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Accumulating evidence has indicated that pre-mRNA splicing plays critical roles

in a variety of physiological processes, including development of multiple

diseases. In particular, alternative splicing is profoundly involved in cancer

progression through abnormal expression or mutation of splicing factors.

Small-molecule splicing modulators have recently attracted considerable

attention as a novel class of cancer therapeutics, and several splicing

modulators are currently being developed for the treatment of patients with

various cancers and are in the clinical trial stage. Novel molecular mechanisms

modulating alternative splicing have proven to be effective for treating cancer

cells resistant to conventional anticancer drugs. Furthermore, molecular

mechanism-based combination strategies and patient stratification strategies

for cancer treatment targeting pre-mRNA splicing must be considered for

cancer therapy in the future. This review summarizes recent progress in the

relationship between druggable splicing-related molecules and cancer,

highlights small-molecule splicing modulators, and discusses future

perspectives of splicing modulation for personalized and combination

therapies in cancer treatment.
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1 Introduction

Alternative pre-mRNA splicing is a critical molecular mechanism underlying the

generation of diverse proteins and plays a pivotal role in various biological processes, such

as development, differentiation, growth, and apoptosis (1–3). Alternative splicing of RNA-

binding protein FOX1 homologue 1 plays key roles in brain development and neuronal

differentiation, as the nucleic and cytoplasmic isoforms regulate approximately 500

alternative spliced cassette exons that maintain neuron function or control mRNA

expression of synaptic and autism-related genes (4). In heart development, alternative

spliced isoforms of Titin control the elasticity of titin, thereby determining sarcomere

length (4). Alternative splicing is evolutionarily conserved, but yet diverged, as evidenced

by comparisons of organ transcriptomes from vertebrate species spanning approximately
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350 million years of evolution (5–7). Recent studies have linked

dysregulation of the components of alternative splicing machinery

with various diseases, especially cancers. Analyses of >8,000 tumors

across 32 types showed that tumors have up to 30% more

alternative splicing events than normal samples (8). In contrast,

thousands of splicing variants were not present in nonmalignant

tissues (8), suggesting potential links between splicing abnormalities

and cancer progression and metastasis. Alternatively spliced

isoforms associated with cancer have been implicated in tumor

progression, migration, apoptosis, and angiogenesis. Several spliced

isoforms, including Bcl-xL and MCL1L, are up-regulated in tumor

cells as anti-apoptotic factors (3). In addition, spliced isoforms are

responsible for resistance against anticancer therapies, such as

androgen receptor (AR)-targeted therapy for prostate cancer (9).

The aberrant isoform of AR-V7 is constitutively active, thereby

contributing to the development and progression of castration-

resistant prostate cancer and resistance to AR-targeted therapy (10).

Multiple strategies have been implemented to target tumor cells,

inc luding smal l -molecu le compounds and ant i sense

oligonucleotides. To target alternative splicing machinery is

promising candidates for cancer treatment, and multiple

molecules including kinases are involved in pre-mRNA splicing

events in cancer (2, 11). In this review, we highlight the druggable

splicing-related molecules and the newly developed compounds to

target alternative splicing for cancer therapy. First, we introduce the

pre-mRNA splicing machinery and mutations of splicing-related

genes in cancer. Then, we discuss why targeting splicing molecules

is effective for cancer treatment. Next, we describe the dysregulation

of splicing-related proteins and small-molecule compounds in

cancer. Finally, we discuss the therapeutic potential of splicing

modulators for cancer treatment from the perspective of patient

stratification and drug combination strategy.
2 The spliceosome machinery

Pre-mRNA splicing is performed by the spliceosome, which

comprises multicomponent five ribonucleoprotein complexes

(snRNPs; U1, U2, U4, U5, and U6), each composed of specific

small nuclear RNAs (snRNAs), a number of associated proteins,

and >200 additional polypeptides not directly bound to snRNPs

(12–14). The spliceosome is assembled and activated through a

series of ATP/GTP-dependent reactions from complex E to

complexes A, B, and C via RNA–RNA and RNA–protein

interactions. Spliceosome assembly starts with the recognition of

the 5′ splice site (5′ss) by U1 snRNP via base paring interactions

with U1 snRNA and the 5′-end of the intron. Subsequently, U2AF1,
U2AF2, and SF1 interact with the 3′ss region, including the

polypyrimidine tract and the AG dinucleotide, and lead to the

formation of complex E (Figure 1A). The next step in spliceosome

assembly involves ATP-dependent stable binding of U2 snRNP at

the branch site through base pairing interactions with U2 snRNA,

thereby leading to the formation of complex A (Figure 1B). SF3B1 is

one of the key components of U2 snRNP that recognizes the branch

site and the U2 snRNA–pre-mRNA helix and facilitates the

approximation of the branch-site adenosine to the 5′ss. Other
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components of complex A, such as RBM10, RBM39, and RBM15,

modulate 3′ss recognition, and RBM15 is regulated by protein

arginine methyltransferase 1 (PRMT1). Recognition of splice sites

by U1 and U2 snRNPs is assisted and modulated by several other

RNA-binding proteins, such as arginine–serine-rich (SR) proteins,

heterogeneous nuclear ribonucleoproteins (hnRNPs), and RNA-

binding motif proteins. SR proteins, such as SRSF1 and SRSF2, bind

to an exonic splicing enhancer (ESE) or intronic splicing enhancer

(ISE) to promote exon selection by recruiting spliceosomal

components, U1 or U2 snRNPs. After initial recognition of the

splice sites by U1 and U2 snRNPs, subsequent recruitment of the

U4/U6-U5 tri-snRNP complex to form complex B leads to

the formation of the catalytically active conformations of the

spliceosome. Then, pre-mRNA intron removal proceeds with two

sequential transesterification reactions that are initiated by the

nucleophilic attack of the 5′ss by the branch-site nucleotide,

resulting in the formation of an intro lariat. The lariat is

subsequently removed by 5′ss-mediated attack on 3′ss, producing
a mature mRNA followed by spliceosome disassembly. Alternative

splicing can arise frommachineries, including exon skipping, intron

retention, alternative 5′ splice site, alternative 3′ splice site, mutually

exclusive exon, alternative promoter, alternative polyadenylation,

and trans-splicing (Figure 2) (15–17).
3 Mutation of splicing factors

A recent whole genome sequence analysis showed that

spliceosome-related genes are mutated in multiple tumors. The

most commonly mutated splicing factor was SF3B1, which is a core

component of U2 snRNP (18, 19). SF3B1 mutation was observed in

90% of patients with myelodysplastic syndrome (MDS) with ring

sideroblasts, which is characterized by anemia, iron-rich

mitochondria surrounding the nuclei of erythroid precursors, and

a favorable prognosis (18–21). SF3B1 is mutated in the early stage of

myeloid malignancies, whereas SF3B1 mutations in chronic

lymphocytic leukemia (CLL) are most commonly subclonal and

enriched in more advanced and aggressive disease (22, 23). SF3B1

mutations induce cryptic intron-proximal 3′ss selection through

usage of a different branch point, since U2 snRNPs recognize the

branch point sequence within the intron (24, 25). The most

common mutation in SF3B1 is the K700E mutation, which is

observed in myeloid malignancies, CLL, and multiple solid

tumors. The SF3B1-K700E mutation has been implicated in

cancer progression (26, 27). A conditional knock-in mouse with

heterozygous expression of SF3B1-K700E causes progressive

macrocyt ic anemia (27) , and a knock- in mice with

hematopoietic-specific expression of SF3B1-K700E impaired

erythropoiesis and progressive anemia without ringed

sideroblasts, accompanied by a reduction in hematopoietic stem

cells (26). Additional hot spot mutations with SF3B1, such as R625

and E902, are enriched in melanomas and bladder carcinomas;

