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Purpose: In this study, we aimed to develop a novel Bayesian optimization based

multi-stacking deep learning platform for the prediction of radiation-induced

dermatitis (grade ≥ two) (RD 2+) before radiotherapy, by using multi-region

dose-gradient-related radiomics features extracted from pre-treatment

planning four-dimensional computed tomography (4D-CT) images, as well as

clinical and dosimetric characteristics of breast cancer patients who underwent

radiotherapy.

Materials and methods: The study retrospectively included 214 patients with

breast cancer who received radiotherapy after breast surgeries. Six regions of

interest (ROIs) were delineated based on three PTV dose -gradient-related and

three skin dose-gradient-related parameters (i.e., isodose). A total of 4309

radiomics features extracted from these six ROIs, as well as clinical and

dosimetric characteristics, were used to train and validate the prediction

model using nine mainstream deep machine learning algorithms and three

stacking classifiers (i.e., meta-learners). To achieve the best prediction

performance, a Bayesian optimization based multi-parameter tuning

technology was adopted for the AdaBoost, random forest (RF), decision tree

(DT), gradient boosting (GB) and extra tree (XTree) five machine learning models.

The five parameter -tuned learners and the other four learners (i.e., logistic

regression (LR), K-nearest neighbors (KNN), linear discriminant analysis (LDA),

Bagging) whose parameters cannot be tuned, all as the primary week learners,

were fed into the subsequent meta-learners for training and learning the final

prediction model.
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Results: The final prediction model included 20 radiomics features and eight

clinical and dosimetric characteristics. At the primary learner level, on base of

Bayesian parameter tuning optimization, the RF, XGBoost, AdaBoost, GBDT, and

LGBMmodels with the best parameter combinations achieved AUC of 0.82, 0.82,

0.77, 0.80, and 0.80 prediction performance in the verification data set,

respectively. In the secondary meta-learner lever, compared with LR and MLP

meta-learner, the best predictor of symptomatic RD 2+ for stacked classifiers

was the GB meta-learner with an area under the curve (AUC) of 0.97 [95% CI:

0.91-1.0] and an AUC of 0.93 [95% CI: 0.87-0.97] in the training and validation

datasets, respectively and the 10 top predictive characteristics were identified.

Conclusion: A novel multi-region dose-gradient-based Bayesian optimization

tunning integrated multi-stacking classifier framework can achieve a high-

accuracy prediction of symptomatic RD 2+ in breast cancer patients than any

other single deep machine learning algorithm.
KEYWORDS

breast cancer, radiation therapy, radiation-induced dermatitis, radiomics, stacking
classifier
1 Introduction

Breast cancer accounted for 11.7% of all new cancer cases and

caused 685,000 deaths globally in 2020, making it the fifth leading

cause of cancer death (1). Surgical interventions such as lumpectomy

or mastectomy, along with radiation therapy (RT) to the residual

breast or chest wall and regional lymph nodes in select cases,

comprise the most common treatment for breast cancer patients

(2–4). However, RT often causes acute skin toxicity, known as

radiodermatitis, which manifests as erythema, scaling (dry or

moist), ulceration, and necrosis. This is one of the most frequent

acute side effects of RT in breast cancer patients, with erythema

occurring in 90% of treated patients and wet desquamation in 30%

(5–8). Radiodermatitis can negatively impact the quality of life

(QOL) of breast cancer patients receiving RT in numerous ways

(9). Furthermore, if radiodermatitis above grade 3 occurs, patients

may need to undergo treatment withholding, radiation dose

reduction, or discontinuation of treatment, which significantly

increases the risk of tumor recurrence and metastasis, ultimately

posing a substantial threat to the overall survival of breast

cancer patients.

Acute radiation skin reactions commonly manifest during

radiation therapy (RT) and pose a significant challenge to

manage once they occur. However, timely intervention and

management of high-risk acute radiation dermatitis can enhance

patients’ daily functioning and satisfaction with radiation therapy,

ultimately leading to a better quality of life and improved

prognosis. Therefore, predicting the probability of acute

radiation dermatitis at the outset of radiation therapy is crucial

in reducing the risk of skin toxicity. Early identification of high-

risk patients and prompt interventions can mitigate the severity of

acute radiation dermatitis and help patients achieve better
02
outcomes, emphasizing the significance of early prediction

and management.

