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18F-FDG PET/CT radiomics
signature and clinical parameters
predict progression-free
survival in breast cancer
patients: A preliminary study
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Wenbin Ji5, Xiaotian Xia1,2,3* and Xiaoli Lan1,2,3*

1Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Hubei Province Key Laboratory of Molecular Imaging,
Wuhan, China, 3Key Laboratory of Biological Targeted Therapy of the Ministry of Education,
Wuhan, China, 4He Kang Corporate Management (SH) Co. Ltd, Shanghai, China, 5Department of
Radiology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
Introduction: This study aimed to investigate the feasibility of predicting

progression-free survival (PFS) in breast cancer patients using pretreatment
18F-fluorodeoxyglucose positron emission tomography/computed tomography

(FDG PET/CT) radiomics signature and clinical parameters.

Methods: Breast cancer patients who underwent 18F-FDG PET/CT imaging

before treatment from January 2012 to December 2020 were eligible for study

inclusion. Eighty-seven patients were randomly divided into training (n = 61) and

internal test sets (n = 26) and an additional 25 patients were used as the external

validation set. Clinical parameters, including age, tumor size, molecular subtype,

clinical TNM stage, and laboratory findings were collected. Radiomics features

were extracted from preoperative PET/CT images. Least absolute shrinkage and

selection operators were applied to shrink feature size and build a predictive

radiomics signature. Univariate and multivariate Cox proportional hazards

models and Kaplan-Meier analysis were used to assess the association of rad-

score and clinical parameter with PFS. Nomograms were constructed to visualize

survival prediction. C-index and calibration curve were used to evaluate

nomogram performance.

Results: Eleven radiomics features were selected to generate rad-score. The

clinical model comprised three parameters: clinical M stage, CA125, and

pathological N stage. Rad-score and clinical-model were significantly

associated with PFS in the training set (P< 0.01) but not the test set. The

integrated clinical-radiomics (ICR) model was significantly associated with PFS

in both the training and test sets (P< 0.01). The ICR model nomogram had a

significantly higher C-index than the clinical model and rad-score in the training

and test sets. The C-index of the ICR model in the external validation set was

0.754 (95% confidence interval, 0.726–0.812). PFS significantly differed between

the low- and high-risk groups stratified by the nomogram (P = 0.009). The

calibration curve indicated the ICR model provided the greatest clinical benefit.
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Conclusion: The ICR model, which combined clinical parameters and

preoperative 18F-FDG PET/CT imaging, was able to independently predict PFS

in breast cancer patients and was superior to the clinical model alone and rad-

score alone.
KEYWORDS

18F-fluorodeoxyglucose, positron emission tomography/computed tomography, breast
cancer, radiomics signature, progression-free survival
Introduction

Breast cancer is the most prevalent cancer and leading cause of

cancer death in women (1). Although adjuvant therapy had

improved survival, 5-year overall relative survival rates for locally

advanced and metastatic breast cancer were 55% and 18%,

respectively (2). Determining predictors of survival is essential

for developing individualized treatment strategies and

improving prognosis.

High intratumoral heterogeneity in breast cancer is associated

with worse prognosis (3, 4) and is difficult to ascertain using typical

invasive biopsy techniques. Clinicopathological parameters including

age, tumor size and stage, and metastasis status are conventional

prognostic factors for breast cancer (5). However, clinical outcomes

may vary because of highly heterogeneity and these factors alone may

not provide accurate prognostic information.

Imaging has considerable potential in guiding breast cancer

treatment. 18F-fluorodeoxyglucose positron emission tomography/

computed tomography (18F-FDG PET/CT) is widely used for initial

staging, monitoring recurrence and treatment response, and

assessing prognosis (6–12). However, conventional PET using

semi-quantitative parameters does not fully reflect internal

tumoral characteristics, which limits the forecasting accuracy

(13–15).

Radiomics can noninvasively characterize intratumoral

heterogeneity by extracting multiple high-dimensional quantitative

features from medical images. This approach has the ability to reveal

the biological behavior of the entire tumor and has great potential to

predict prognosis (16–19).