however, the lineage specificity of these hotspot mutations remains

to be elucidated (28). In multiple cancers, the SF3B1 mutation has

been linked to dysregulation of several cellular pathways and

functions, DNA damage response, R-loop formation, telomere
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maintenance, and Notch signaling (29–31). In addition, SRSF2,

U2AF1, and ZRSR2 mutations are observed. SRSF2, one of the SR

proteins, is frequently mutated in acute myeloid leukemia (AML)

(32). Canonical SRSF2 equally binds CCNG and GGNG sequences

and induces alternative splicing (33). However, SRSF2 mutations

preferably alter splicing of exons with C-rich sequences than with

G-rich sequences (32, 34, 35). The SRSF2 mutation leads to splicing

alterations of EZH2, which results in reduced expression by

nonsense-mediated decay, thereby impairing hematopoietic

differentiation in vivo (34). Additionally, frequent overlap of

SRSF2 and IDH2 mutations alters splicing of INTS3, leading to

leukaemogenesis due to reduced expression with nonsense-

mediated decay (32). Hotspot mutations in U2AF1 are mainly

located in the S34 or Q157 residue. S34 mutations promote

inclusion of exons whose 3′ss is C-rich, whereas Q157 mutations

enhance inclusion of exons whose 3′ss is G-rich. The U2AF1

mutation alters hematopoiesis and splicing in hematopoietic

progenitor cells, thereby contributing to abnormal hematopoiesis

in vivo (36). Mutations in ZRSR2 are identified in approximately

10% of patients with MDS (37, 38). These mutations are located

sporadically across the coding regions, suggesting that these

mutations are loss-of-function mutations and distinct from the
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change-of-function mutations in SF3B1, SRSF2, and U2AF1.

ZRSR2 mutations, which predominantly occur in males, induce

abnormal splicing via U12-dependent introns, leading to

hematopoietic stem cell self-renewal and disorders (39, 40).
4 Druggable splicing-related proteins

4.1 Splicing-related protein kinases
(SRPKs/CLKs)

Members of kinase families, including serine–arginine protein

kinases (SRPKs) and CDC-like kinases (CLKs), phosphorylate the

RS domains of SR proteins, thereby regulating their subcellular

localizations and interactions with ESEs or ISEs of pre-mRNAs.

SRPKs (SRPK1, SRPK2, and SRPK3) are serine–threonine kinases

that phosphorylate serine residues within serine/arginine (S/R)

dipeptides enriched in SR proteins (41, 42). SRPKs contain a

nonhomologous spacer insert domain that bifurcates the kinase

domain and anchors the kinase in the cytoplasm through

interactions with chaperones (43–45) (Figure 3). SRPKs

phosphorylate SR proteins in the cytoplasm and induce their
B

A

FIGURE 1

Schematic representation of spliceosome assembly. (A) Complex E regulated by RNA-binding proteins. SR proteins (SRSFs) bind to Exonic splicing
enhancers (ESE), thereby stimulating splicing at up- and downstream splice sites by facilitating the interaction of U2AF or the U1 snRNP with the
RNA. The hnRNP proteins bind to Exonic splicing silencers (ESS), subsequently suppress splicing at up- and downstream splice sites by antagonizing
SR proteins. (B) Spliceosome assembly pathway. 5′ splice site is recognized by U1 snRNP, followed by U2 snRNP binding to the branch point
(complex A). U4/U6/U5 tri-snRNP complex binds to complex A to form complex B and conformational rearrangements releases U1 and U4 snRNP,
which results in activation of the spliceosome (complex B act/B*). Further conformational rearrangements and changes in protein composition
catalyzes the first step of the splicing reaction, leading to the formation of a lariat intermediate (complex C). An additional conformational switch
leads to the second catalytic step, rendering the spliced product (mRNA) and the intron lariat.
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nuclear import by increasing their affinity to the transportin

complex (46). Activated Akt induces SRPK autophosphorylation

that switches the chaperones complex of SRPK, thereby enhancing

SRPK nuclear translocation (45, 47). SRPKs and CLKs

simultaneously regulate the shuttling of SR proteins between

nuclear speckles and the nucleus via phosphorylation of different

regions of SR dipeptides (48, 49). SRPK1 and SRPK2 are

ubiquitously expressed in human tissues, whereas SRPK3 is

predominantly expressed in muscle tissues (50, 51). Consistent

with the expression pattern in humans, Srpk1-deficient mice

show embryonic lethal and Srpk3-deficient mice show a type 2-

specific myopathy (51, 52).

CLKs comprise four members, i.e., CLK1–4, and a phylogenetic

kinome analysis revealed that CLK1 and CLK4, CLK2 and CLK3

have higher similarity (53). In addition to the phosphorylation of

arginine/serine dipeptides, CLKs phosphorylate the SR proteins of

serine/proline; this step is critical for binding of the SR protein by
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CLK1 but not for SRPK1-dependent reaction (54). CLKs have a C-

terminal kinase domain and an N-terminal noncatalytic domain

with a serine/arginine-rich region (55) (Figure 3). CLKs

phosphorylate SR proteins in the nucleus. Subsequently, the

kinase domain of SRPK1 interacts with the N-terminal domain of

CLK1 and leads to the release of SR proteins from nuclear speckles

and induces the interaction of SR proteins with U1 snRNP to

proceed splicing machinery (56, 57). CLKs are ubiquitously

expressed in human tissues and exhibit alternative splicing-

independent functions. CLK2 phosphorylates the SR domain on

peroxisome proliferator-activated receptor g coactivator (PGC-1a)
and functions as an insulin-regulated suppressor of hepatic

gluconeogenesis through disruption of PGC-1a (58, 59). CLK4

phosphorylates nexilin and regulates cardiac function (60). Cardiac-

specific Clk4-knockout mice show pathological myocardial

hypertrophy with progressive left ventricular systolic dysfunction

and heart dilation (60).
FIGURE 2

Schematic diagram of eight types of alternative splicing: Exon skipping, intron retention, alternative 5′ splice site, alternative 3′ splice site, mutually
exclusive exon, alternative promoter, alternative polyadenylation, and trans-splicing.
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4.2 Cyclin-dependent kinases (CDK7/
CDK9/CDK11/CDK12/CDK13)

