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Background: Hepatocellular carcinoma (HCC) is the most common type of

primary liver cancer with high heterogeneity. The prognosis of HCC is quite poor

and the prognostic prediction also has challenges. Ferroptosis is recently

recognized as a kind of iron-dependent cell death, which is involved in tumor

progression. However, further study is needed to validate the influence of drivers

of ferroptosis (DOFs) on the prognosis of HCC.

Methods: The FerrDb database and the Cancer Genome Atlas (TCGA) database

were applied to retrieve DOFs and information of HCC patients respectively.

HCC patients were randomly divided into training and testing cohorts with a 7:3

ratio. Univariate Cox regression, LASSO and multivariate Cox regression analyses

were carried out to identify the optimal prognosis model and calculate the risk

score. Then, univariate and multivariate Cox regression analyses were performed

to assess the independence of the signature. At last, gene functional, tumor

mutation and immune-related analyses were conducted to explore the

underlying mechanism. Internal and external databases were used to confirm

the results. Finally, the tumor tissue and normal tissue from HCC patients were

applied to validate the gene expression in the model.

Results: Five genes were identified to develop as a prognostic signature in the

training cohort relying on the comprehensive analysis. Univariate and

multivariate Cox regression analyses confirmed that the risk score was able to

be an independent factor for the prognosis of HCC patients. Low-risk patients

showed better overall survival than high-risk patients. Receiver operating

characteristic (ROC) curve analysis confirmed the signature’s predictive

capacity. Furthermore, internal and external cohorts were consistent with our

results. There was a higher proportion of nTreg cell, Th1 cell, macrophage,

exhausted cell and CD8+T cell in the high-risk group. The Tumor Immune

Dysfunction and Exclusion (TIDE) score suggested that high-risk patients could

respond better to immunotherapy. Besides, the experimental results showed that

some genes were differentially expressed between tumor and normal tissues.
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Conclusion: In summary, the five ferroptosis gene signature showed potential in

prognosis of patients with HCC and could also be regarded as a value biomarker

for immunotherapy response in these patients.
KEYWORDS

drivers of ferroptosis, prognosis, hepatocellular carcinoma, immune infiltration,
immunotherapy, bioinformatics methods
Introduction

Hepatocellular carcinoma (HCC) is one of the most common

causes of cancer-related death worldwide with a dismal prognosis

(1). The poor prognosis of HCC is associated with its late diagnosis,

susceptibility to metastasis and high recurrence rates (2). Although

a variety of schemes, including the primary prevention strategy,

early screening and diagnosis, and more advanced treatment

technologies, have been applied to the patients, the overall

incidence rate and mortality of HCC continue to rise and the

prognosis of HCC remains unsatisfactory (3). Thus, it is urgent to

explore novel effective biomarkers to improve the prediction of

prognosis and provide individualized treatment for HCC patients.

As an iron-dependent type of regulated cell death, ferroptosis is

distinct from various forms of apoptosis, pyroptosis and autophagy

(4). Ferroptosis was first proposed in 2012, which is characterized

by excessive accumulation of lipid peroxides and reactive oxygen

species (ROS) (4, 5). Typical morphological features of ferroptosis

include mitochondrial abnormalities and necrosis-like changes (6).

The major pathways called the exogenous and endogenous

pathways regulate sensitivity of cells to ferroptosis by regulating

the membrane transport protein (e.g. system XC-) and antioxidant

enzymes (e.g. GPX4), respectively (7). Ferroptosis-related genes

(FRGs) might be classified into 3 categories: suppressors of

ferroptosis (SOFs), drivers of ferroptosis (DOFs) and others,

which could act as a SOF or DOF depended on the context (8, 9).

Extensive evidence has demonstrated that ferroptosis plays a crucial

role in many diseases, particularly HCC (6).

Numerous studies have indicated that induction of ferroptosis

showed great advantages in the treatment of malignant tumors.

Sorafenib is the first approved systemic therapy for the treatment of

advanced HCC patients who are not suitable for surgical resection.

