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B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder

of immature B lineage immune progenitors and is the commonest cancer in

children. Despite treatment advances it remains a leading cause of death in

childhood and response rates in adults remain poor. A preleukemic state

predisposing children to BCP-ALL frequently arises in utero, with an incidence

far higher than that of transformed leukemia, offering the potential for early

intervention to prevent disease. Understanding the natural history of this disease

requires an appreciation of how cell-extrinsic pressures, including

microenvironment, immune surveillance and chemotherapy direct cell-

intrinsic genetic and epigenetic evolution. In this review, we outline how

microenvironmental factors interact with BCP-ALL at different stages of

tumorigenesis and highlight emerging therapeutic avenues.

KEYWORDS
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Introduction

Cancer is a clonal outgrowth of cells that have adapted to gain a competitive advantage

over their physiologically-constrained competitors. Classically this has been viewed as a

stepwise evolutionary process, characterized by the sequential acquisition of driver

mutations in critical tumor suppressor and oncogenes. However, powerful non-genetic

factors also direct and constrain tumor evolution, including cell-intrinsic “epigenetic”

states acquired from the developmental origins, stem/progenitor cell programming and

epigenetic dysregulation of the cell of origin, and cell-extrinsic factors, notably

microenvironmental niches and the selective pressure of immune surveillance and

therapy. In this review we will outline how cell-extrinsic factors contribute to the

initiation and evolution of B-cell precursor acute lymphoblastic leukemia (BCP-ALL),

highlighting opportunities for therapeutic intervention at different stages of disease

progression and chemoresistance.
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B-Cell precursor acute
lymphoblastic leukemia

BCP-ALL is an aggressive malignancy of immature B-lineage

immune cell progenitors. Leukemic cells arise in the bone marrow

(BM) and infi l trate extramedullary sites, notably the

reticuloendothelial system (liver, spleen & lymph nodes) and so-

called sanctuary sites (central nervous system (CNS) and testes) (1).

BCP-ALL is predominantly a disease of childhood and there is

compelling evidence in a number of genetic subgroups that a pre-

leukemic state is initiated in utero, with B-cells harboring clonal

genetic fusions or immunoglobulin gene rearrangements identifiable

at birth on neonatal blood samples from affected children and/or

shared in the blood of monochorionic twins (2). Importantly, the

incidence of pre-leukemia in children far exceeds that of overt

disease, indicating that these cells require further genetic and/or

other events to transform to frank leukemia.

The first hit mutations that can initiate pre-leukemia are highly

diverse between patients, but recent work has shown that the

disease can be classified into 23 distinct subgroups based on

underlying transcriptional signatures (3, 4). In contrast, the

second-hit mutations implicated in disease transformation and

progression are relatively conserved across genetic subtypes,

implicating common pathways in disease progression including

activation of signaling pathways (e.g. RAS, JAK-STAT), loss of

transcriptional master regulators (e.g. PAX5, IKZF1) and

perturbation of epigenetic co-regulators (e.g. CREBBP) (3–6).

Modern response-adapted multiagent chemotherapy regimens

can cure the majority of children, albeit at the expense of toxicity (7,

8). Treatment of adult B-ALL, however, is more challenging with

approximately 50% overall survival even in patients fit enough to

undergo allogeneic bone marrow transplantation (9, 10).

Introduction of novel targeted therapies (e.g. BCR::ABL1 tyrosine

kinase inhibitors) and immunotherapy (e.g. CD19-CD3 bispecific T

cell engager (BiTEs) and chimeric antigen receptor (CAR)-T cells)

are improving outcomes for certain high-risk and relapsed cases.

Nevertheless, some groups of patients continue to fare poorly,

including those with high-risk genetic drivers (e.g. E2A::HLF,

KMT2A-rearranged BCP-ALL), certain age groups (e.g. infants,

elderly), those with poor-risk second hit mutations (e.g. CREBBP-

RAS) and those who relapse in the CNS.

Microenvironmental and cell-extrinsic factors are increasingly

thought to play a both supportive and constraining roles

throughout the pathogenesis of BCP-ALL (Figure 1A).