Cyclin-dependent kinases (CDKs) are classified into cell cycle-

related and transcriptional-related subfamilies based on their

substrate specificity (42, 61). Among the transcriptional-related

CDKs, CDK7, CDK9, CDK11, CDK12, and CDK13 are directly

or indirectly involved in the regulation of alternative splicing

through reversible phosphorylation of the C-terminal domain

(CTD) of RNA polymerase II (pol II). CDK7 preferentially

phosphorylates Ser5 and Ser7 of RNA Pol II CTD and regulates

transcriptional initiation and alternative splicing (62, 63). In

addition to the phosphorylation of pol II, CDK7 phosphorylates

multiple splicing factors, such as SF3B1, U2AF2, CDK9, CDK12

and CDK13 (63). Thus, a CDK7-selective inhibitor alters multiple

splicing events, such as exon skipping and retained intron type of

splicing (63). CDK9 preferentially phosphorylates Ser2 of RNA Pol

II CTD and controls pol II pause release, elongation, alternative

splicing, and polyadenylation (64–66). CDK9, together with cyclin

T, forms positive transcription elongation factor b (P-TEFb), which

controls the elongation phase of transcription by RNA pol II. CDK9

inhibition abrogates polyadenylation and causes an elongation

defect starting at the last exon of a protein-coding gene. SILAC

phospho-proteomics analysis identified that multiple splicing

factors, such as SF3B1, are phosphorylated by CDK7, and CDK9

inhibition promotes the loss of interaction of SF3B1 (66). CDK9

and PP2A regulate mRNA cleavage and polyadenylation as well as

alternative poly(A) site usage, since inhibition of PP2A abrogates

the effect of CDK9 inhibition on transcription at the 3′end of the

gene (66). CDK11 is encoded by CDK11A and CDK11B, whose

mRNA is translated into two major CDK11 proteins, CDK11p110

and CDK11p58 (61, 67). CDK11–cyclin L complex involves
Frontiers in Oncology 05
transcription and RNA processing, in particular, alternative

splicing (68). In addition to preferential phosphorylation of Ser2

of RNA Pol II CTD, CDK11 phosphorylates threonine residues of

SF3B1 at its N terminus during spliceosome activation, thereby

promoting binding between SF3B1 and U5/U6 snRNAs (69).

CDK12 and CDK13 exhibit 92% similarity in their kinase

homology domain; thus, these are regarded as structurally and

functionally redundant kinases (70). CDK12/CDK13 preferentially

phosphorylate Ser2 of RNA Pol II CTD and regulate pol II

elongation, termination, and alternative polyadenylation (71–75).

CDK12/CDK13 bind to cyclin K and active complex while

regulating transcriptional elongation and preferentially express

DNA damage response and repair (DDR) genes to protect cells

from genomic instability. Inhibition of CDK12 using siRNAs or

small-molecule compounds leads to a predominant decrease in the

expression of long genes with high numbers of exons, including

breast and ovarian cancer type 1 susceptibility protein 1 (BRCA1),

ataxia telangiectasia and Rad3-related (ATR), FA complementation

group I (FANCI), and FA complementation group D2 (FANCD2),

thereby inducing spontaneous DNA damage (76). CDK12 loss leads

to elongation defects and increases intronic polyadenylation of

DDR genes depending on gene length and the U1 snRNP/

polyadenylation signal ratio, since the U1 snRNP complex

prevents premature termination via recognition and inhibition of

cryptic poly(A) sites (72, 74, 77–79). Interestingly, SILAC analysis

also identified that CDK12 phosphorylates SF3B1, similar to CDK7

and CDK9. CDK12 loss of function induces minimal effect on

alternative splicing (74). The phosphorylation site of SF3B1 could

be critical for the regulation of alternative splicing and

polyadenylation. More detailed analysis of the phosphorylation of

mRNA processing-related proteins is expected to be performed in

the future.
FIGURE 3

Schematic structures of splicing-related proteins. SRPK1, CLK1, CDK7, CDK9, CDK11, CDK12, CDK13, PRMT1, PRMT5. The Kinase domain of SRPK1
includes internal spacer sequence that separates the bipartite kinase catalytic core. CLK1 has a kinase domain at the C-terminus. CDK family proteins
have consensus serine/threonine kinase domain. In addition to consensus kinase domain, CDK11 has two separate domains and arginine/glutamic
acid rich (RE) domains are linked to association with RNA processing factors and glutamic acid rich (ER) domain support RE domain function and
aide in keeping these proteins subnuclear. CDK11p58 is a short isoform of CDK11p110 missing 1-360 amino acids. CDK12 and CDK13 have additional
arginine/serine rich (RS) domain, serve as docking sites for assembly of splicing factors and regulation of splicing and proline-rich (PR) domains serve
as binding sites for Src-homoogy3, WW or profilin-domain-containing proteins. CDK13 has three alanine-rich (AR) domains. The methyl transferases
domain of PRMT1 and 5 is consists of the catalytic Rossman fold and Β-barrel. PRMT5 adopts a TIM barrel structure at the N-terminal, which
interacts with the C-terminal catalytic domains of adjacent monomers.
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4.3 PRMTs (PRMT1/PRMT5)

Protein arginine methyltransferase 5 (PRMT5) and 1 (PRMT1)

are directly and indirectly involved in the splicing machinery,

respectively . PRMT5 is an essential type II arginine

methyltransferase and catalyzes the formation of symmetric

demethylated arginine on a variety of proteins and histones,

thereby regulating chromatin structure, gene transcription,

cellular differentiation, and pre-mRNA splicing (80). Methylation

by PRMT5 is required for recruiting substrate adaptors, such as

spliceosome subunits, SmB/B′, SmD1, and SmD2, through a TIM

barrel domain at the N terminus, thereby regulating mRNA

processing, including splicing activity (81). PRMT1 is a type I

arginine methyltransferase and catalyzes the formation of

asymmetrically demethylated arginine (82). PRMT1 methylates

the RNA-binding protein RBM15 that preferentially binds to the

specific intron region of SF3b, thereby affecting alternative splicing

(80). Regarding the structure, PRMT5 and PRMT1 have a

conserved core including a Rossman fold for cofactor binding and

a Β-barrel for substrate binding (83) (Figure 3). PRMT5 also has a

triose-phosphate isomerase (TIM) barrel at the N terminus, which

is required for enhanced methyltransferase activity by forming a

complex with methylosome protein 50 (83, 84).
5 Dysregulation of druggable splicing-
related proteins in cancer

5.1 Dysregulation of SRPKs in cancer

SRPK1 is upregulated in pancreatic, breast, colonic, prostate,

and non-small cell lung carcinomas and leukemia (85–90).