In breast cancer, 18F-FDG PET/CT radiomics has been used to

classify molecular subtype, predict treatment response, and assess
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graphy; ICR, Integrated
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prognosis (18, 20–28). Several previous studies have investigated

prediction of breast cancer prognosis using PET/CT radiomics

features (24, 26–29). However, these studies were small or lacked

external validation datasets. In addition, prediction models that

combine imaging and clinical factors are more accurate than those

that use imaging and clinical factors alone (30).

Therefore, this study aimed to develop and validate model

nomograms to predict progression-free survival (PFS) in breast

cancer patients using clinical parameters and PET/CT

radiomics features.
Methods

Study population

This retrospective study was approved by Ethics Committee of

the Union Hospital of Tongji Medical College of Huazhong

University of Science and Technology, and the requirement for

written informed consent was waived. We retrospectively analyzed

87 female breast cancer patients (51.8 ± 12.9 years, range 25.0-81.0)

who underwent 18F-FDG PET/CT imaging before treatment in our

institution (first center) from January 2012 to December 2020.

Patients were randomly divided into a training set (n = 61) and

internal test set (n = 26). A total of additional 25 patients (female,

55.9 ± 11.1 years, range 35.0-82.0) from the first center (Wuhan

Union Hospital) and second center (Taizhou Hospital) were

collected as an external validation set.

Patients who underwent treatment before PET/CT and those

with a history of other cancer, unknown molecular subtype, or

blood glucose concentration > 11.1 mmol/L before 18F-FDG

injection were excluded. We also excluded patients with missing

data and those lost to follow-up. A study flowchart is shown

in Figure 1A.
Clinical evaluation

Clinical parameters, including age, tumor size, molecular

subtype, TNM stage, and concentrations of pretreatment

carcinoembryonic antigen (CEA), carbohydrate antigen

125 (CA125), and carbohydrate antigen 15-3 (CA15-3)

were recorded.
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18F-FDG PET/CT imaging

18F-FDG was synthesized using 18F produced by a cyclotron

(MINItrace®, GE Healthcare, Milwaukee, WI, USA) with

radiochemical purity >95%. All patients were required to fast for

at least 6 hours before 18F-FDG injection. Blood glucose

concentration was measured prior to injection (only patients with

concentration ≤ 11.1 mmol/L were included). Intravenous 18F-FDG

(3.70-5.55 MBq/kg) was administered and PET/CT was performed

approximately 60 minutes later using a Discovery VCT® system

(GE Healthcare). PET/CT acquisition and reconstruction

parameters are shown in the Additional file 1.
Delineation and segmentation of
PET/CT images

The radiomics workflow is shown in Figure 1B. 18F-FDG PET/

CT digital imaging and communications in medicine images were

retrieved and loaded into ITK-SNAP software (www.itksnap.org)

for manual segmentation. Before PET image segmentation, 40%

maximum standardized uptake value threshold mapping was

calculated using LIFEx (https://www.lifexsoft.org/). Delineation of

the region of interest (ROI) was performed manually by a nuclear

medicine physician with 3 years of experience (XX). All ROIs were

segmented by two nuclear medicine physicians with more than 15

years of experience (XS and XL). Repeatability of parameters

extracted from the ROIs segmented by these two physicians was
Frontiers in Oncology 03
evaluated using the interclass correlation coefficient (ICC), and

reserved the parameters with ICC coefficient greater than 0.6.
Radiomics features extraction

The PyRadiomics feature package imported into Anaconda

prompt software (github.com/Radiomics/pyradiomics, version

4.2.0) was used to extract radiomics features according to the

feature guide of the image biomarker standardization initiative.

The categories and number of extracted radiomics features are

detailed in the Additional file 1.
Features screening and
models construction

Continuous variables were concentrated and standardized.

Eighty-seven patients were randomly divided into training and

test sets at a ratio of 7:3.

Radiomics signature (Rad-score)
The minimal redundancy maximal relevance (mRMR)

algorithm (31), which can improve the accuracy of feature

selection and classification, was used to select the initial features

in the training set. The least absolute shrinkage and selection

operator (LASSO) was used to screen features. Parameters

corresponding to the minimum penalty and weight coefficients
FIGURE 1

Patient screening and positron emission tomography/computed tomography radiomics analysis. (A) Study flowchart. (B) Schematic representation of
the radiomics analysis workflow.
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were selected to construct the radiomics signature. The radiomics

signature was calculated for each patient by a linear combination of

selected features weighted by their respective coefficients.