The qualitative assessment of acute skin toxicity through visual

examination by a nurse presents numerous uncertainties such as

observer bias, variability in dermatitis grade, and potential

underreporting of symptoms by patients (9, 10). Furthermore,

this form of assessment can only be performed after the initiation

of radiotherapy, meaning that it is a reactive rather than proactive

approach to treatment. As a result, routine practitioner-based visual

inspection cannot be considered a reliable predictor of skin toxicity.

Some researchers have attempted to improve prediction through

the use of semi-quantitative analysis (11, 12) and dosimetric

indicators to establish a probability model of normal tissue

complications for predicting severe acute skin toxicity in breast

cancer patients (13). However, the prediction performance of these

methods is relatively poor, with an area under the curve (AUC) of

only 0.77 (13). Despite these limitations, these approaches represent

important first steps in developing more reliable predictors of skin

toxicity in breast cancer patients undergoing radiotherapy, and

further research in this area is warranted.

In a previous study, thermal imaging biomarkers were

identified and a machine learning framework was used to build

a predictive model for radiodermatitis, achieving a high predictive

accuracy (test accuracy = 0.87) on the independent test data

obtained at treatment fraction of 5 (10, 13). This approach

advances the time of prediction to the fifth treatment fraction.

However, because the prediction models only utilized the

information provided by 2-D surface imaging, which limited

their usage in the 3-D dose optimization guidance.

Current benchmark reports of classification algorithms for

radiodermatitis prediction generally concern common classifiers,

such as random forest (RF), gradient boosted decision tree (GBDT),
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logistic regression (LR), and XGBoost, without including the novel

algorithms that have been introduced in recent years. The nine

algorithms involved in this study include RF, LR, K-nearest

neighbors (KNN), decision tree (DT), discriminant analysis

(LDA), extra tree (XTree), gradient boosting (GB), Bagging, and

AdaBoost, which have not been thoroughly investigated in existing

comparative studies. Currently, the reported literatures only used

limited ML methods, and the predictive performance was relatively

lower, from the lowest AUC of 0.65 to the highest of 0.87 (10),

which was insufficient for clinical applications. Therefore, we

assume that it is difficult to obtain a clinically acceptable accuracy

for radiodermatitis prediction by using a single machine learning

algorithm, and an ensemble learning method could perform better

than the single algorithm used as a standalone prediction tool.

Stacking is an ensemble learning technique to combine multiple

classification models via a meta-classifier. The individual

classification models are trained based on the complete training

set; then, the meta-classifier is fitted based on the outputs ―
meta-features ― of the individual classification models in the

ensemble. The meta-classifier can be trained either on class labels or

on probabilities from the ensemble.

In this study, we aimed to develop and verify a novel Bayesian

optimization based multi-stacking deep learning platform for

prediction of radiation-induced dermatitis before radiotherapy by

using multi-region dose-gradient-related radiomics features

extracted from the pre-treatment four-dimensional planning

computed tomography (4D-CT) images, clinical and dosimetric

data from breast cancer patients underwent radiotherapy. We

hypothesized that acute radiodermatitis is associated with the 3D

region-based characteristic radiomics signatures in breast cancer

patients before RT and a well-tuned machine learner based on a

multi-stacking deep learning platform can achieve better reliability

and robustness of prediction performance compared to individual

machine learning models.
2 Methods and materials

2.1 Patients and data collection

At three ins t i tu t ions inc luding our hospi ta l , we

retrospectively collected 256 patients with breast cancer of stage

0-IV from October 2018 to August 2021 with institutional review

board approval. These patients experienced post-surgery

volumetric modulated arc therapy or intensity-modulated

radiation therapy of prescription doses of 42.5 Gy/16 fractions

or 50 Gy/25 fractions to whole breast and/or chest wall with/

without boost of 10 Gy/5 fractions to the tumor bed through

using the 6 MV photons, with/without concurrent hormone

therapy and/or chemotherapy. With the exclusion criteria

applied, including (1) loss of clinical records, (2) male patients,

(3) previous skin disorder, (4) prior/subsequent RT to the chest,

(5) dose boost with electron therapy, 214 patients were retained in

the data analysis. All patients were graded mainly using Common

Terminology Criteria for Adverse Events (CTCAE) Ver. 4, with

144 patients graded with ≥ 2 grade skin toxicity.
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CT simulations of all patients were performed using the Philips