Upregulation of SRPK is correlated with poor prognosis of breast

cancer metastasis-free survival and overall survival time of non-

small cell lung carcinoma (91, 92). In contrast, upregulation of

SRPK1 is observed in patients with germ cell tumors responding to

standard chemotherapy with statistical significance (93). In

addition, another study showed that reduced SRPK1 protein

expression is associated with decreased response to chemotherapy

in retinoblastoma patients (94). Interestingly, aberrant SRPK1

expression in either direction, up or down, is tumorigenic (52).

Downregulated SRPK1 leads to constitutive Akt activation through

impairing the recruitment of an Akt phosphatase, a pleckstrin

homology domain leucine-rich repeat protein phosphatase

(PHLPP1). Overexpression of SRPK1 also activates Akt by

isolating PHLPP1. These results suggest that upregulated or

downregulated expression of SRPK1 is observed in human

tumors and that SRPK1 is involved in tumor progression,

migration, and angiogenesis via splicing-dependent and

-independent machineries. In splicing-dependent machinery,

SRPK1 regulates multiple splicing and leads to tumor

progression. In particular, the splicing variant of the vascular

endothelial growth factor (VEGF) is dominantly regulated by

SRPK1 (95). A spliced isoform, VEGF165, exhibits proangiogenic

activity, whereas VEGF165b exhibits antiangiogenic activity (96).
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Aberrant upregulation of SRPK1 induces phosphorylation and

nuclear translocation of SRSF1 and leads to splicing of VEGF165

in Wilms Tumor and melanoma (95, 97). Knockdown or chemical

inhibition of SRPK1 alters splicing from VEGF165 to VEGF165b,

thereby inhibiting angiogenesis and tumor progression (Figure 4).

CRISPR-Cas9 screen shows that SRPK1 involves genetic

vulnerability in AML cells (98). Comprehensive RNA-seq

alternative splicing analysis using an SRPK inhibitor revealed that

multiple events of splicing, especially exon skipping events, were

altered in leukemic cells (90). SPHINX31, an SRPK inhibitor,

suppressed growth and induced differentiation of human AML

cells without causing any severe side effects, including

hematopoiesis (90). Among altered splicing events, the

bromodomain 4 (BRD4) isoform was altered from the short to

the long isoform, eliminating BRD4 recruitment to chromatin

involved in leukemogenesis including BCL2 and MYC (Figure 4).

These results suggest that SRPK plays a key role in tumor

progression in terms of splicing regulation.
5.2 Dysregulation of CLKs in cancer

CLK1 and CLK2 are upregulated in breast and colorectal

carcinomas and glioblastoma (99, 100). Upregulated expression of

CLK1 and CLK2 is negatively correlated with prognosis in patients

with kidney tumors and glioblastoma/colorectal carcinoma,

respectively (100–102). The expression of CLK1 is regulated via

the ubiquitin degradation mechanism during cell cycle (101). In the

G2/M phase, the protein level of CLK1 is increased, whereas the

protein levels of CLK2, SRPK1, and SR remain constant.

Interestingly, thousands of cell cycle-dependent alternative

splicing changes, including changes in the levels of RNA-binding

proteins, are regulated by CLK1, suggesting that RNAmetabolism is

regulated by cell cycle and is aberrant in patients with tumors of

higher mitotic index. Downregulation of CLKs inhibits cell growth

and induces apoptosis in breast cancer and glioblastoma in vitro

and in vivo (99, 102). CLKs also exhibit cancer cell growth

inhibitory activity by modulating alternative splicing in multiple

solid cancers (17, 103–107). A benzothiazole compound TG003 was

first identified as a selective CLK inhibitor (108). TG003 inhibited

cell proliferation and induced apoptosis in prostate cancer cells in

vitro and in vivo through splicing changes of cancer-associated

genes, including CENPE, ESCO2, CKAP2, MELK, ASPH, and

CD164 (107). TG003 also switched splicing to the short isoform

of estrogen-related receptor Β, which is involved in G2/M cell cycle

arrest and apoptosis induction (104). In addition, several

compounds (Cpd-1, Cpd-2, and Cpd-3) with CLK inhibitory

activity altered multiple splicing including cancer growth and

survival-related genes, such as RPS6KB1, EGFR, EIF3D, and

PARP (Figure 4) (105). The splicing alteration levels were

correlated with cell growth inhibitory activity. Other CLK

selective inhibitors, T3 and T-025, preferentially induced exon

skipping type of splicing in colorectal cancer cell lines and other

multiple cancer cell lines, since phosphorylated SR proteins play a

central role in exon recognition (17, 103). Interestingly, T3 induces

multiple conjoined genes, which arise from the upstream transcript
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to the downstream transcript of partner genes with poly(A) sites

(17, 109, 110), whereas there is no evidence that conjoined genes are

involved in cancer progression. Oral administration of T-025 at a

concentration of 50 mg/kg twice daily/2 days per week for 3 weeks

showed significant antitumor efficacy in MDA-MB-468 xenograft

model without body weight loss (103). These results suggest that

CLKs play central roles in cancer progression through predominant

exon skipping of multiple genes in splicing alteration.
5.3 Dysregulation of CDKs in cancer

Multiple studies indicating aberrant expression of CDK7 in

cancer have been reported (111). CDK7 expression is correlated
Frontiers in Oncology 07
with poor prognosis and overall survival in triple-negative breast

cancer, gastric cancer, ovarian cancer, oral squamous cell

carcinoma, hepatocellular carcinoma, and glioblastoma (112–

118). Similar to CDK7, the expression of CDK9 has gained

attention as a prognostic biomarker in bladder cancer, papillary

thyroid carcinoma, pancreatic cancer, osteosarcoma, and breast

cancer (119–124). CDK11 has emerged as a target of interest for

cancer therapy (67, 125). Downregulation of CDK11 expression

effectively inhibits cell proliferation and induces cell death in breast

cancer, osteosarcoma, ovarian cancer, and liposarcoma cells as well

as xenograft tumors (126–130). Upregulation of CDK11 protein

expression levels are associated with poorer patient survival in

osteosarcoma and ovarian cancer (127, 130). CDK12 is involved

in cancer dysregulation via both gain of function with gene
FIGURE 4

Alternative splicing as downstream targets for SRPK, CLK, and Sf3b and resistance to CLK or SF3b inhibitors. Only the alternatively spliced isoforms
and the flanking exons are shown (not at scale). The corresponding isoforms are indicated by solid or dotted lines with the respective functions.
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amplification and loss of function with mutations encoding the