Clinical model
In the training set, univariate and multivariate Cox proportional

hazard regression were used to analyze and screen clinical features.

Features were selected using the minimum Akaike information

criterion to avoid overfitting. Furthermore, associations between the

clinical parameters and PFS in the training set were evaluated and

then verified in the test set.

Integrated clinical-radiomics model
Clinical features and rad-score were used to create a

multivariate Cox proportional hazard regression model.
Evaluation of model performance

To evaluate model performance, the radiomics nomogram,

clinical nomogram, and ICR model nomogram were built in the

training set, then evaluated in the internal test set, and verified in

the external validation set.

The concordance index (C-index), which measures the

proportion of the predicted results consistent with the actual

results in all patient pairs, was used to evaluate discriminating

ability. C-index between 0.50 and 0.70 indicated poor accuracy,

while a value between 0.71 and 0.90 indicated moderate accuracy;

values above 0.90 indicated high accuracy (32). Bootstrap

verification (2000 Bootstrap resampling) was performed on the

training and test sets to calculate the relative corrected C-index.

A calibration curve was used to validate the ICR model

nomogram performance, which used bootstrap resampling to

evaluate the original data. Integrated area under curve (iAUC) of

the receiver operating characteristic (ROC) curve was used to

evaluate predictive performance of the combined model.
Outcome evaluation

Follow-up was conducted by clinic visits or telephone. The

study endpoint was PFS. PFS was defined as time from the date of

initial PET/CT to the date of disease progression, recurrence, death

from any cause, or last follow-up. Patients who did not have

progression/recurrence at the date of their last clinical follow-up

were considered as a censored data.
Statistical analysis

Categorical variables were compared using Pearson’s chi-square

test. Continuous variables were compared using the unpaired two-

tailed Students t-test assuming or the Wilcoxon rank sum test as

appropriate. P< 0.05 was considered significant. ROC curve analysis
Frontiers in Oncology 04
was used to determine the rad-score threshold and divide patients

into high- and low-risk groups. Survival was analyzed using the

Kaplan–Meier method. Survival curves were compared using the

log-rank test. Statistical analyses were performed using R software

version 3.6.4 (www.rproject.org). The packages used included

lattice, use this, devtools, tidyverse, caret, publish, survival,

glmnet, ggpubr, survminer, rolr, survIDINRI, survAUC, rms, dca.)
Results

Patient characteristics

A total of 112 newly diagnosed breast cancer patients were

included for analysis. The clinicopathological characteristics of the

training (n = 61) and internal test (n = 26) sets patients are shown in

Table 1. Characteristics of the 25 patients in external validation set

are summarized in Supplementary Table S1.
PFS

All patients underwent breast-conserving surgery or

mastectomy. The details of adjuvant therapy (including

radiotherapy, chemotherapy and endocrine therapy) are shown in

Table 1. During follow up, thirty of the 87 patients in the training

and internal test sets (34.5%) experienced recurrence or

progression. Among these, mean PFS was 25.4 ± 19.4 months

(range, 0.3-64.4) and median PFS was 20.4 months. Seven of the 25

external validation set patients (28.0%) experienced recurrence or

progression. Among these, mean PFS was 17.3 ± 3.3 months (range,

2.1-70.1) and median PFS was 11.7 months.
Radiomics signature construction
and testing

Based on the training set, a total of 1920 PET/CT radiomics

features were extracted. A LASSO Cox regression was performed to

achieve regression coefficient compression and select variables

(Figures 2A, B).

After screening, 11 radiomics features were included in the final

model: original_shape_Elongation.PET, wavelet_HHL_

g l dm_Dep end en c e Va r i a n c e . PET , l o g _ s i gma_5_0_

mm_3D_glcm_ClusterShade.CT, wavelet_LLL_glcm_Inverse

Variance.CT, log_sigma_2_0_mm_3D_glszm_Large Area Low

GrayLevelEmphasis , wavelet_LLH_glszm_SizeZoneNon

UniformityNormalized.CT, wavelet_LLH_glszm_SmallArea

Em p h a s i s . P E T , l o g _ s i g m a _ 5 _ 0 _mm _ 3 D _ g l d m _

GrayLevelVariance.CT, wavelet_HHL_firstorder_Mean.CT,

l o g _ s i g m a _ 4 _ 0 _mm_ 3D _ fi r s t o r d e r _M e d i a n a n d

wavelet_HLL_glszm_SmallAreaEmphasis.PET. Rad-score was

calculated for each patient using a linear combination of selected

features weighted by their respective coefficients as follows (Figure 2C):
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TABLE 1 Clinicopathological characteristics of patients in the training and test sets.