Brilliance Big Bore CT scanner (Philips Medical Systems, USA) 2 to

7 days before RT with patients in breath-hold or free-breathing

state. The Eclipse (Varian Medical Systems, Palo Alto, CA) or

Pinnacle (Philips Medical Systems, Andover, MA) treatment

planning system was utilized for the treatment planning. Clinical

data, including patient characteristics, were collected alongside dose

distributions and CT images for the purpose of data processing and

model building.
2.2 Data processing

In order to extract radiomics features for our study, six regions

of interest (ROIs) were delineated based on 100%, 105%, and 108%

of the prescribed PTV dose, as well as 20-Gy, 30-Gy, and 40-Gy

isodose of the skin. We used the Image Biomarker Explorer (IBEX)

software platform to extract a total of 884 radiomics features from

each ROI, which were further categorized into shape, intensity

histogram, intensity direct, intensity histogram Gaussian fit, gray

level run length matrix (2.5D), neighbor intensity difference (2.5D),

and gray-level co-occurrence matrix (GLCM) (2.5D). Given the

mild imbalanced datasets we encountered (i.e., non-RD2+ patients/

total patients = 32.7%), we applied the Synthetic Minority

Oversampling Technique (SMOTE) to balance all the datasets.

To select relevant clinical and dosimetric variables for further

analysis, the chi-square test and the MWU test were used to

calculate the P values. Variables with a P value < 0.5 were

selected for subsequent steps. For the radiomics data, the MWU

test (P < 0.05) was initially used, and variables with variances ≤ 0.05

were deleted as they were deemed redundant features. The pairwise

correlation coefficients between the remaining variables were

calculated, and variables with correlation coefficients ≥ 0.9 were

removed. A variance inflation factor (VIF) was then calculated for

the remaining variables, and any variables with VIF ≥ 10 were

filtered out.

Because the radiation reaction of the skin is related to the

fractional and total dose scheme, 123 patients in our study used the

standard mode of 2Gy each fraction with a total dose of 50Gy, and

other 13 patients used the moderate hypo-fractionated regimen

mode of 42.5Gy in 16 daily fractions, and the remaining patients

used the mode of 3~5 fractions of tumor bed electronic dose boost,

so finally the EQD2_all method was adopted when performing

dosimetry analysis and comparison, and the alpha/beta ratio =10

was applied for calculation of acute responding tissue to all 2Gy

fractional doses.
2.3 Model tuning and stacking
model building

Nine machine learning algorithms were used to train and

validate the combined prediction models, which included clinical,

dosimetric, and radiomics features. To improve the overall

performance of these individual models, a stacking learning

method was employed as the final decision-making strategy.
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Stacking is an ensemble learning technique that combines multiple

classification or regression models using a meta-classifier. Unlike

other ensemble methods such as Bagging or Boosting, stacking aims

to decrease both bias and variance. In Bagging, similar models with

high variances are averaged to decrease variance, while in Boosting,

multiple incremental models are built to decrease bias while keeping

variance small. In contrast, stacking uses a meta-classifier to learn

how to best combine the outputs of the individual models, resulting

in a more robust and accurate prediction model.

2.3.1 Machine learning models comparison
In this study, nine machine learning models were utilized and

compared, namely RF, LR, KNN, DT, LDA, XTree, GB, Bagging,

and AdaBoost. The models underwent a thorough analysis through

a 10-fold cross-validation for training purposes. To evaluate their

performance, the area under curve (AUC) values were utilized as a

metric for comparison. This methodology allowed for a robust

analysis of the machine learning models’ effectiveness, which is

important in understanding the strengths and limitations of

each algorithm.

2.3.2 Model tuning
In order to obtain the best training and prediction performance,

a Bayesian optimization tuning method was employed to train the

parameters of five algorithms, including AdaBoost, RF, DT, GB and

XTree. The resulted tuning parameters were list in Table 1. The

parameter-tuned models were fed into the subsequent multi-

stacking model for ensemble training and validation.

2.3.3 Stacking model
The stacking ensemble method involves the creation of

bootstrapped data subsets, which is similar to the bagging

ensemble mechanism used to train multiple models. In this study,

the nine base learners were split into two groups: those with

parameter tuning, including AdaBoost, RF, DT, GB, and XTree,

and those without parameter tuning, including LR, KNN, LDA, and

Bagging. To determine whether the training data were properly

learned, a two-layer classifier was employed. The outputs of all nine

models were utilized as inputs to a meta-classifier, which predicted

samples in the final step.