CDK12 locus. CDK12 is coamplified with the neighboring Her2

gene at the RNA, protein, and phosphosite levels in breast cancer

(131). CDK12 is the most common coamplification gene, along

with Her2, in breast, stomach, biliary tract, and colorectal cancers

(132). Amplified CDK12 is associated with disease recurrence and

poor prognosis and exhibits anti-HER2 therapy resistance in

patients with breast cancer (133). Since CDK12 regulates the

expression of genes involved in the activation of ErbB–PI3K–

AKT or Wnt signaling cascades, CDK12 inhibition is more

sensitive to antitumor activity in CDK12-Her2 coamplified cells

than in CDK12 no-amplified Her2 positive cells in vitro and in vivo

(133). Furthermore, since CDK12 predominantly regulates the

expression of DDR-related genes, CDK12 inhibitors in

combination with PARP inhibitors induce synthetic lethality in

cancer cells (72, 134). In contrast to genomic amplification, CDK12

mutation or deletion has been reported in <5% of prostate and

ovarian adenocarcinoma cases (135, 136). CDK12 mutations/

deletion are loss-of-function type by nonsense mutations or loss-

of-function type by frameshift mutation due to indels and are

consistently associated with a particular genomic instability

pattern induced by hundreds of tandem duplications in ovarian

cancer and metastatic castration-resistant prostate cancer (136,

137). Regardless of the genomic instability pattern, the expression

of BRCA1, BRCA2, or other genes encoding long transcripts was not

affected under the CDK12-mutation condition (137), suggesting

that different genomic instability pathways exist between CDK12

mutation and amplification status.
5.4 Dysregulation of PRMT1/PRMT5
in cancer

Upregulation of PRMT5 is observed in lymphomas, breast

cancer, lung cancer, colorectal cancer, and glioblastoma (138–

143). The expression level of PRMT5 is associated with poor

overall survival (144). Involvement of PRMT5 in glioblastoma cell

growth was identified by shRNA screen (145). Disruption of

PRMT5 induces apoptosis and inclusion of detained introns,

which are spliced and polyadenylated transcripts. In contrast to

retained introns, detained introns remain in the nucleus and are

finally post-transcriptionally spliced or degraded, thereby affecting

the level of mature coding mRNA (145). A PRMT5 inhibitor

(GSK591 or LLY-283) inhibited the growth of patient-derived

glioblastoma stem cells in accordance with splicing alteration

levels (146). PRMT inhibition altered multiple splicing events,

particularly encoding cell cycle-related genes. In addition, the

PRMT5 inhibitor induced antitumor effects in glioblastoma

patient-derived xenografts (146). Orally available PRMT5

inhibitor (EPZ015666 [GSK3235025]) inhibits SmD3 methylation

and RNA splicing as well as induces antitumor efficacy in mantle

cell lymphoma (MCL) cells in vitro and in vivo (147). In addition,

PRMT5 silencing or inhibition (EPZ015666) induced antitumor

effect in glioblastoma cells in vitro and in an in vivo PDX model by

removing detained introns, thereby regulating rapid expression of

transcripts associated with proliferation (145).
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6 Small-molecule splicing
modulators for potential clinical
cancer therapeutics

Multiple small-molecule compounds targeting splicing have

been developed, and clinical trials have been conducted in

patients with a variety of solid and hematopoietic tumors using

multiple compounds. Currently, no approved compound

modulating pre-mRNA splicing is available for cancer treatment.

This section highlights promising small-molecule splicing

modulators that can serve as anticancer therapeutics, especially

those under clinical trials.
6.1 SF3b inhibitor

Compounds derived from natural products modulating pre-

mRNA splicing have been identified as FR901464, spliceostatin A

(SSA; a methyl ketal derivative of FR901464), sudemycin,

pladienolide B, and E7107 (a 7-urethane derivative of

plaedienolide D). These compounds bind to the SF3b subcomplex

of U2 snRNP and modulate alternative splicing, thereby inhibiting

cancer cell growth (148–150). Among SF3b complex binders, the

detailed mechanism of action of spliceostatin A has been most

clarified (149, 151–156). SSA produces the C-terminal spliced

truncated form of p27 encoding CDKN1B mRNA via splicing

modulation and stabilization of CDKN1B mRNA, which are the

causes of G1 phase cell cycle arrest by treatment with spliceostatin A

(Figure 4) (149, 151, 154). In addition, SSA downregulates the

mRNA of CCNE1, CCNE2, and E2F1, which are additional genes

involved in G1 arrest (152). One of the mechanisms downregulating

gene expression is that SSA induces early dissociation of RNA

polymerase II and decreases phosphorylation of the Ser2 of

chromatin-bound RNA polymerase II (153). Other analysis

showed that SSA predominantly induces intron retention type of

splicing, the part of which leaks into the cytoplasm depending on

the strength of the 5′ss and the length of the transcripts (156). SSA

also affects the transcription of a nuclear long noncoding RNAs,

including MALAT1. MALAT1 is prematurely cleaved and

polyadenylated, and the truncated transcripts are exported into

the cytoplasm and translated as aberrant proteins (155). Through

this mechanism, the SF3b inhibitor, E7107, exerts antitumor

activity in a human xenograft model without severe toxicity

(157). Phase I clinical trials using E7107 in patients with solid

tumors have been conducted. Intravenous treatment for 3

consecutive weeks showed that one patient had bilateral optic

neuritis (158). Another administration on days 1 and 8 every 21

days revealed that two patients had visual loss due to optic nerve

dysfunction at cycles 2 and 7 (159). The incidence of two cases of

vision loss probably related to E7107 led to study discontinuation,

although tumors in some patients responded partially to E7107. An

orally available SF3b inhibitor, H3B-8800, preferentially inhibited

tumor growth in spliceosome-mutant cancer cells, such as SF3B1

K700E, in vitro and in vivo by predominantly binding with short

GC-rich regions (160). Currently, phase I clinical trial for H3B-8800
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is ongoing in patients with MDS, AML, and chronic

myelomonocytic leukemia (NCT02841540). Since SF3B1

mutation is observed in 90% of patients with MDS, good efficacy

without side toxicity by administration with H3B-8800 will

be expected.
6.2 SRPK inhibitor

Among protein kinase inhibitors, the therapeutic potential of

splicing-related kinases SRPKs and CLKs has gained attention. Two

clinical trials (NCT04247256 and NCT04652206) are currently

being conducted via oral administration of an SRPK inhibitor,

SCO-101 (Table 1). SCO-101 inhibits both ATP-Binding Cassette

(ABC) G2 efflux pumps and SRPK1, thereby showing antitumor

potential in combination with docetaxel in triple-negative breast

cancer cells (161). A phase II clinical study has been conducted in

patients with 5-flurouracil, leucovorin, and irinotecan (FOLFIRI)-

resistant metastatic colorectal cancer (NCT04247256). The

objectives of this study are 1) to determine the maximum

tolerated dose (MTD) in patients receiving FOLFIRI plus

escalating doses of SCO-101 and 2) to assess the safety, toxicity,
Frontiers in Oncology 09
and efficacy of the combination of SCO-101 and FOLFIRI in

patients receiving FOLFIRI and the MTD of SCO-101 (162).