Understanding how they contribute to pre-leukemic initiation,

the fate of preleukemic clones and mechanisms of resistance will

offer new avenues for understanding disease mechanism and

facilitate the development of novel therapeutic interventions.
Niche in normal B cell development

The BM niche is formed by hematopoietic and non-

hematopoietic cells from different lineages. Bone forming cells

(osteoblasts and osteoclasts), adipocytes, reticular cells,
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endothelial cells, mesenchymal stromal cells (MSC) and neural

cells help create and support BM homeostasis and hematopoiesis,

through direct cellular interactions, the production of soluble

cytokines and the maintenance of the extracellular matrix (11–

13). Interactions between hematopoietic stem/progenitor cells

(HSPCs) and the BM microenvironment are essential for both

commitment into the B lineage and survival following successful

rearrangement of the heavy and light chain immunoglobulin loci,

evaluated by pro-survival signaling through the pre-B cell receptor

(preBCR) and BCR complexes respectively. A number of soluble

factors are known to be essential for the commitment into the B

lineage, including FLT3L and SCF (14, 15). Multipotent

hematopoietic progenitor cells and early pre-proB cells directly

co-associate with CXCL12-expressing stromal cells (16), with

osteoblasts appearing particularly important for successful B

lineage differentiation (17). CXCL12 seems important in both

attracting B progenitors to specific BM niches and by inducing

direct interactions through the integrin VLA-4 - VCAM1 axis (18).

Different parts of the BM niche exhibit different metabolic

characteristics, in particular oxygenation, which is thought to

regulate REDOX-sensitive transcription factors such as the

hypoxia inducible factors as well as the B cell master regulator

PAX5 (19). Maturing proB cells migrate to areas of high IL7

expression and complete RAG-mediated rearrangement of their

IGH locus to become preB cells, which express the preBCR.

Successful recombination of the IGH locus results in effective

signaling through the preBCR, which is in part activated by

stromal Galectin 1 binding (20). Successful light chain

recombination completes BM B cell maturation, producing a

repertoire of naïve B cells with a unique BCR competent for

antigenic stimulation in lymph nodes.

B cell progenitors are particularly abundant during early

embryonic development. During ontogeny hematopoiesis arises in

multiple waves from diverse sites, including primitive

hematopoiesis in the yolk sac (YS) before definitive HSCs are

specified in the aorto-gonad-mesonephros (AGM) region of the

dorsal aorta. The progeny of these HSPCs establish differentiation

hierarchies in multiple niches, notably the YS, fetal liver (FL),

placenta and BM (21). The precise lineages of the B cell

progenitors produced in these sites remains controversial (22),

but it appears that both the ontogenic origins and the niche in

which these cells reside are associated with significant differences to

adult lymphopoiesis, in particular the enhanced proliferative state

of FL HSPCs (23, 24). These differences indicate that fetal

hematopoiesis may be structured differently to adult, providing a

unique cellular context for the in utero initiation of

childhood leukemia.
Subversion of B-cell-
microenvironmental interactions
promotes pre-leukemic development

There is evidence that pre-leukemic cells are supported by the

microenvironment following disease initiation and that the
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microenvironment becomes remodeled to permit and support

disease progression (25) (Figure 1B).

Much work has been undertaken in the paradigmatic pre-

leukemia initiated in utero by the ETV6::RUNX1 gene fusion, the

commonest single genetic cause of childhood BCP-ALL. Pre-

leukemic in vitro model systems expressing the first-hit mutation

show aberrant co-expression of myeloid and erythroid cytokine

receptors on lymphoid cells, indicating that even at the earliest

stages, pre-leukemic cells significantly change the way that they

sense and respond to their microenvironment (26–28).

Functionally, preleukemic cells are thought to be maintained as a
Frontiers in Oncology 03
small population, with niche factors contributing to their

maintenance in a relatively quiescent (26, 29) and anti-apoptotic

state (30).