Characteristics Overall cohort (n = 87)

Training set
(n = 61)

Test set
(n = 26) P value*

No. (70%) No. (30%)

Age (y) Median(range) 50.0 (25.0-81.0) 50.0 (25.0-78.0) 47.5 (28.0-81.0) 0.921

≤50y 46 (52.9) 31 (50.8) 15 (57.7) 0.724

>50y 41 (47.1) 30 (49.2) 11 (42.3)

Tumor size 0.096

≤2cm 43 (49.4) 35 (57.4) 8 (30.8)

>2cm 44 (50.6) 26 (42.6) 18 (69.2)

SUVmax 0.820

Median(range) 6.9 (1.3-25.2) 7.0 (1.6-25.2) 6.1 (1.3-17.5)

Subtype 0.151

Luminal A 21 (24.1) 17 (27.9) 4 (15.4)

Luminal B 33 (37.9) 19 (31.1) 14 (53.8)

HER-2 19 (21.9) 13 (21.3) 6 (23.1)

Triple negative 14 (16.1) 12 (19.7) 2 (7.7)

cT† 0.413

T1 38 (43.7) 30 (49.2) 8 (30.8)

T2 39 (44.8) 24 (39.3) 15 (57.7)

T3 4 (4.6) 3 (4.9) 1 (3.8)

T4 6 (6.9) 4 (6.6) 2 (7.7)

cN† 0.543

N0 31 (35.6) 20 (32.8) 11 (42.3)

N1 14 (16.1) 12 (19.7) 2 (7.7)

N2 17 (19.6) 12 (19.7) 5 (19.2)

N3 25 (28.7) 17 (27.8) 8 (30.8)

cM† 0.159

M0 58 (66.7) 44 (72.1) 14 (53.8)

M1 29 (33.3) 17 (27.9) 12 (46.2)

pT‡ 0.448

T1 32 (36.8) 25 (41.0) 7 (26.9)

T2 42 (48.3) 26 (42.6) 16 (61.5)

T3 5 (5.7) 4 (6.6) 1 (3.9)

T4 8 (9.2) 6 (9.8) 2 (7.7)

pN‡ 0.800

N0 29 (33.3) 19 (31.1) 10 (38.5)

N1 15 (17.3) 12 (19.7) 3 (11.5)

N2 16 (18.4) 11 (18.1) 5 (19.2)

N3 27 (31.0) 19 (31.1) 8 (30.8)

pM‡ 0.218

(Continued)
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Rad-score =  0:216308907988105 �
original _ shape _ Elongation :  PET  + 0:20247294159178 x

wavelet _ HHL _ gldm _DependenceVariance :  PET 

+  0:126675894088301 �
log _ sigma _ 5 _ 0 _mm_ 3D_ glcm_ ClusterShade :  CT 

+ 0:0971773019410209 �
wavelet _ LLL _ glcm_ Inverse Variance :  CT 

+ 0:0687564202753143 x

log _ sigma _ 2 _ 0 _mm_ 3D_ glszm_ LargeAreaLowGrayLevelEmphasis 

+  0:013847068926288

wavelet _ LLH_ glszm _ SizeZoneNonUniformityNormalized :  CT 

−  0:0133830861893992 x

wavelet _ LLH_ glszm _ SmallAreaEmphasis :  PET 

−  0:0870828100344496 �
log _ sigma _ 5 _ 0 _mm_ 3D_ gldm _GrayLevelVariance :  CT 