Another clinical trial is a phase Ib study in combination with

gemcitabine and nab-paclitaxel for patients with pancreatic ductal

adenocarcinoma to establish the safety profile and MTD of SCO-

101 (NCT04652206). Current clinical trials are focusing on tumors

resistant to chemotherapy, because SCO-101 has the potential to

suppress drug efflux via ABCG2. Additional remarkable profile for

SCO-101 is SRPK1 inhibition. Cancer cell growth inhibition is

proven in pancreatic cell lines by knockdown of SRPK1 through

modulating alternative splicing, and upregulation of SRSF1 in

pancreatic cancer is observed in patients resistant to gemcitabine

(87, 163). Since preclinical studies have shown that SRPK1 regulates

multiple splicing, a pharmacodynamic (PD) biomarker to monitor

splicing alteration in patients should be developed.
6.3 CLK inhibitor

Two orally available CLK inhibitors (SM08502 and CTX-712)

have entered clinical trials (Table 1). SM08502 is selective to CLK2

and CLK3 inhibition, thereby inhibiting phosphorylation of SR
TABLE 1 Small-molecule splicing modulators in clinical trial.

Molecular target Agent name Indications Phase Status Clinical trial

SF3b H3B-8800 MDS, AML, CML I Active, recruiting NCT02841540

SRPK1 SCO-101
Metastatic colorectal cancer

Metastatic pancreatic adenocarcinoma
I, II
I, II

Active, recruiting
Active, recruiting

NCT04247256
NCT04652206

CLK1-4 CTX-712
Advanced/relapsed/refractory malignant cancer

Relapsed/refractory AML, high risk MDS
I

I, II
Active, recruiting

Active, not recruiting
JapicCTI-184188
NCT05732103

CLK1-4 SM08502 Advanced solid tumors
I
I

Active, not recruiting
Active, not recruiting

NCT03355066
NCT05084859

CDK12 THZ531 Ovarian carcinoma II Active, recruiting NCT04555473

CDK7 SY-1365 Advanced solid tumors I Terminated NCT03134638

CDK7 ICEC0942 (CT7001) Advanced solid tumors I, II Completed NCT03363893

CDK7 SY-5609 Advanced solid tumors I Active, not recruiting NCT04247126

CDK7 LY3405105 Advanced solid tumors I Terminated NCT03770494

PRMT5 GSK3326595
Advanced solid tumors

Breast cancer
Refractory MDS, CMML, AML

I
II
I

Active, not recruiting
Completed
Terminated

NCT02783300
NCT04676516
NCT03614728

PRMT5 PF06939999 Advanced/metastatic solid tumors I Terminated NCT03854227

PRMT5 JNJ-64619178 Advanced solid tumors, NHL, and lower risk MDS I Active, not recruiting NCT03573310

PRMT5 AMG 193 Advanced MTAP-null solid tumors I, II Active, recruiting NCT05094336

PRMT5 PRT543 Advanced solid tumors and hematologic malignancies I Completed NCT03886831

PRMT5 PRT811 Advanced solid tumors and recurrent gliomas I Completed NCT04089449

PRMT5 SCR-6920 Advanced solid tumor and relapsed/refractory NHL I Active, recruiting NCT05528055

PRMT5 TNG908 MTAP-deleted solid tumors I, II Active, recruiting NCT05275478

Type I PRMT GSK3368715 Solid Tumors and Diffuse Large B-cell Lymphoma (DLBCL) I Terminated NCT03666988
The database of clinical trial was searched at ClinicalTrials.gov and Japic Clinical Trials Information on April 28, 2023. MDS, Myelodysplastic syndromes; AML, Acute myeloid leukemia; CML,
Chronic myelomonocytic leukemia; CMML, Chronic myelomonocytic leukemia; NHL, Non-Hodgkin lymphoma; DLBCL, Diffuse large B-cell lymphoma.
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proteins (SRSF6) and enlarged nuclear speckle (164). In addition,

SM08502 exerts antitumor activity in colorectal cancer cells in vitro

and in vivo by decreasing gene expression and altering genes of the

Wnt pathway, such as splicing of LEF1, TCF7L2, and DVL1 (164).

Currently, a phase I clinical trial is being conducted to evaluate the

safety, tolerability, pharmacokinetics, PD, and preliminary

antitumor efficacy of SM08502 in patients with advanced solid

tumors resistant to standard therapy (NCT03355066), and another

phase I study is being conducted in combination with hormonal

therapy or chemotherapy in patients with castration-resistant

prostate cancer, non-small cell lung cancer, and colorectal cancer

(NCT05084859). CTX-712 is being orally administrated twice

a week in a phase I study to determine the recommended

dose (RD) by evaluating MTD, dose limiting toxicity, safety,

pharmacokinetics, and PD profiles (JapicCTI-184188). Interim

results from the phase I clinical trial revealed that two partial

responses (PRs) and two complete responses (CRs) were observed

in patients with ovarian cancer and AML, respectively, with a dose-

dependent increase in splicing alteration (165). An additional

interim phase I trial showed that four CRs and one CR with

incomplete hematologic recovery were observed in eight patients

with AML and MDS (166). Further phase I studies to determine the

phase II dose will be started in patients with relapsed/refractory

AML and higher risk MDS (NCT05732103), and detailed reports

are expected to provide insightful information for cancer therapy.
6.4 CDK inhibitors

A phase II/III clinical study (NCT01580228) has been

conducted using a pan-CDK (CDK1/2/5/9) inhibitor, dinaciclib,

in patients with relapsed/refractory CLL (167). Administration of

dinaciclib at escalating doses of 7 to 10 to 14 mg/m2 (on days 1, 8,

and 15, respectively) in cycle 1 and 14 mg/m2 in cycle 2 and

thereafter (1 cycle, 5, 28 days) for 12 cycles provides an acceptable

safety and tolerability profile with typical CDK inhibitor-oriented

adverse events represented by tumor lysis syndrome; however, its

efficacy was limited and clinical trials were terminated (167).

Encouraging preclinical data show that dinaciclib is also a potent

inhibitor of CDK12 and sensitizes to triple-negative breast cancer

cells in combination with PARP inhibitors by disrupting residual

homologous recombination activity (168). THZ1, a covalent CDK7/

12/13 inhibitor, exerts antitumor activity through transcriptional

regulation by inhibiting CDK7 in acute T cell leukemia, MYCN-

amplified neuroblastoma, small cell lung cancer, and triple-negative

breast cancer (169–172). In addition to CDK7 inhibition, THZ1 and

THZ531, CDK12/13 inhibitors, led to the reduction of the

expression of DDR genes and induction of synthetic lethality,

along with PARP inhibitors, in Ewing sarcoma cells in vitro and

PDX model in vivo (173). THZ531 is currently being used in a

longitudinal observational phase II study to assess its sensitivity via

CDK12 inhibition using organoids derived from patients with high-

grade serous ovarian cancer receiving PARP inhibitors

(NCT04555473) (11). Most CDK12 inhibitors are still being

studied in the preclinical stage, and several CDK12 selective

inhibitors have shown promising results in the preclinical stage
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(174, 175). Since THZ1 is a substrate of multidrug transporters

ABCB1 and ABCG2, tumor cells show resistance to THZ1. To

overcome the resistance of THZ1, E9 was synthesized and overcame

ABC-mediated resistance (176). Additionally, new types of CDK12

inhibitors as bifunctional protein degraders have emerged (177).

