/kg or 100 mg/kg of MBQ-167 by oral gavage 5

times per week for 5 weeks. As reported, 50 mg/kg BW MBQ-167

treatment resulted in a significant 60% decrease in tumor growth

and a 90% decrease in lung metastases (27). At the end of the study,

spleens were collected, and processed to quantify CD11b+F4/80+

macrophages, CD11b+LY6C+ monocytes, and CD86+ activated

myeloid cells by flow cytometry. A significant reduction was

observed in macrophage and monocyte frequencies in spleens

treated with MBQ-167 at concentrations of 25 mg/kg or higher.

The most significant reduction was observed in mice treated with 50

mg/kg of MBQ-167 (Figures 6A–C). Moreover, the activation of

macrophages and monocytes were also significantly reduced after 5

mg/kg and 25 mg/kg of MBQ-167, respectively (Figures 6D, E).
Rac and Cdc42 inhibitors reduce IL-6
secretion in the TME

Macrophages are major producers of pro-inflammatory

cytokines, therefore, to determine whether the Rac and Cdc42

inhibitors affect macrophage cytokine production, we quantified

the levels of cytokines in vivo and in vitro. As described in (29), at
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the end of the 55-day study following 30mg/kg BW EHop-016,

administered 3X a week by IP, to nude mice bearing GFP-HER2-

BM mammary tumors, the plasma and tumors were extracted and

subjected to cytokine arrays. As shown in Figure 7A, a cytokine

array demonstrated no changes in interferon g (IFNg), IL-10, IL-12,
Monocyte Chemoattractant Protein (MCP-1), or tumor necrotic

factor a (TNFa); but demonstrated a 30% significant decrease in

IL-6, as confirmed from an ELISA assay for IL-6 using plasma from

the same mice (Figure 7B). This decrease was also reflected in IL-6

levels from tumor extracts as quantified by RT-PCR (Figure 7C).

We also wanted to determine whether IL-6 production could be

affected in vitro by Rac and Cdc42 inhibitors using primary myeloid

cells. For this, we cultured spleen cells from SCIDmice with the TLR4

agonist lipopolysaccharide (LPS), which triggers the production of

IL-6. It is important to note that spleens from immunocompromised

SCID mice mostly contain macrophages and neutrophils due to the

lack of T and B lymphocytes. As expected, LPS increased IL-6 levels

in cultured splenocytes, while EHop-016 significantly decreased this

spike in LPS-stimulated IL-6 release at concentrations >800 nM

(Figure 7D). Similarly, when myeloid cells were analyzed by flow

cytometry, EHop-016 reduced IL-6 levels by ~50% starting at 800 nM

EHop-016 (Supplementary Figure S6). A similar significant reduction

in LPS-induced IL-6 levels were also observed from cultured

splenocytes in response to >400 nM MBQ-167 (Figure 7E). The

decrease in IL-6 release from LPS-induced splenocytes in response to

Rac/Cdc42 inhibitors was relatively modest, compared to the >50%

inhibition of IL-6 levels in plasma and tumors frommice treated with

EHop-016 for ~2 months. This could be attributed to a cumulative

effect of prolonged EHop-016 treatment or additional contribution

from cells in the tumor microenvironment, as well as other IL-6

releasing cells such as fibroblasts, in these immunocompromised

mice. Taken together, these data implicate Rac and Cdc42 in

regulation of immune suppressive myeloid cells, which can be

inhibited by the specific inhibitors EHop-016 and MBQ-167.
FIGURE 5

Effect of MBQ-167 on myeloid cells in mouse models. As published in (30), immunocompromised SCID mice were inoculated with GFP-HER2-BM cells,
when the tumors reached 100 mm3, mice were treated 5X a week with 0 or 5 mg/kg MBQ-167 by IP for 55 days. At necropsy, tumors and spleens were
extracted and subjected to flow cytometry using fluorescently tagged antibodies to identify macrophages (CD11b+F4/80+), MDSCs (CD11b+LY6G+), and
monocytes (CD11b+Ly6C+) N = 4 – 5, *p<0.05.
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Discussion

Rac and Cdc42 are pivotal regulators of both innate and

adaptive immune cell migration relevant for immune suppression

in the TME (36–38). In hematopoietic cells, Vav1/Rac2 activity is

essential for macrophage and neutrophil recruitment via adhesion

and migration, as well as the phagocytic NADPH oxidase response

(21, 39, 40). In addition, differentiation and activation of M2 like

macrophages and MDSCs are also regulated by Rac (41, 42). PMA-

induced differentiation of monocytes into macrophages activates

Rac and Cdc42 without changing their expression (43–45).