The mechanism of sorafenib might be to inhibit the progression of

HCC by inducing ferroptosis in HCC cell (10). The drug resistance

of sorafenib could be significantly ameliorated by inhibiting SOFs,

like retinoblastoma (Rb), metallothinonein-1G (MT-1G) and

NRF2. Haloperidol has been reported to facilitate sorafenib-

induced ferroptosis by increasing the levels of Fe2+ and lipid

peroxidation and influencing FRGs such as NRF2 and GPX4 (11).

However, ferroptosis has a dual role in tumor promotion and

suppression during tumorigenesis, which is dependent not only

on oncogenes and tumor suppressors but also on the release of

damage-associated molecular patterns (DAMPs) (7, 12).

Ferroptotic damage can trigger inflammation to further promote
02
tumor cell invasion and metastasis, and can also lead to

inflammation-associated immunosuppression in the tumor

microenvironment, which may contribute to tumor growth (7).

For example, HMGB1 released by ferroptotic cancer cells could

promote an inflammatory response in macrophages by interacting

with AGER/RAGE, which could support tumor growth (12, 13).

Therefore, we conducted the study to illustrate the effect of

ferroptosis induced by DOFs on the prognosis of HCC.

In our study, the mRNA expression profiled and corresponding

clinical data were downloaded from the public database. Afterward,

we established a prognostic model consisting of five DOFs and

validated it in the testing and total cohorts. The immune

infiltration, immunotherapy response and chemotherapeutic drug

sensitivity between the high- and low-risk groups were also

compared. In addition, we conducted the quantitative Real-Time

PCR (qRT-PCR) analysis to compare the expression of these five

genes between tumor and normal tissues. These results implied

that the five DOFs might be regarded as potential biomarkers to

help predict prognosis in patients with HCC and contribute to

therapeutic strategies.
Materials and methods

Data collection and preprocessing

The RNA-sequencing data and the corresponding clinical

information for HCC patients were downloaded from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).

The dataset, which contained 374 HCC samples and 50 normal

tissue samples, was used for differential analysis. The samples with

missing clinical information or overall survival (OS)< 90 days were

deleted. Then, only 310 HCC samples were included in the

subsequent analysis. The ferroptosis driver genes were obtained

from FerrDb (http://www.zhounan.org/ferrdb/) to identify

prognostic DOFs in HCC. The flow chart of this study is shown

in Figure 1.
Differentially expressed genes analysis

The DEGs between the tumor and normal samples were filtered

by the “limma”R package in the TCGA database. The false

discovery rate (FDR)>0.05 and |log2(FC)|>1 were set as the
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threshold. The intersecting genes between DEGs and DOFs were for

further analysis.
Construction and analysis of prognostic
gene signature

We randomly divided the tumor samples into training and

testing cohorts with a 7:3 ratio using the R package “caret”.

Univariate regression analysis was carried out to screen the DOFs

with prognostic value. LASSO analysis with “glmnet” package in R

was subsequently utilized to reduce overfitting and improve the

prediction significance. Finally, we could construct the optimal

prognosis model using multivariate stepwise Cox regression.

Univariate and multivariate Cox regression analyses were used

“survival” package in R. The risk score of each patient in the

training cohort could be calculated by the following formula:

Risk score =on
i=1Exp(i)� Coef (i)

(Exp(i): coefficients, Coef(i): expression level, n: the number of

ferroptosis driver genes)

According to the median risk score, the training set was

classified into a high-risk group and a low-risk group. The OS

of each group was performed by Kaplan-Meier survival curves

using the “survival” package. Meanwhile, the time-dependent

receiver operating characteristic (ROC) curves of 1-, 2-, and 3

years were used to evaluate the accuracy of the model.