−  0:115345107379321 �
wavelet HHL_ firstorder _Mean :  CT  −  0:161665805895483 x

log _ sigma _ 4 _ 0 _mm_ 3D_ firstorder _Median 

–  0:314539923888585 �
walvet _HLL _ glszm _ SmallAreaEmphasis :  PET

The scores of patients in the training and test sets were

calculated through the constructed radiomics signature. Patients

were divided into high- and low-risk groups based on the optimal

cutoff determined by ROC curve analysis. In the training set, PFS

was significantly shorter in patients with a higher rad-score (P<

0.001; Figure 3A). In the test set, the difference was not significant

(P = 0.260, Figure 3B).
Clinical features model construction
and testing

The results of univariate Cox regression analyses in the training

and test sets are shown in Supplementary Table S2. Three
Frontiers in Oncology 06
parameters were included (clinical M stage, CA125, pathological

N stage) in the multivariate Cox model. In the training set,

multivariate analysis showed that clinical M stage (hazard ratio

[HR] 7.67; 95% confidence interval [CI], 1.98-29.77; P = 0.003) and

CA125 (HR 1.00; 95% CI, 1.00-1.01; P = 0.011) were independent

predictors of PFS; pathological N stage was not (HR 1.46; 95% CI,

0.89-2.40; P = 0.138). However, in the test set, clinical M stage (HR

3.12; 95% CI, 0.76-12.77; P = 0.113), CA125 (HR 1.00; 95% CI, 1.00-

1.00; P = 0.377), and pathological N stage (HR 1.53; 95% CI, 0.91-

2.56; P = 0.108) were not independent predictors of PFS (Table 2).

The constructed clinical model was used to calculate the clinical

score for each patient. PFS significantly differed between the high-

and low risk groups in the training set (P< 0.001; Figure 3C) but not

the test set (P = 0.130; Figure 3D).
ICR model construction and testing

An ICR model including rad-score and clinical parameters was

established based on stepwise multivariate Cox analysis. In the

training set, rad-score (HR 6.52; 95% CI, 1.56-27.36; P = 0.010) was

an independent predictor of PFS, but clinical M stage (HR 3.84; 95%

CI, 0.83-17.63; P = 0.084), CA125 (HR 1.002; 95% CI, 1.002-1.004;

P = 0.124) and pathological N stage (HR 1.34; 95% CI, 0.79-2.28;

P = 0.280) were not. None of the variables were independent

predictors in the test set (Table 3).

The ICR model equation was as follows:

h(t, x) = h0(t)e

(1:345�Initial M staging+0:0019�CA125+0:293

�pathological N staging+1:87�Rad−score)

S significantly differed between the high- and low risk groups in

both the training and test sets (P< 0.001 and P = 0.003, respectively;
TABLE 1 Continued

Characteristics Overall cohort (n = 87)

Training set
(n = 61)

Test set
(n = 26) P value*

No. (70%) No. (30%)

M0 60 (69.0) 45 (73.8) 15(57.7)

M1 27 (31.0) 16 (26.2) 11(42.3)

CA125 0.890

Positive 26 (29.9) 19 (31.1) 7 (26.9)

Negative 61 (70.1) 42 (68.9) 19 (73.1)

CA15-3 0.082

Positive 27 (31.0) 15 (24.6) 12 (46.2)

Negative 60 (69.0) 46 (75.4) 14 (53.8)

CEA 0.301

Positive 19 (21,8) 11 (18.0) 8 (30.8)

Negative 68 (78.2) 50 (82.0) 18 (69.2)
* The difference of clinicopathological characteristics between the training set and test set.
†c-stage indicates clinical stage as determined by positron emission tomography/computed tomography.
‡ p-stage indicates stage as determined by pathology
CA125, Carbohydrate antigen 125; CA15-3, Carbohydrate antigen 15-3; CEA, Carcinoembryonic antigen; SUVmax, Maximum standardized uptake value
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Figures 3E, F). The ICR model was examined for correlation

between parameters using Spearman analysis; parameters with the

same trend were examined through unsupervised cluster analysis.