This two-layer classifier approach helped to ensure that the

training data were accurately learned. This methodology facilitated

the development of a robust ensemble model that combined the
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strengths of the individual models, enhancing the overall predictive

performance. By leveraging the strengths of each base learner and

combining them through a meta-classifier, the stacking ensemble

method provided a superior predictive power.

For instance, LDA exhibits excellent performance in

distinguishing between patients with and without RD2+ for

certain sub-datasets (such as bootstrap data-1), whereas KNN

does not perform well in predicting RD2+ for other sub-datasets

(such as bootstrap data-2). The meta-classifier, which is utilized in

the second layer of the stacking model, can identify and account for

these discrepancies in the behaviors of the LDA and KNN

classifiers, thereby improving the accuracy of the final prediction.

Figure 1 demonstrates the entire workflow of patient

enrollment, extraction of clinical features and radiomics features,

data cleaning and training of machine learning models. Figure 2

illustrates the mechanism of the stacking modeling in detail,

providing a visual representation of the process. By utilizing the

strengths of each base learner and employing the meta-classifier to

account for their different behaviors, the stacking model provides a

more accurate prediction compared to any individual model.

To ensure adequate representation of RD2+ and non-RD2+

patients in the training and validation data sets, the entire data set

was partitioned into ten equal sub-folds, each containing a close to 1:1

ratio of RD2+ and non-RD2+ patients without repetition. 80% of the

data in each sub-fold were utilized for model training, while the

remaining 20% were set aside for model validation. Implementation

of the individual and multi-stacking learning algorithms was carried

out using a custom Python code run in Spyder 5.5.3.

3 Results

There were 812, 789, 674, 684, 657, and 664 non-null features

extracted from the regions of PTV_100PD, PTV_105PD,

PTV_108PD, SKIN_20Gy, SKIN_30Gy, and SKIN_40Gy,

respectively. The total number of samples was increased from 214

to 280 through using the resampling method of SMOTE. After

applying the encapsulation screening method detailed in our

previous study (8), a total of 29 clinical and dosimetric variables

were selected for model building and further data analysis. These

selected variables are presented in Table 2 and were used for both

training and validation in subsequent modeling processes.

The performance of the nine individual models mentioned

above was depicted in Figure 3. Notably, the RF, XTree, GB,
TABLE 1 The tuning parameters for the five prediction models.

Algorithm Tuning parameters

RF n_estimators: 300; max_depth: [2, 20]; min_samples_leaf: 2; max_features: [0.1, 0.999]; criterion: [‘gini’, ‘entropy’]

XTree n_estimators: 110; max_depth: 8; min_samples_leaf: 1;
criterion: [‘gini’, ‘entropy’]

GB n_estimators: 300; max_depth: 3; min_samples_leaf: 1;
criterion: friedman_mse

DT criterion: ‘gini’; max_depth: 13; min_samples_split: 1; min_samples_leaf: 2

AdaBoost n_estimators: 120; learning_rate: 0.6
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Bagging, DT, and AdaBoost algorithms displayed impressive results

in the validation set, with the highest prediction accuracy exceeding

0.8. Following parameter tuning, we identified the optimal

parameter settings for the AdaBoost, RF, DT, GB, and XTree

algorithms (Table 3), achieving the best possible prediction

accuracy. Additionally, we illustrated the impact of different

parameter settings on the final prediction performance of the

tuned models in Figure 4. To evaluate the impact of Bayesian

parameter optimization, we compared the performance of models

with and without it in Table 4. We observed a substantial

improvement in the prediction accuracy of the models with

Bayesian parameter optimization as compared to those without it.

Figure 2 illustrates that the base learner was formed by

combining five tuned classifiers and four other prediction models

without tuning. For the stacking model, we selected three meta-

learners ― LR, GB, and MLP. The MLP comprised two hidden

layers, each with 16 neurons. We evaluated the final prediction
Frontiers in Oncology 05
performances of the stacking models with the three different meta-

learners and ranked the variable importance accordingly, as

depicted in Figure 5.
4 Discussion

The ensemble learning model leverages a series of weak

learners, also known as base learners, to improve learning

performance by combining the results of each weak learner (9).