Distribution of risk score, patient survival status, and gene

expression in the two risk groups was applied. In addition,

univariate and multivariate regression analyses were performed

to assess whether the risk model was associated with prognosis

and could be regarded as the independent prognostic signature for
Frontiers in Oncology 03
HCC. Finally, we utilized the testing cohort and the total cohort to

validate our model.
Preliminary analysis of prognostic
gene signature

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed to

explore the functions and pathways of the intersecting genes between

DEGs and DOFs. Pearson correlation analysis was used to assess the

correlation among the prognostic genes. Furthermore, we examined

the association between the expression of the prognostic genes and

different hepatoma cell lines. Apart from the analysis of the RNA

level, we also compared protein expression of the prognostic genes in

normal liver and HCC tissues through immunohistochemical

staining maps downloaded from The Human Protein Atlas (HPA)

database (https://www.proteinatlas.org/).
External validation of prognostic
gene signature

The Gene Expression Omnibus (GEO) and The International

Cancer Genome Consortium (ICGC) databases were used to

confirm the model’s prognostic value. The risk scores of patients

were calculated based on the same formula mentioned above, and

patients were divided into high- and low-risk group according to

the median risk score of GEO and ICGC cohorts, respectively. The

same analyses were performed to validate the the accuracy and

validity of the prognostic genes, including ROC curve analysis,

Kaplan-Meier analysis, distribution of risk score, correlation
FIGURE 1

Flow chart of this study TCGA, The Cancer Genome Atlas; GEO, The Gene Expression Omnibus; ICGC, The International Cancer Genome
Consortium; DEG, differentially expressed genes; DOF, driver of ferroptosis; LASSO, least absolute shrinkage and selection operator.
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between the survival time and survival status of each patient, and

the expression of the prognostic genes.
Construction and validation of nomogram

The univariate and multivariate Cox regression analyses were

applied to assess the independent prognostic significance of this risk

model. The nomogram was constructed using the “rms” R package,

for predictive of 1, 2, and 3-year OS of HCC patients.
Functional enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted to

discover the potential function of the DEGs between high- and low-

risk groups. The Ensemble gene IDs were converted to official

numbers using “org.Hs.eg.db”. The Gene Set Enrichment Analysis

(GSEA) was a computational method, which could further

determine the pathways differentially expressed between the two

rick subgroups with gene set “c2.cp.kegg.v2022.1.Hs.symbols.gmt

[Curated]” and “c2.cp.reactome.v2022.1.Hs.

symbols.gmt [Curated]”. NOM p-value<0.05, |NES|>1.0, and

FDR<0.25 were regarded as statistically significant.
Protein-protein interactions network

We uploaded the DEGs between high- and low-risk groups to

the Search Tool for the Retrieval of Interacting Genes (STRING)

online database (https://cn.string-db.org/) and constructed the

interactive network of these DEGs. We chose confidence 0.4 as

the screening criteria. The PPI networks were visualized using

Cytoscape, and then we screened the top 10 hub genes in the PPI

network using CytoHubba.
Gene mutation analysis

We downloaded the information on genetic alterations from the

TCGA cohort and calculated the TMB score of each patient in the

TCGA cohort with the mutation data. The differences in TMB

between the high- and low-risk groups and the relationship between

TMB and survival rates were also explored. Meanwhile, the

“Maftools” package of R was utilized to analyze the quantity and

quality of gene mutations in the two risk subgroups. We evaluated

the mutations of the prognostic genes in HCC and detected the

main type of mutation as well. Then, correlation analysis was

performed between the types of major mutations in the

prognostic genes and mRNA expression.
Immune cell infiltration analysis

The infiltration levels of immune cells were obtained from a

specific website (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/ run
Frontiers in Oncology 04
with the old version). Subsequently, we compared the composition

of immune cell infiltration between high- and low-risk groups and

examined the association between the prognostic risk scores and the

immune microenvironment.
Analysis of immunotherapy response and
immune checkpoint genes

Immune checkpoint inhibitors (ICIs) is an effective treatment

strategy against a variety of tumors. Several well-known immune

checkpoints genes were retrieved from previous articles (14–17), and

were compared in risk subgroups. In addition, we have obtained

some information of ICGs learned from relevant article, and the ICGs

were splited into two groups according to the result of the article (18).