The Rac and Cdc42 inhibitors, EHop-016 and MBQ-167, are

potent inhibitors of cancer cell migration and metastasis, as our

group has demonstrated in different cancer cell types (25– 27, 29, 30,

32, 46–48). However, the effect of these inhibitors on tumor
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metastasis may not only be caused by direct effects on cancer cells

but also through their modulation of immune cells. Herein, we show

that similar to their effects on Rac and Cdc42 activation in breast

cancer cells, in macrophage-like cell lines, the Vav/Rac inhibitor

EHop-016 inhibits Rac activation, and the dual inhibitor MBQ- 167

inhibits both Rac and Cdc42 activation, albeit at ~ 2X higher

concentrations than their effective concentrations in cancer cells.

Since we have shown MBQ-167 to be absorbed more readily into

tumor tissue and to be sustained at longer hours (~8hrs) compared to

the ~4hr half-life in plasma (27, 28, 49), we expect the Rac/Cdc42

inhibitors to be more effective in the TME, by affecting cancer and

macrophage cell signaling, which results in decreased metastasis.

We also report that macrophage migration is reduced by Rac/

Cdc42 inhibitors, without a significant effect on macrophage cell

viability at the effective concentrations of 2000 nM for EHop- 016
A

B

D E

C

FIGURE 6

As published in (27), immunocompetent Balb/c mice bearing mammary tumors (~100mm3) established from 4T-1 mouse breast cancer cells were
treated with vehicle or 0-100 mg/kg MBQ-167 5X a week by oral gavage, for 5 weeks. The spleens were harvested at necropsy for flow cytometry
analysis. (A) Representative plots for macrophage and monocyte frequencies gated on CD11b+Gr1- cells are shown. The % of macrophages (B) and
monocytes (C) among total live lymphocytes and the expression of CD86 as mean fluorescence intensity on macrophages (D) and monocytes (E) is
depicted (N = 6) *p < 0.05, **p<0.005, ***p<0.0005, ****p<0.00005.
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and 500 nM for MBQ-167. This reduction in migration is paralleled

by decreased PAK activity and impairment in actin cytoskeleton

structures, similar to the effects observed on cancer cells by EHop-

016 and MBQ-167 (25–27, 29). However, higher doses than the

ones used for cancer cells were required to reduce macrophage

migration in vitro. This suggests that different cell types have

different sensitivities towards these inhibitors, which may be

explained by differential expression levels of Rac and Cdc42, as
Frontiers in Oncology 11
shown in Supplementary Figure 3 where equal protein

concentrations (25mg) from macrophage or breast cancer lysates

with equal actin staining show double the concentration of Cdc42 in

macrophages, compared to triple negative breast cancer (TNBC)

cells. This may also be an isoform dependent effect because cancer

cells express Rac1 and Rac3, while hematopoietic cells express Rac2.

In a mouse model of HER2++ breast cancer (29), EHop-016

administration reduced macrophage numbers into tumors as well
A B

D E

C

FIGURE 7

IL-6 is increased in response to Rac/Cdc42 inhibitors. As described in (29), mammary fat pad tumors were established from GFP-HER2-BM cells
in athymic nude mice and treated with vehicle or 30 mg/kg BW EHop-016 by i.p. 3X a week for 55 days. At necropsy, plasma and tumors were
extracted and subjected to a cytokine array. (A) Relative cytokines from plasma following 30 mg/kg BW EHop-016 administration. (B) IL-6 levels
in mouse plasma following EHop-016 treatment. (C) Tumors were extracted and IL-6 mRNA in tumor tissue was measured by qRT-PCR. Fold
change in mRNA expression relative to vehicle treated mice is shown. Average fold change ± SEM (N=4) *p<0.05. Splenocytes from SCID mice
were cultured with or without LPS (10 µg/mL) and treated with the indicated concentrations of EHop-016 (D) or MBQ-167 (E). After 24hrs in
culture, supernatants were collected and an ELISA assay was done to quantify IL-6. Statistical significance was calculated using Two-way
ANOVA, **p < 0.005, ***p < 0.0005, N.
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as metastasis. Since leukocytes are known to promote metastasis via

cross-talk signaling with cancer cells (7, 24), the observation of

reduced macrophage and neutrophil counts in mammary tumors

following Rac inhibition validates a dual role for Rac/Cdc42

inhibitors in tumor malignancy. The reduced numbers of

macrophages in the tumor may not only be due to impaired

migration but to decreased macrophage differentiation since Rac

and Cdc42 become activated during monocyte-macrophage

differentiation; further studies are needed to demonstrate this (43).