Hierarchically clustered heatmap of the feature correlation matrix is

shown in Figure 4. Features with an inter-correlation above the

selected threshold (≥0.7) were removed from the dataset.
Model performance evaluation

Nomograms for rad-score and the clinical and ICR models were

developed (Figures 5A, B) and predictive performance was

evaluated. In the training and test sets, the C-indices for rad-score

were 0.777 (95% CI, 0.712-0.833) and 0.626 (95% CI, 0.597-0.755),

respectively. Corresponding C-indices for the clinical nomogram

were 0.790 (95% CI, 0.754-0.872) and 0.714 (95% CI, 0.632-0.774),

respectively, and those for the ICR nomogram were 0.845 (95% CI,

0.793-0.912) and 0.758 (95% CI, 0.723-0.801), respectively
Frontiers in Oncology 07
(Supplementary Table S3). In both the training and test sets, the

ICR model achieved the best prediction accuracy.

In the ICR model, mean iAUC in the training and test sets was

0.835 and 0.826, respectively (Figure 6A). To assess consistency

between predicted and actual PFS, calibration curves of the ICR

model in the training and test sets were plotted (Figure 6B).

Agreement between the predicted and observed curves was good

and the bias curves in both sets were near to the ideal line.
Models constructed based on PET
or CT alone

Rad-score was also constructed based on PET and CT images

alone. The regression coefficient and variable selection are shown in

the Supplementary Figure S1. Compared with PET/CT, the

performance of the rad-score and ICR model as constructed by

PET and CT alone was worse (Supplementary Figures S2, S3).
FIGURE 2

Radiomics features selection using the least absolute shrinkage and selection operator (LASSO) Cox regression model. (A) The partial likelihood
deviance (PLD) curve was plotted versus log (l), where l is the tuning parameter. Solid vertical lines represent PLD ± standard error (SE). The dotted
vertical lines are drawn at the optimal values by using the minimum criteria and 1−SE criteria. Tuning parameter (l) selection in the LASSO model
used 10-fold cross-validation via minimum criteria. A value l = 1.210 with log (l) = 0.083 was chosen. (B) LASSO coefficient profiles of the positron
emission tomography and computed tomography radiomics features. A coefficient profile plot was produced against the log (l) sequence. The
optimal tuning parameter resulted in 11 non-zero coefficients. (C) The weight ratio coefficients of the 11 features included in the radiomics model.
TABLE 2 Multivariate cox regression analysis in the training and test sets.

Characteristics
Training set Test set

HR (95% CI) P value HR (95% CI) P value

Clinical M stage 7.67 (1.98-29.77) 0.003 3.12 (0.76-2.77) 0.113

CA125 1.00 (1.00-1.01) 0.011 1.00 (1.00-1.00) 0.377

Pathological N stage 1.46 (0.89-2.40) 0.138 1.53 (0.91-2.56) 0.108
CA125, Carbohydrate antigen 125; CI, Confidence interval; HR: Hazard ratio.
P<0.05 was considered statistically significant and presented as bold values
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Performance in the external validation set

To fully evaluate the ICR model performance, external

validation was performed. The ICR model nomogram yielded a

favorable C-index value in the external validation set (0.754; 95%

CI, 0.726-0.812). PFS significantly differed between the low- and

high-risk groups stratified by the nomogram (Figure 6C),

suggesting good prognostic value (P = 0.009).
Frontiers in Oncology 08
Discussion

In this study, we retrospectively analyzed newly diagnosed breast

cancer patients and developed models based on 18F-FDG PET/CT

imaging and clinical parameters before treatment to predict PFS.

Through internal and external validation, we demonstrated that the

ICR model could predict PFS well. Moreover, the ICR model was
FIGURE 3

Kaplan–Meier survival analysis of different models in the training and test sets. Progression-free survival according to the radiomics score (A, B),
clinical model (C, D), and integrated clinical radiomics model (E, F) for patients in the training set (L) and test set (R). (A, B) A significant association of
the radiomic signature with PFS was shown in the training set but not the test set. (C, D) A significant association of the clinical model with PFS was
shown in the training set but not the test set. (E, F) A significant association of the integrated model with PFS was shown in both the training and test
sets (cli indicates clinical; com indicates combined clinical and rad-score).
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significantly better than models comprised solely of clinicopathologic

variables or PET/CT imaging data. This emphasizes and supports the

importance of multidisciplinary collaboration and indicates that

integration of clinical parameters and PET/CT imaging features can

better predict breast cancer progression and improve prognosis. Our

model provides a simple and easily used tool for breast cancer
Frontiers in Oncology 09
patients with strong heterogeneity, aiding clinicians in rapidly

evaluating the probability of progression. However, it still needs to

be validated in large prospective studies.