We firstly compared the expression of these ICGs in the two risk

groups, and further explored the innate relationship between these

ICGs and the 5 genes. Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm is a computational prediction tool which could

explore the performance of the given prognostic signature in

predicting the response of patients to immunotherapy. Then, we

calculated TIDE score by using TIDE website (http://

tide.dfci.harvard.edu/) to assess the immunotherapeutic sensitivity

of HCC patients.
Chemotherapeutic drug sensitivity analysis

The “pRRophetic” package was employed to pick out the

targeted drugs and to figure out which drugs were significantly

correlated with the risk score. Semi-inhibitory concentrations

(IC50) were calculated to act as the outcome and compared by

Wilcoxon sign-rank test.
Tissue sample collection

A total of 10 pairs of HCC tissues samples and paracancerous

tissues samples were obtained from patients who had undergone

hepatocellular carcinoma resection in the Eastern Hepatobiliary

Surgery Hospital during February 1, 2023 to February 20, 2023 from

the group of one professor. None of them received radiotherapy or

chemotherapy before surgery. All patients provided written

informed consent.
Quantitative real-time PCR analysis

Total RNA from HCC and normal liver tissue samples was

extracted using Trizol reagent. Total RNA was reversed to cDNA by

M-MLV Reverse Transcriptase (TaKaRa). Then, qRT-PCR was

performed using SYBR Premix ExTaq Kit (TaKaRa) on

QuantStudio 7 Flex system to amplify cDNA with specific

primers. b-actin was used as internal standard control,

respectively. The relative expression levels were determined by

2-DDCt. The primer sequences are listed as in Table 1.
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Statistical analysis

All statistical data were analyzed by Strawberry Perl (5.30.0.1)

and R software (R version:4.1.0). Multiple R packages, such as

limma, survival, caret and so on, were adopted in this study.

Statistical significance was set at probability values of p<0.05.

*p<0.05; **p<0.01; ***p<0.001
Results

Identification of differentially
expressed genes

A total of 424 samples, which containing 50 normal samples

and 374 HCC samples, were downloaded from the TCGA database.

After the difference analysis, 7597 DEGs between the tumor and

normal samples were identified (Figure 2A). Moreover, 264 DOFs

were obtained from FerrDb. After intersecting differentially

expressed genes and DOFs, we screened out 70 differentially

expressed DOFs (Figure 2B).
Development and validation of the
prognostic signature

According to the inclusion criteria, only 310 HCC samples were

included in the subsequent analysis. We randomly divided HCC

samples into training cohort and testing cohort with a 7:3 ratio.

After merging integrated gene expression profiles, 304 samples were

ultimately enrolled.

To explore the prognostic genes for OS of HCC, we performed

the univariate Cox regression analysis with the 70 DOFs in the

training cohort. The result showed that 23 DOFs were statistically

significant (p<0.05) and might have prognostic value. Subsequently,

we obtained 7 DOFs using a LASSO Cox regression analysis to

reduce overfitting and improve the prediction significance

(Figures 2C, D). Finally, a five-gene signature which consisted of

G6PD, HRAS, NRAS, TIMM9 and MYCN was identified via

multivariate stepwise Cox regression (Figure 2E). A heatmap

between normal and tumor tissues showed the expression of

G6PD, HRAS, NRAS, TIMM9, and MYCN (Figure 2F). Among
Frontiers in Oncology 05
these 5 DOFs, all of them were risk genes for the prognosis of HCC

patients. We calculated the risk score through the following

formula:

Risk Score = G6PD*0:010086754 + NRAS*0:051905262

+HRAS*0:012261478 + TIMM9*0:039085391

+MYCN*0:106958042

Patients in the training cohort were divided into low-risk group

and high-risk group based on the median value of risk scores. The

Kaplan-Meier curves revealed that patients in the high-risk group

were significantly relevant to worse overall survival (Figure 3A).