Common algorithms for integrated learning models include

aggregation algorithm (e.g., Bagging), boosting algorithm (e.g.,

Boosting) and stacking method (e.g., Stacking). The random

forest model is a typical machine learning model using the

Bagging algorithm, while the AdaBoost, GBDT, XGBoost, and

LightGBM models are typical machine learning models using the

Boosting algorithm.
A

B

C

FIGURE 1

The schematic illustration of the workflow for model building in the prediction of RD 2+: (A) data collection and sampling; (B) data processing and
selection; (C) model building and feature ranking.
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Only one abstract and two full papers were found that focused on

using machine learning methods for predicting radiodermatitis.

Saednia et al. (6) conducted a study based on detecting an increase

in body surface temperature induced by radiation dermatitis. They

built a random forest classifier using a leave-one-out cross-validation

approach to predict radiodermatitis, achieving an accuracy of 0.87 in

an independent test dataset. However, detailed information regarding

the random forest classifier was not provided. For instance, the

authors did not explain the rationale behind choosing the random

forest over other machine learning algorithms or provide clear

explanations of the parameter configurations, such as max features,

maximum depth of the decision tree, the minimum number of

samples required for internal node subdivision, and the minimum

number of samples in leaf nodes.

it will be interesting and helpful to specify the existing data

related to DVH, NTCP models and the value and limits of

predictive dosimetric models, however, the above-mentioned

method of predicting radiation dermatitis through DVH

parameters, NTCP models or dosimetry parameters may be a

relatively traditional prediction method. A researcher from Italy,

Giuseppe Palma (14) who found that NTCP models showed

comparable high prediction and calibration performances with a

balanced accuracy of 0.76 with LKB and 0.78 with multi-parameter

Logistic respectively, and our final model with an area under the

curve (AUC) of 0.97 [95% CI: 0.91-1.0] and an AUC of 0.93 [95%

CI: 0.87-0.97] in the training and validation datasets.

In another study, 2277 patients were included to predict acute

toxicities during radiation therapy for breast cancer patients using three

machine learning models (RF, GBDT, LR), with AUC values for RD2+

of 0.807, 0.811, and 0.813, respectively (4) It is well -known that
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different training parameter settings have a significant impact on the

predictive ability of the machine learning model (5). However, the

study did not provide a detailed discussion on the specific parameter

settings of the machine learning training model.

The results of our study indicate (Figure 4) that increasing the

value of n_estimators improved the model’s performance. A larger

value of n_estimators indicates that more subtrees are involved in the

decision-making process, which can eliminate random errors between

subtrees, increase prediction accuracy, and reduce both variance and

bias. However, if n_estimators is too small, underfitting may occur, and

if it is too large, the model may not be significantly improved.

Therefore, a moderate value of n_estimators should be chosen. In

the case of increasing the value of max_depth or max_leaf_nodes,

prediction accuracy typically increases initially, followed by a decrease.

This decrease occurs as subtree complexity increases, which reduces

deviation but increases variance. Thus, optimization of these parameter

settings significantly affects prediction results, and the conclusions of

the study should be based on this information.

In the cited studies, important aspects of the model training, such

as the use of out-of-bag samples for model evaluation and the feature

evaluation criteria, were not discussed. Additionally, it is important to

note that classification and regression models differ in their default loss

functions: the classification model typically utilizes the Gini index or

information gain, while the regression model utilizes the mean square

error (MSE) or mean absolute error (MAE). Unfortunately, the specific

loss function used in the models was not clearly reported in these

studies. Understanding these details is crucial to accurately interpret the

results of machine learning models and ensure reproducibility.

After conducting a thorough examination of previous studies on the

prediction of radiation injury using various machine learning models, we
FIGURE 2

The stacking learner platform with Bayesian optimization tuned primary learner and multi-meta-learner structure.
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discovered that the selection of machine learning algorithms and the

setting of specific training parameters varied widely among research

institutions. In some cases, the default parameter settings of the algorithm

were used in model training without any parameter optimizations.

However, according to a study conducted by Zhang et al, it was found

that GBDT and RF demonstrated the best overall classification accuracy

andmean rank across all 71 data sets, suggesting that these algorithms are

optimal for different data structures and classification tasks. It is likely for

this reason that all the aforementioned studies utilized RF as their chosen

machine learning algorithm.

ML algorithms each have their own hyperparameters, and good

performance can only be achieved when appropriate hyperparameters

are set in the learning process. It is very tedious tomanually adjust proper
Frontiers in Oncology 07
parameters, and it is not easy to optimize the parameters for the best

performance. In general, when creating an ensemble model, searching

methods such as grid search, random search and Bayesian optimization

are used for tuning the hyperparameters of each base model.