Molecular glue compounds can mediate protein–protein

interactions between a target protein, such as CDK12 and

ubiquitin ligase to induce selective protein degradation (178).

Proteolysis-targeting chimeras (PROTACs) consist of three

elements: a ligand for the target protein, such as CDK12, a ligand

for E3 ligase, and a linker to induce proteasome-mediated

degradation of the target protein (178). Molecular glues and

PROTACs increase selectivity for the target protein, such as

CDK12, without inhibition of CDK13 function, although the

compounds are still in the pre-clinical stage. In addition to

CDK12, CDK7 inhibitor sensitizes DDR-proficient cancer cells to

PARP inhibitor (179). SY-1365, a selective CDK7 inhibitor,

inhibited cell growth in many different cancer types at nanomolar

concentrations (180). In addition, SY-1365 decreased the level of

oncogenic transcripts and DDR genes, such as RAD51 and CHEK1.

SY-1365 is currently under clinical trials for patients with ovarian

and breast cancer (NCT03134638). Other three CDK7 selective

inhibitors, namely, ICEC0942 (CT7001), SY-5609, and LY3405105,

have progressed to phase I/II clinical trials (111), NCT03363893;

NCT04247126; and NCT03770494). Multiple CDK9 inhibitors

have also proceeded to clinical trials for patients with multiple

solid and bladder tumors (181–183).
6.5 PRMT1 and PRMT5 inhibitors

Multiple PRMT5 inhibitors, which have potential antitumor

activity and regulate splicing, are under clinical trials. An orally

available PRMT5 inhibitor (GSK3326595) inhibited the

methylation of Sm proteins and induced cell death in MCL in

vitro and in vivo (147). Three clinical trials have been conducted in

patients with solid tumors (NCT5094336), relapsed/refractory

myelodysplastic syndrome (MDS), chronic myelomonocytic

leukemia (CMML), hypoproliferative AML (NCT03614728), solid

tumors, and non-Hodgkin’s lymphoma (NCT02783300). The

adverse effects observed among the abovementioned trials were

common, such as fatigue and anemia, but manageable, and PRs

were observed in patients with several tumor types, such as human

papillomavirus+ cervical cancer (1/1 subject) and ACC (3/14

subjects) in the NCT02783300 study (184). Clinical trials for

other PRMT5 inhibitors are in progress: AMG 193, JNJ-

64619178, PF-06939999, PRT543, PRT811, SCR-6920, and

TNG908 (185), NCT05094336, NCT03573310, NCT03854227,

NCT03886831 , NCT04089449 , NCT05528055 , and

NCT05275478), although it has not been reported that these

inhibitors have splicing modulation activity.

To date, a limited number of PRMT1 inhibitors have proceeded

to clinical trial. GSK3368715, a PRMT1 inhibitor, exerts antitumor

activity in vitro and in vivo in multiple cancer types with splicing

alteration activity of exon usage (186). A phase I clinical trial of

GSK3368715 has been conducted in patients with relapsed/
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refractory diffuse large B-cell lymphoma and solid tumors.

However, according to NCT03666988 of ClinicalTrials.gov, the

current status of patient recruitment is terminated because overall

benefit-risk profile did not support continuation of the study.

R eg a rd ing pa t i en t s t r a t ifi c a t i on , c o -d e l e t i on w i th

methylthioadenosine phosphorylase (MTAP) and the tumor

suppressor gene CDKN2A (p16) are observed in 40% of

g l i ob l a s t oma s , 25% o f me l anomas and panc r e a t i c

adenocarcinomas, and 15% of non-small cell lung carcinomas

(82). Subsequently, MTAP deficiency leads to the accumulation of

2-methylthioadenosine (MTA), which has the potential to inhibit

PRMT5 activity (187–189). Genetic depletion of PRMT5 leads to

vulnerability in MTAP deleted cells; however, GSK3235025, a

PRMT5 inhibitor, surprisingly did not recapitulate vulnerability

to PRMT5 depletion in MTAP deleted cells, implying that different

inhibitory modes exist between MTA and small-molecule

inhibitors, S-adenosylmethionine competitive and uncompetitive,

respectively (188). Since the combination of PRMT1 and PRMT5

inhibitors exerts a synergistic antitumor effect (186), MTAP

deficiency is associated with decreased induction of MMA and

SDMA upon inhibition of type I PRMT activity. Given that the

substantial population with MTAP deficiency includes many tumor

types with limited therapeutic options, inhibition of type I PRMT

activity by GSK3368715 may represent a promising approach for

tumors of high unmet medical need with a defined patient

selection strategy.
7 Future perspective and conclusions

Recent progress in multiple clinical trials targeting pre-mRNA

splicing indicates that various splicing modulators have potential value

as a novel class of antitumor agents. In this review, specific splicing-

related kinases and related inhibitors entering clinical trials are

described. It is one of the critical factors to consider patient

stratification strategy for increasing the success rate in clinical trials.

As described in this review, splicing factor-mutated tumors have

recently been observed and attracted considerable attention, although

the detailed mechanisms underlying splicing dysregulation in cancer

remain unclear. Some of the SF3b complex inhibitors, such as H3B-

8800, have the potential to be preferentially effective to splicing factor-

mutated tumors compared to nonmutated tumors (Table 2). In
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addition, recent evidence has indicated that PRMT inhibitors also

have potential for possibility of patient stratification for tumors with

mutation of splicing factors since PRMT inhibitors of class I (PRMT1)

or class II (PRMT5) preferentially inhibits cell viability and delayed

disease progression in splicing factor, SRSF2P95H, SF3B1Y765C, or

SF3B1K700E mutated cells in vitro leukemia cells and in vivo AML

PDX model compared to wild type cells (190) (Table 2). The results of

ongoing clinical trial will be expected, and detailed molecular

mechanism should be clarified to consider biomarker strategy. Other

potential possibility for patient stratification is SRPK inhibitor, which

specifically showed antitumor efficacy in AML cells since alternative

splicing of BRD4 was altered by SRPK inhibitor (90). The inhibitors

targeting bromo- and extra-terminal domain (BET) including BRD4

have remarkable antitumor activity in preclinical studies, and more

than 20 clinical trials have been completed and ongoing (191). To date,

limited clinical efficacies for BET inhibitor have been observed

implying that predictive biomarker, pharmacodynamics marker, and

combination strategy is lacking in clinical trials. Since SRPK inhibitors

modulate multiple splicing events involving aberrantly expressed

oncogenes, it is conceivable that SRPK inhibitor is more effective

compared to BET inhibitor through combination of antitumor effect

by multiple splicing changes. In addition, BRD4 forms fusion proteins

with nuclear protein in testis (NUT). The BRD4-NUT fusion proteins

have aggressive oncogenic property and involve in NUT-midline

carcinoma (NMC) with a poor prognosis (192). In addition to AML,

SRPK inhibitor could be effective to NMC, though toxicity should be

carefully validated and monitored.