Prenatally, the major site of pre-leukemia is likely to be the FL,

although direct transplacental exposure to mutagens has been

implicated in the generation of first-hit mutations, and by the

time of birth pre-leukemic cells are readily detectable in the

peripheral blood and umbilical cord. HSCs emerging from the

AGM are attracted to and retained in the FL niche by factors

including SCF, CXCL12 and b1 integrin, factors which are also

supportive of B cell development (31, 32). Compared to both adult
A

B

FIGURE 1

(A) The roles of microenvironmental factors at different stages of tumor evolution in childhood BCP-ALL. BCP-ALL is thought to initiate in utero
where B lineage progenitors exhibit unique characteristics, including inhabiting diverse niches. First-hit mutations create a clinically silent
preleukemic state that persists into childhood. In a small number of children, this pre leukemic state transforms to acute leukemia; this is thought to
be driven by the acquisition of co-operative second hit mutations, possibly in response to inflammatory signaling. Leukemic blasts evolve to colonize
further niches and evade treatment, altering their epigenetic state to become less dependent on external stimuli. (B) Cellular and molecular
microenvironmental factors associated with BCP-ALL. Current and investigational therapeutic targets are highlighted in red: mitochondrial transfer
through tunnelling nanotubules (TNT) can be inhibited by the microtubule inhibitor vincristine; blinatumomab co-associates B-lineage blasts with
tumour-targeting cytotoxic T cells; neutralization of CD47 by B6H12.2 antibody restores the macrophage phagocytic response against leukemic
blasts; zoledronic acid and recombinant OPG-Fc reduce bone loss, inhibiting leukemic growth and prolonging survival in vivo; integrin 4 inhibitor
Natalizumab sensitizes leukemic blasts to chemotherapy.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1150612
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Garcia-Gimenez and Richardson 10.3389/fonc.2023.1150612
and fetal BM, FL hematopoiesis is characterized by extremely high

levels of proliferation (33), along with other differences in cell

surface markers, lineage differentiation and gene expression

profiles (23, 34). B-lymphopoiesis is particularly prominent in the

FL and exhibits a number of qualitative differences to adult

including lack of TDT expression, IL7R independence and that

the earliest committed B cells appear to emerge from a

developmentally-restricted progenitor that exhibits unique co-

expression of myeloid and lymphoid programming and potential

(28). These differences might explain some of the unique features of

childhood BCP-ALL, including its relatively high incidence,

propensity for unique genetic drivers rarely seen in adults (e.g.

ETV 6 : : RUNX1 , h y p e r d i p l o i d y ) a n d t e n d e n c y t o

lineage promiscuity.

By the end of gestation, it is probable that pre-malignant cells

have colonized the BM. There is evidence that multiple first-hit

mutations can change B cell adhesion/migration properties; for

example, ETV6::RUNX1 is associated with a cell-intrinsic defect in

CXCR4-CXCL12 signaling (35) and KMT2A-mutated BCP-ALL

up-regulates protocadherin genes (36). An area of active interest is

whether pre-leukemic cells can modify the BM niche prior to

transformation; given the changes seen at the time of diagnosis

(see below) this seems likely and novel experimental co-culture

techniques will help in delineating these interactions.
Inflammatory stimuli aid the
transformation and maintenance of
overt leukemia

The incidence of detectable pre-leukemia in asymptomatic

children is many times that of the incidence of overt childhood

BCP-ALL; for example, ETV6::RUNX1+ pre-leukemia is

approximately 100-500x more common than ETV6::RUNX1+

BCP-ALL (37, 38). This indicates the importance of second-hit

events in driving disease transformation, thought mainly to be the

acquisition of co-operative mutations. Conversely, it demonstrates

that the majority of pre-leukemic clones in children lack sufficient

self-renewal potential to persist into adulthood, either in a cell-

intrinsic manner, or due to an inability to adapt to changing niches

during development (39).

Epidemiological evidence points to delayed exposure to

infectious stimuli as a risk factor for BCP-ALL transformation.

This has led to the hypothesis that an under-exposed immune

system in early life results in subsequent overactivation of cytokine

signaling and hyper-mutagenesis in pre-malignant cells, potentially

driven by aberrant activation-induced cytidine deaminase (AID)

(40) or recombination-activating gene (RAG) activity (41, 42).

Furthermore, the neonatal blood of children who develop

leukemia exhibits measurable differences in cytokine

concentrations, indicating a degree of immune dysregulation

prior to environmental exposures to pathogens (43, 44). The

specific pathogens involved in this mechanism are unknown, but

significant epidemiological associations with outbreaks of swine flu

(45), influenza (46) and SARS (47) viruses have been reported. The
Frontiers in Oncology 04
effects of both exposure to Covid19 and the lack of infectious

exposure in children during prolonged lockdowns are an area of

active research (48).