Bayesian optimization tries to gather observations with the

highest information in each iteration by striking a balance between

exploring uncertain hyperparameters and gathering observations

from hyperparameters close to the optimum (15, 16). Therefore, in

the stage of training the base learner of stacking ensemble learning, if

the hyperparameters of individual models can be optimized using

Bayesian optimization, the accuracy of the model can be increased.

The impact of model parameter tuning on the final predictive

ability of the model is a common issue that is often overlooked in
TABLE 2 Final selected variables used for model training and validation.

Range Radiomics features

PTV100PD

PTV100PD.F2._GLCM25270.7_Corr

PTV100PD.F4.ID_LocalStdMedian

PTV100PD.F4.ID_Range

PTV100PD.F6.IHGaussFit1GaussMean

PTV100PD.F8.ShapeMax3DDiameter

PTV105PD

PTV105PD.F2._GLCM25.333.7_Corr

PTV105PD.F4.ID_LocalEntropyMax

PTV105PD.F8.ShapeMeanBreadth

PTV108PD

PTV108PD.F1.GOH0.975Quantile

PTV108PD.F2._GLCM25180.1Dissimilarity

PTV108PD.F2._GLCM2590.7_IV

PTV108PD.F8.ShapeNumberOfObjects

SKIN20Gy

SKIN20Gy.F2._GLCM25225.4Contrast

SKIN20Gy.F8.ShapeConvexHullVolume3D

SKIN20Gy.F8.ShapeMeanBreadth

SKIN30Gy

SKIN30Gy.F1.GOH_MAD

SKIN30Gy.F2._GLCM25225.4Contrast

SKIN30Gy.F4.ID_LocalRangeMax

SKIN30Gy.F6.IHGaussFit1GaussStd

SKIN30Gy.F8.ShapeMax3DDiameter

Clinical & dosimetric

Laterality

Quadrant.positions.

Histologic.type

T.Stage

PR

Hormone.therapy

Fractionation.regimen.Gy.fx.

EQD2_all

Lotion.application
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A B

FIGURE 3

The prediction performance of nine machine learning algorithms: (A) illustrated the machine learner performance in training set. (B) illustrated the
machine learner performance in validation set.
TABLE 3 The optimal parameter settings for the five models by using the Bayesian optimization method.

Algorithm Optimal parameters setting

RF criterion: gini; max_depth: 6; min_samples_leaf: 1; min_samples_split: 3; n_estimators: 200

XTree criterion: entropy; max_depth: 8; min_samples_leaf: 1; n_estimators: 110

GB criterion: friedman_mse; max_depth: 3; min_samples_leaf: 1; n_estimators: 300

DT criterion: gini; max_depth: 13; min_samples_leaf: 1; min_samples_split: 2

AdaBoost learning_rate: 0.6; n_estimators: 120
F
rontiers in Oncology
FIGURE 4

(A) The schematic illustration of the impacts of individual parameter settings on the prediction performance of a model, with the four parameter
settings of the RF model shown as an example; (B) ROC curves of five tuned models in the validation set.
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many studies. This study addresses this problem by utilizing

Bayesian optimization parameter tuning to determine the most

suitable parameter settings for optimal performance of each model.

Table 3 indicates that the AdaBoost algorithm achieves better

results when the learning rate is relatively small (such as 0.6) with

an n_estimators value of 120. Additionally, Figure 4 shows that the

AUC values of the RF model in the test set almost monotonously

increase with the increase of n_estimators and max depth, whereas

the AUC value monotonically decreases with the increase of max

features. It is also observed that the AUC of the RF model increases

at first and then decreases with the increase of min sample leaf.

These results suggest that the adjustment and optimization of

parameters is necessary for specific machine learning models.
Frontiers in Oncology 09
Selecting the most suitable algorithm with corresponding

optimized parameter settings can lead to the best predictive

performance of the machine learning model.

Although we utilized the Bayesian optimization parameter

tuning method in our study, it is important to note that the

optimal value obtained may not necessarily be the global optimal

value. Instead, it may be a local optimal value. Moreover, since

Bayesian optimization is based solely on the training dataset,

overfitting of the model can occur. Therefore, developers must be

cautious and strive to reduce the boundary settings of overfitting

parameters. Furthermore, it is worth mentioning that simply tuning

parameters to create a slightly better model does not necessarily

result in a significant improvement in the final results. In fact, great
TABLE 4 Comparison of model performance with and without Bayesian parameter optimization.