Immune cells such asmacrophages, neutrophils, andMDSCs, can

be immunosuppressive in theTMEandpromote tumor cell invasionof

the surrounding tissue, intravasation and survival in the circulation, as

well as tumor cell arrest, extravasation and persistent growth at

metastatic sites, and is correlated with poor patient prognosis (7–12).

Between the two major classes of macrophages, the alternative or M2

class predominates inmalignant tumors.M2macrophages are defined

by their ability to produce cytokines and soluble mediators that

promote an immunosuppressive environment, angiogenesis, tissue

remodeling and repair (17, 50, 51). Such immune cell-mediated release

of cytokines and chemokines all signal viaRac andCdc42 (52). Further

investigation of the macrophages from the spleen also demonstrated

that the activation state of macrophages and monocytes was

significantly decreased, observed by a decrease in CD86 expression,

followingMBQ-167 treatment. Althoughwe did not determine in vivo

that this effect was directly through MBQ-167 on macrophages, it is

known that the co-stimulatory molecule CD86 may be induced after

TLR engagement, which signals through Rac/Cdc42 pathway. Thus,

MBQ-167 may be affecting myeloid cell activation via TLR4 signaling

(19). Therefore, targeting Rac and Cdc42 in tumor-associated

macrophages (TAMs) could inhibit a cascade of events that promote

a tumorigenic microenvironment. Since Rac and Cdc42-regulated

MDSCs are known to exert immunosuppressive effects in the TME

(41, 42, 53), wequantitated theMDSCs in SCIDmicebearingHER2++

breast tumors following MBQ-167 treatment. Results show a

significant 60% decrease in MDSCs from mammary tumors of mice

that receivedMBQ-167, which indicates an immunoprotective role for

Rac/Cdc42 inhibitors. Although this was not the focus of this

manuscript, the effect of Rac/Cdc42 inhibitors on intratumoral T cell

function is highly important to be determined to understand the

impact of these inhibitors in not only innate but also adaptive

immune cells.

We also found that Rac/Cdcd42 inhibitors may promote an anti-

tumor microenvironment by inhibiting the secretion of the pro-

inflammatory cytokine IL-6, which is mostly produced by tumor-

associated macrophages. From a cytokine array, we found that IL-6

and not IL-10 or TNFa were significantly changed by Rac inhibition.

This indicates a specific effect on IL-6 release, probably through NfkB
signaling (20), to promote inflammatory mechanisms. Notably, IL-6

has been found to promote tumor cell proliferation, survival,

angiogenesis, and escape from immune surveillance (54–56). IL-6

has been implicated in the dissemination of cancer cells leading to

metastasis since it drives cancer cell proliferation and invasiveness

while suppressing apoptosis (57). Moreover, IL-6 has been shown to

induce the differentiation of M2 macrophages and activation of

myeloid-derived suppressor cells (MDSCs) in prostate cancer

models (58). Accordingly, we demonstrated that Rac/Cdc42
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inhibitors reduced IL-6 secretion in vivo after EHop-016 treatment

and also in splenocytes following LPS stimulation. Although IL-6may

be produced by macrophages and cancer cells in vivo, our results

demonstrate that these inhibitors have the potential to reduce

inflammatory mediators driving metastasis.

The ability of Rac/Cdc42 inhibitors to decrease pro-

inflammatory cytokines implicates them as potential therapeutics

for inflammatory conditions. IL-6 is involved in uncontrolled

inflammation during autoimmune diseases and chronic

inflammatory diseases. For example, IL-6 mostly produced by

macrophages in synovial fluid is implicated in rheumatoid

arthritis (59). For this reason, blockade of IL-6 is used as a

treatment for rheumatoid arthritis and is in clinical trials for

other inflammatory conditions, including cancer (60, 61).

Therefore, therapeutic intervention with Rac/Cdc42 inhibitors

may provide treatment options for inflammatory diseases.

Our results demonstrate the dual role of Rac/Cdc42 inhibitors

in inhibiting cancer cell and macrophage migration as well as

inflammatory cytokines driving metastasis. Future studies will be

aimed in determining the effect of Rac/Cdc42 inhibitors on other

immune cell types to better understand their dynamic modulation

of the TME. Also, we will determine the effective concentrations for

Rac/Cdc42 inhibitors to impair cancer cell and protumorigenic cell

migration in the TME, while preserving the function of anti-tumor

immune cells.
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