Experimental evidence shows that pre-leukemic mouse models

housed in clean specified pathogen free facilities develop increased

rates of leukemia in response to infectious stimuli (49, 50) and that

inhibition of inflammatory stimulation can mitigate transformation

to BCP-ALL in a Pax5 pre-leukemic model (51). There is evidence

that MSC-derived pro-inflammatory TGFb family members

(including TGFb and Activin A) can favor the growth of ETV6::

RUNX1+ pre-leukemic cells (26, 52) and that the acute-phase

response cytokines (IL6, TNFa and IL1b) can co-operate with

MSCs to generate a pro-leukemic niche for ETV6::RUNX1+ cells

and drive a hyper-mutagenic state (53). Intriguingly, gut

commensal microbes are known to affect the immune

microenvironment systemically and it has been shown in murine

pre-leukemic models that microbiome disruption by antibiotic

administration in early life can induce the development of

leukemia (54).

Once transformed, it is established that BCP-ALL actively

remodels its interaction with the BM niche into a permissive or

supportive microenvironment (55). The BCP-ALL-MSC interaction

appears key to this, with down-regulation of the CXCL12

chemokine-axis favoring BCP-ALL MSC interactions over those

of normal HSCs (56). Subversion of a number soluble and surface

ligand axes has been implicated in promoting leukemic survival,

including TGFb, Cadherin-wnt-Catenin, Notch and Integrin

pathways. Furthermore, BCP-ALL cells inhibit osteoblast function

through the RANK-RANKL axis, remodeling the BM space and

contributing to clinically-meaningful trabecular bone destruction

(57). Zoledronic acid (58) and the recombinant RANKL antagonist,

OPG-Fc (59) have shown efficacy in restoring bone homeostasis

and reducing disease burden in in vivo models. MSC-derived

Galectin 3 can be internalized by BCP-ALL blasts stimulating

autocrine production of Galectin 3, driving disease progression in

a cell autonomous manner (60). This serves as an example of how

leukemic cells can also adapt to circumvent their own dependency

on microenvironmental factors.
Epigenetic adaptation to extracellular
cues underlies tumor evolution
and resistance

During tumor evolution BCP-ALL subclones increasingly

compete with each other, adapting to diversify their signaling,

metabolic and niche dependencies, as well as evading external

pressures including immune surveillance and chemotherapy.

In experimental models, interactions between BCP-ALL and

factors from BM perivascular, endosteal, and hematopoietic niches

maintain BCP-ALL survival and quiescence in response to

chemotherapy (61). A preclinical in vivo model has shown that

targeting the integrin VLA-4 using the therapeutic antibody

Natalizumab sensitized BCP-ALL cells to cytotoxic chemotherapy

(62). A fascinating mechanism of chemoresistance has been
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demonstrated by Burt and colleagues, who showed that direct

connections between BCP-ALL blasts and MSCs by tunneling

nanotubules (TNT) could lead to mitochondrial transfer,

protecting BCP-ALL cells from toxicity from chemotherapy-

induced reactive oxygen species (63). The microtubule inhibitor

vincristine, a key component of current BCP-ALL chemotherapy

regimens, was shown to disrupt TNT formation, ameliorating this

mechanism of resistance. Adipocytes have been shown to induce

chemoresistance by both directly sequestering chemotherapeutic

agents and by increasing leukemic blasts fitness through the

production of pro- and anti-inflammatory adipokines, fueling the

leukemic cells with free fatty acids and promoting oxidative

phosphorylation (64, 65). The upregulation of Galectin-9 by

adipokines is responsible for several of these effects with

preliminary studies implicating Galectin-9 as a therapeutic target

(66). Interestingly, the role of adipocytes has been shown to alter

dynamically during treatment, with a particular role in promoting a

quiescent chemo-resistant state in regenerating bone marrow.

Mechanistically this was associated with a global suppression of

protein translation, which could be overcome by inhibition of

GCN2, restoring chemosensitivity (67).

The established graft-versus-leukemia effects seen after

allogeneic transplantation, and more recently the advent of

highly-efficacious BiTE and CAR-T immunotherapies in BCP-

ALL, highlights the necessity for continuous T cell immune

evasion during leukemic evolution. The efficacy of the CD19-CD3

BiTE blinatumomab demonstrates the ongoing presence of anti-

BCP-ALL cytotoxic T cells in frank disease. Blinatumomab failure

has been associated with higher numbers of inhibitory Treg cells,

implicating these negative regulators of the cellular immune

response as potential effectors of immune evasion (68).

Furthermore, BCP-ALL blasts overexpress the surface CD47, a

“don’t eat me” signal that inhibits phagocytosis by macrophages.

The anti-CD47 neutralizing antibody B6H12.2 has been shown to

relieve this block in in vitro and in vivomodels and this strategy has

shown promise in other leukemia subtypes (69).