Additional potential possibility of patient stratification suggests

that, in MYC-driven cancer cells, increase of total RNA synthesis and

protein translation lead to increased burden on the core spliceosome

(193). This evidence supports that CLK inhibitor (T-025) sensitives to

MYC-amplified tumors as well as CLK2 upregulated tumors (103). The

AACR Project GENIE, an international data-sharing consortium,

showing clinical-grade cancer genomic data with clinical outcome

data for tens of thousands of cancer patients revealed that the

amplification of MYC is predominantly found in breast invasive

ductal carcinoma, lung adenocarcinoma, colon adenocarcinoma,

prostate adenocarcinoma, and invasive breast carcinoma (194).

Independent analysis based on Cancer Genome Atlas using 489

high-grade serous ovarian adenocarcinomas (HGSOC) showed that

chromosome 8q including MYC has the most significant gains and

occurred in 65% of HGSOC (195), and MYC amplification was the
TABLE 2 Potential patient stratification and drug combination strategy in clinical.

Inhibitor Cancer types Genetics Drug combination

SF3b MDS, CLL, AML, solid tumors Mutation in splicing factors (eg. SF3b) Bcl-2/Bcl-xL inhibitor

SRPK1 AML ND ND

CLK1-4 ND Amplification in Myc or CLK2 Bcl-2/Bcl-xL inhibitor

CDK12 Ovarian, breast, prostate cancer BRCA wildtype PARP inhibitor

CDK12 ND ND CDK7 inhibitor

PRMT5 MDS, CLL, AML, solid tumors Mutation in splicing factors (eg. SF3b) PRMT class I inhibitor

PRMT5 Solid tumors MTAP deletion PRMT class I inhibitor
ND, Not determined; MDS, Myelodysplastic syndromes; CLL, Chronic lymphocytic leukemia; AML, Acute myeloid leukemia.
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highest frequency in ovarian cancer compared to other tumor types

(196). Additionally, MYC transcription is reduced by THZ531, a

CDK12/13 inhibitor in vitro and in vivo, patient-derived xenografts

from ovarian cancer patients, not CDK7 inhibitor (196). These

evidences suggest that MYC dependent tumors, such as HGSOC,

could be effective for CLK inhibitor and CDK12/13 inhibitor (Table 2).

In addition to patient stratification strategy, it is of particular

importance to consider molecular mechanism-based combination

therapy strategy. Independent group shows that SF3b inhibitor,

E7107, or CLK inhibitor (T3) alters splicing of anti-apoptotic

MCL1, but not that of anti-apoptotic Bcl-2 family, such as Bcl-2

and Bcl-xL (Figure 4) (197, 198). Combination of E7107 or T3 with

Bcl-xL/Bcl-2 inhibitor synergistically induced apoptosis in cancer

cells. Therefore, drug combination strategies with splicing

modulator and Bcl-xL/Bcl-2 inhibitors could be effective.

However, more detailed analysis should be needed to clarify the

reason why splicing inhibitors are insensitive to splicing of Bcl-xL

and Bcl-2, and identify the predictive biomarkers in clinics.

CDK12 inhibitor could be ideal to induce synthetic lethal in

combination with PARP inhibitor in BRCA wildtype of tumor

patients. Although CDK7 inhibitor also sensitizes DDR-proficient

gene to PARP inhibitor, it has been suggested that the molecular

mechanism between CDK12 and CDK7 would be different.

Whereas CDK7 involves in oncogene-related transcription and

alternative splicing, CDK12 regulates alternative premature

intronic polyadenylation. This evidence implies that combination

with CDK12 inhibitor and CDK7 inhibitor has synergistic

antitumor effect, in particular, in ovarian and breast DDR-

proficient tumors. PRMT inhibitors also have potential for

possibility of drug combination. Combination of PRMT1

inhibitor and PRMT5 inhibitor shows stronger synergistic cell

growth effect and antitumor efficacy in vitro and in vivo splicing

factor-mutated cells compared to wild type cells (190). To date, the

number of CDK12 selective inhibitor or PRMT1 inhibitor is limited

in clinical trial. In addition to ATP-competitive inhibitors,

molecular glue and PROTACs technology have recently gained

attention to obtain selective CDK12 inhibitors due to the high

homology between kinase domains of CDK12 and other CDKs,

especially CDK13 (134, 199–202). It is highly expected that more
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selective CDK12 inhibitors will proceed to clinical trials to show

antitumor effect through precise molecular mechanism.

Further validation of the accuracy of patient stratification in

a clinical trial is awaited and will pave the way to cure cancers

through modulating pre-mRNA splicing. To achieve these,

molecular machinery modulating alternative splicing should

be clarified more precisely via development of new type of

selective compounds, such as molecular glues and PROTACs,

and modalities targeting pre-mRNA splicing-related molecules.

The evidence will lead to define patient stratification and

combination therapy strategy for patients with cancer in

near future.
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13. Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects:
mechanistic insights into pre-mrna processing inform novel therapeutic approaches.
EMBO Rep (2015) 16(12):1640–55. doi: 10.15252/embr.201541116

14. Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a
dynamic rnp machine. Cell (2009) 136(4):701–18. doi: 10.1016/j.cell.2009.02.009

15. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative
isoform regulation in human tissue transcriptomes. Nature (2008) 456(7221):470–6.
doi: 10.1038/nature07509

16. Araki S, Nakayama Y, Sano O, Nakao S, Shimizu-Ogasawara M, Toyoshiba H,
et al. Decoding transcriptome dynamics of genome-encoded polyadenylation and
autoregulation with small-molecule modulators of alternative polyadenylation. Cell
Chem Biol (2018) 25(12):1470–84.e5. doi: 10.1016/j.chembiol.2018.09.006

17. Funnell T, Tasaki S, Oloumi A, Araki S, Kong E, Yap D, et al. Clk-dependent
exon recognition and conjoined gene formation revealed with a novel small molecule
inhibitor. Nat Commun (2017) 8(1):7. doi: 10.1038/s41467-016-0008-7

18. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al.
Somatic Sf3b1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med (2011)
365(15):1384–95. doi: 10.1056/NEJMoa1103283

19. Yoshimi A, Abdel-Wahab O. Splicing factor mutations in mds rars and
Mds/Mpn-Rs-T. Int J Hematol (2017) 105(6):720–31. doi: 10.1007/s12185-017-
2242-0

20. Yamauchi H, Nishimura K, Yoshimi A. Aberrant rna splicing and therapeutic
opportunities in cancers. Cancer Sci (2022) 113(2):373–81. doi: 10.1111/cas.15213

21. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al.
Frequent pathway mutations of splicing machinery in myelodysplasia. Nature (2011)
478(7367):64–9. doi: 10.1038/nature10496

22. Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, et al.
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