Similar results were also verified in the testing cohort and total

cohort (Figures 3B, C). ROC curves were generated to evaluate the

capability of the prognostic significance. The AUC scores in the

training cohort were 0.815, 0.693, and 0.678, and the cut-off values

were 1.714, 2.012, and 2.012 for 1-, 2-, and 3 years, respectively

(Figure 3D). For the testing cohort, the AUC scores for the 1-, 2-,

and 3 years reached 0.837, 0.756, and 0.754, and the cut-off values

were 1.278. (Figure 3E). The total cohort had high AUC scores

which were all above 0.69, and the cut-off values were 1.714, 2,050,

and 1.704 for 1-, 2-, 3 years, respectively (Figure 3F). The risk score,

survival time and survival status, and gene expression of the five

genes in the training cohort and both validation cohort are shown in

Figures 3G-I which revealed that the high-risk group had more

death cases and higher expression levels of the five genes. Overall,

these results indicated the accuracy and robustness of our

prognostic model.
Relationship between the prognostic
signature and clinical features

We assessed the prognostic significance of the risk model in the

TCGA total cohort with different subgroups of clinical features.

High-risk patients regardless of age and stage all showed worse OS

(p<0.05) (Figures 4A-F). The stratified analysis results confirmed

the model’s applicability in the subgroups. We also analyzed the

expression of the five genes in different tumor grades. The results

showed that most genes were up-regulated in G3 and G4, except

MYCN (Figures 4G-K). This indicated that the prognostic signature

was significantly correlated with tumor grade.
Preliminary analysis of prognostic
gene signature

We firstly used the GO and KEGG analyses to investigate the

potential functions and pathways of these 70 DOFs. According to

GO analysis, the 70 DOFs were mainly enriched in metabolic

process, and we also found that the reactive oxygen species

metabolic process was significantly important to G6PD and

MYCN (Supplementary Figures 1A, B), and TIMM9 may
TABLE 1 Primer sequences of genes for qPCR.

Gene Primer sequence (5’ to 3’)

NRAS F: ATGACTGAGTACAAACTGGTGGT
R: CATGTATTGGTCTCTCATGGCAC

HRAS F: ATGACGGAATATAAGCTGGTGGT
R: GGCACGTCTCCCCATCAATG

b-actin F: ACAATGAGCTGCTGGTGGCT
R: GATGGGCACAGTGTGGGTGA
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participate in protein-related pathways like protein carrier activity

in the GO analysis (Supplementary Files). Based on the KEGG

analysis, G6PD was enriched in central carbon metabolism in

cancer, and HRAS and NRAS could be involved in many

signaling pathways, such as AGE-RAGE signaling pathway in

diabetic complications, human cytomegalovirus infection and

renal cell carcinoma (Supplementary Figures 1C, D). Then,

theresults of the Pearson correlation analysis showed that

there was weak correlation among G6PD, HRAS and

TIMM9 (Supplementary Figure 1E). The levels of gene
Frontiers in Oncology 06
expression in different hepatoma cell lines were shown in

Supplementary Figures 2A-E.To further confirm the protein

expression characteristics of the 5 genes, we obtained the

immunohistochemical data of G6PD, HRAS, NRAS and TIMM9

from the HPA database. In the HPA database we did not find the

information of MYCN at protein level. Nevertheless, the

immunohistochemical staining demonstrated that the protein

expression of the other 4 genes in HCC tissues was higher than

that in normal tissues (Supplementary Figure 3), which was

consistent with their mRNA expression (Figure 2F).
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FIGURE 2

Results of differential gene analysis (A) Volcano map of the expression of ferroptosis-related genes in normal and tumor samples. (B) Venn diagram
of the differentially expressed genes and DOFs. (C) Lasso coefficient profiles of 23 DOFs. (D) Tuning parameter in the lasso model. (E) Five DOFs
were finally identified by multivariate cox regression. (F)The heatmap of five-gene signature expression.
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External validation of prognostic
gene signature

The predictive efficacy of the five-gene signature was validate

in the two external cohorts, GEO (GSE14520) and ICGC cohorts.