Algorithm

Without Bayesian optimization tunning With Bayesian optimization tunning

average AUC (training) average AUC (validation) average AUC (training) average AUC (validation)

RF 0.808 0.738 1.0 0.891

XTree 0.791 0.689 0.980 0.923

GB* 0.795 0.621 1.0 0.943

DT 0.735 0.684 1.0 0.801

AdaBoost 0.809 0.653 1.0 0.903
* Gradient boosting(GB).
FIGURE 5

The prediction performance of the stacking model with three different meta -learners and variable importance ranking.
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improvements can be achieved through the use of feature

engineering and model integration methods.

Figure 2 illustrates a one-level meta-classifier stacking model,

which is a popular method used to improve model performance.

However, multi-level stacking ensemble methods are also employed,

wherein additional layers of classifiers are added to the stacking

model. In this study, we fed four classifiers without parameter tuning

and five other predictionmodels with Bayesian parameter tuning into

a single-level meta-classifier, employing LR, GB, and MLP as the

three meta-classifiers. Although this approach can improve model

performance, it can become computationally expensive for only a

small boost in performance. As such, researchers must balance the

trade-off between computational cost and model performance and

carefully choose the appropriate method for their specific application.

The stacking learner is a popular integrated learning method

widely used by many researchers due to its strong flexibility and

outstanding prediction performance, despite receiving less support

by theoretical research in mathematics compared to boosting and

bagging (4, 5). However, selecting the appropriate machine learning

type for both the base learner and the meta-learner remains a

longstanding and unresolved issue. Some studies suggest using the

same machine learner for both the base learner and secondary

learner, while others propose using simple learners as base learners

and more complex learners as meta-learners. In these cases, the

stacking performance seems to be more robust in terms of

classification accuracy (6, 7). Therefore, the choice of the machine

learning types for both base and meta-learners should be carefully

considered to obtain optimal stacking performance.

Mohanad Mohammed proposed a novel stacking ensemble deep

learning model based on a one-dimensional convolutional neural

network (1D-CNN) to perform multi-class classification on five

common cancers among women using RNASeq data. The stacking

ensemble method comprised support vector machines with linear and

polynomial kernels, artificial neural networks, KNN, and bagging trees,

resulting in a sound prediction performance with a mean accuracy of

0.99. Liang M. developed a stacking ensemble learning framework

(SELF) by integrating three machine learning methods to predict

genomic estimated breeding values (GEBVs), achieving a high

prediction accuracy of 0.855. Y. Xiong et al. reported an ensemble

learning platform that combined a primary learner stack, including a

library for support vector machine (LIBSVM), KNN, DT (C4.5), and

RT, as the primary learners of the stacking ensemble. In their work, the

embedding cost-sensitive naive Bayes was utilized as the meta-learner

of the stacking ensemble, resulting in accuracy ranging from the

minimum value of 87.93% to the maximum value of 100%. Overall,

these studies demonstrate the effectiveness of the stacking ensemble

method in different applications and highlight its potential for

improving prediction performance in various fields.

Previous studies suggest that integrating a traditional weak

learner as the base learner with a more complex meta-learner can

improve the prediction performance of the model. In our work, we

utilized three different learners as meta-learners and evaluated their

performance. Through experiments, we found that the GB learner

was the most suitable meta-learner, achieving the highest AUC value

compared to the other two meta-learners. This finding suggests that

careful selection of meta-learners can enhance the reliability and
Frontiers in Oncology 10
robustness of the final output of the model. Therefore, choosing an

appropriate meta-learner is crucial to ensure the effectiveness of the

stacking ensemble method in improving prediction performance.
5 Conclusion

In conclusion, we have proposed a novel multi-region dose-

gradient-based multi-stacking classifier framework that incorporates

Bayesian optimization parameter tuning to achieve an ultra-high

accuracy prediction of symptomatic RD 2+ in breast cancer patients

who underwent radiotherapy. Our approach represents a significant

improvement over traditional models and has the potential to improve

the clinical management of breast cancer patients by enabling early

identification of those at risk of developing radiation-induced toxicity.

With further validation and refinement, our framework may have

broader applications in other radiation therapy contexts, ultimately

improving the accuracy and efficacy of cancer treatments.
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