Clinically important sites of relapse include the CNS and testes.

These are considered sanctuary sites, with demonstrably lower

levels of exposure to chemotherapy drugs in addition to being

relatively privileged sites from immune surveillance (70–72).

Extramedullary niches share an impaired CXCR4-CXCL12 axis

(73, 74), hypoxic conditions (75) and the presence of the cytokine

SCF (76). B lymphocytes have a physiological ability to enter the

CNS and the ability to cross the blood-cerebrospinal fluid barrier is

a generic feature of BCP-ALL blasts (77). A number of surface

receptors are thought to contribute to this, including classical B-cell

progenitor markers such as CD79a and IL7R (78, 79). Leukemic

blasts also produce exosomes with soluble molecules (e.g. IL15) that

alter distant niches such as the CNS (80). Once in the CNS,

leukemic cells adapt to their new environment, including by

adjusting to relative hypoxia (75) and by changing their metabolic

requirements towards fatty acid metabolism (81, 82), changes that

potentially provide unique therapeutic vulnerabilities.

As BCP-ALL progresses, cells appear to become more

autonomous, characterized by reduced dependence on external/niche

stimuli and the ability to tolerate more extreme environmental and
Frontiers in Oncology 05
therapeutic selective pressure. This was initially thought to be due to

the positive selection of genetically heterogenous subclones, favoring

those harboring mutations that provided selective advantages to

particular evolutionary pressures. Clinical and experimental studies,

however, have failed to demonstrate recurrent selection of genetic sub-

clones during treatment, notwithstanding mutations in a small number

of direct drug targets (e.g. BCR::ABL1 tyrosine kinase mutations and

mutations in key members of the glucocorticoid or mercaptopurine

pathways). Instead, leukemic cells appear to adapt to treatment-related

selective pressure by “transcriptional canalization”, characterized by

increased quiescence and a reduction in their global transcriptional

heterogeneity (83). In a genetically highly diverse disease, this acquired

loss of heterogeneity at the gene expression level could provide

common therapeutic vulnerabilities.

Epigenetic dysregulation is a hallmark of many cancers and the

genes encoding epigenetic co-regulators are commonly mutated in

BCP-ALL. An intriguing study has recently shown that

perturbation of multiple different epigenetic regulators across

diverse cancer models tended to increase the tolerance of cancer

cells to environmental stress (84). This “transcriptional numbness”

to selective pressure lowers the probability of cell death, providing a

phenotypic inertia that facilitates survival and adaptation of mutant

cells. In the case of BCP-ALL, a potential exemplar of this are loss of

function mutations in the transcriptional co-activator CREBBP.

CREBBP deletion, or point mutations affecting its enzymatic

acetyltransferase domain, are enriched in relapsed BCP-ALL (6)

and high-risk genetic subtypes such as near-haploid BCP-ALL (85).

It has also been associated with relapse risk in the otherwise good-

risk subgroup of pediatric hyperdiploid BCP-ALL (4, 86). A number

of mechanisms could account for this risk, including induction of

glucocorticoid resistance (6, 87) and/or potentiation of cytokine

signaling though the RAS pathway (88), as well as potentially

phenotypic inertia related to loss of transcriptional co-activation.

Understanding how cell-intrinsic epigenetic reprograming mediates

BCP-ALL adaptation is therefore essential to better appreciating

and targeting the cell-extrinsic dependencies seen at different stages

of disease progression.
Discussion

BCP-ALL cells are highly dependent on microenvironmental

niches at all stages of tumor development. Characterizing these

shifting dependencies is an essential component of undertesting the

selective pressure that drives tumor evolution through pre-leukemic

initiation, leukemic transformation, frank leukemia, tissue infiltration

and chemoresistance. New model systems are emerging to examine

these factors, including humanized in vivo models and advanced 2D

and 3D co-culture systems (89, 90). Perturbation of critical soluble

factors, cell-cell and immune interactions are providing promising

novel therapeutic avenues, as well as new insights into the mechanism

of action of established drugs. Delineating the role that epigenetic

reprogramming plays during tumor evolution and treatment

resistance will provide opportunities to target the most resistant

cases. Conversely, the clear dependencies of early pre-leukemic cells
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on microenvironmental factors might afford the potential for early

intervention and the tantalizing possibility of making childhood

BCP-ALL a preventable disease (91).
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