The ICR model was able to predict PFS of breast cancer patients

with a higher C-index and better calibration than the radiomics

signature or clinical model. It took advantage of the synergy of rad-
TABLE 3 Multivariate cox regression of the integrated clinical-radiomics model in the training and test sets.

Characteristics
Training set Test set

HR (95% CI) P value HR (95% CI) P value

Clinical M stage 3.84 (0.83-17.63) 0.084 4.02 (0.91-17.70) 0.066

CA125 1.002 (1.002-1.004) 0.124 1.011 (0.99-1.04) 0.599

Pathological N stage 1.34 (0.79-2.28) 0.280 1.90 (1.04-3.45) 0.036

Rad-score 6.52 (1.56-27.36) 0.010 6.67 (0.77-57.81) 0.085
CA125, Carbohydrate antigen 125; CI, Confidence interval; HR: Hazard ratio.
P<0.05 was considered statistically significant and presented as bold values.
FIGURE 4

Hierarchically clustered heatmap of the feature correlation matrix. Features with an inter-correlation above the selected threshold (≥0.7) were
removed from the dataset.
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FIGURE 5

Clinical (A) and ICR (B) model nomograms to predict survival using the training set. Drawing a vertical line to the points’ axis from specific variables
determined the number of points toward the probability of progression-free survival. The process was repeated for each variable and the points for
each risk factor were added. The final total was then located on the total points axis.
FIGURE 6

Evaluation of the integrated clinical radiomics (ICR) model performance. (A) Calibration curves of the ICR nomogram for progression-free survival.
(B) The integrated area under the curve (weighted mean of the area under the curve over the follow-up period) was used to measure model
performance in survival prediction. (C) Kaplan–Meier survival analysis according to the ICR model for patients in the external validation set.
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score and clinical features, which concurred well with the results of

previous studies (3, 22, 24, 26, 30, 33–35). Our results also showed

that the addition of rad-score to clinical data might be used for

risk assessment.

PET/CT radiomics has shown considerable potential for

prognostication in breast cancer patients. In our study, rad-score

comprised four PET radiomics features and seven CT features.

Most were derived texture features, including GLCM, GLDM, and

GLSZM. These features reflect the interaction between adjacent

pixels, which are appropriate for quantifying textural heterogeneity

of tumors. The prognostic value of these features in breast cancer

has been reported and emphasized in previous studies (22, 30,

36, 37).

In this study, rad-score was an independent predictor of PFS in

the training set but not the test set, although rad-score was higher

in patients who experienced tumor progression. The results in

previous studies that examined PET/CT radiomics in breast

cancer prognostication were also inconsistent. However, most

yielded promising findings, suggesting that rad-score is an

independent prognostic factor (3, 22, 27). Similar to our study,

Groheux et al. (38) found that entropy value derived from PET/CT

imaging could predict event-free survival of locally advanced breast

cancer (P< 0.050); however, in multivariate analysis, PET texture

analysis had no added value. The likely reason was that, first, to

avoid and reduce the over-fitting effect, the radiomics features were

de-redundant and removing impurity when constructing the rad-

score model in the training set. Second, due to our small sample

size, the amount of data in the model training process was small, the

performance might be reduced. Furthermore, our model might be

affected by heterogeneity between different datasets and

research methodologies.

Similar to rad-score, the clinical model alone did not

independently predict PFS in the test set, which suggests that

clinical parameters alone do not accurately reflect heterogeneity

and the risk of progression. Among clinical parameters, N and M

stage are well-known conventional prognostic factors (11, 39). In

addition, 18F-FDG PET/CT has the ability to detect distant

metastases, which adds to its value in prognostic evaluation.

This study had several limitations. It was retrospective in design

and had both a small sample size and relatively short follow-up. In

addition, ROI delineation and calculation of imaging parameters

were not automatically performed. Prospective large-scale

multicenter studies are warranted to validate our models and

expand the application of PET/CT radiomics in breast cancer.

In conclusion, our ICR model, which combines clinical

parameters with radiomics score, shows considerable promise

in predicting PFS in breast cancer patients and deserves

further study.
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