Similarly, the Kaplan-Meier curves demonstrated that patients in

the high-risk group exhibited poorer overall survival than those in

the low-risk group (Figures 5A, B). According to ROC analysis,

the AUC scores in the GEO cohort at 1, 2, and 3 years were 0.641,

0.629, and 0.607, respectively (Figure 5C). For the ICGC cohort,

the AUC scores for the 1-, 2-, and 3 years reached 0.637, 0.606,

and 0.601 (Figure 5D). Consistent with TCGA cohort, the

distribution of risk score and survival status of each patient

showed the same trends in GEO and ICGC cohort, and the

expression of G6PD, HRAS, NRAS, MYCN and TIMM9

increased in high-risk group (Figures 5E, F).
Frontiers in Oncology 07
Construction and validation of nomogram

Univariate and multivariate Cox regression analyses were

utilized to confirm whether the risk score and other clinic

pathological factors could be the independent factor for the

prognosis of HCC. The results of univariate Cox analysis showed

that stage, pathologic T and risk score were significantly correlated

with OS (p<0.05) (Figure 6A). Meanwhile, only risk score showed

similar result in multivariate Cox analysis (Figure 6B). These results

suggested that the risk score could be used as the independent

prognostic factor for HCC. According to the results of univariate

and multivariate analyses in the TCGA-total cohort, risk score was

considered to establish the nomogram (Figure 6C). The AUC of 1-,

2-, and 3-year overall survival predictions were 0.819, 0.710, and

0.691, respectively (Figure 6D). Above results validated the accuracy

of nomogram in predicting prognosis for HCC patients.
D
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C

FIGURE 3

Development and validation of the prognostic signature (A-C) Kaplan-Meier survival for overall survival in the two subgroups for the training cohort,
testing cohort, and total cohort. (D-F) ROC curve evaluated the prognostic value of the risk model in the training cohort, testing cohort, and total
cohort. (G-I) Distribution of risk score, correlation between the survival time and survival status of each patient, and the heatmaps of this signature
expressions in the training cohort, testing cohort, and total cohort.
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Functional enrichment analysis

The GO-biological process (GO-BP) enrichment analysis

showed that these DEGs between high- and low-risk groups were

mainly enriched in nuclear division, mitotic nuclear division and

sister chromatid segregation. In GO-cellular component (GO-CC)

analysis, these DEGs were significantly enriched in chromosomal

region, chromosome, centromeric region and condensed

chromosome. For the GO-molecular function (GO-MF) analysis,

these DEGs were associated with steroid hydroxylase activity,

arachidonic acid monooxygenase activity etc (Figures 7A, B).

GSEA analysis was applied to detect the underlying pathways in

HCC between the high- and low-risk groups. The KEGG pathway

enrichment analysis showed that the genes in the high-risk group

were significantly enriched in spliceosome, base excision repair,
Frontiers in Oncology 08
RNA degradation and oocyte meiosis (Figure 7C). Meanwhile,

patients in the high-risk group were also involved in tumor-

related signaling pathways like P53 (Figure 7C). In addition,

multiple metabolic processes that involved more physiological

functions of the liver were enriched in the low-risk group,

including complement and coagulation cascades, primary bile

acid biosynthesis, drug metabolism cytochrome P450, fatty acid

metabolism and retinol metabolism (Figure 7D). Moreover, the

GSEA analysis, along with reactome pathways, revealed that

pathways correlated with the high-risk group were mainly focused

on transcriptional regulation and SARS-CoV-2 (including

transcriptional regulation by TP53, tRNA processing, SARS-CoV-

2 infection and so on) (Figure 7E). In the low-risk group, the

enriched reactome pathways were also involved in metabolic

processes, such as branched chain amino acid catabolism,
D
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FIGURE 4

Analysis of clinical relevance and risk score (A-F) Analysis of relationship between clinical features and risk score. (G-K) Analysis of the five genes in
different tumor grades.
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cytochrome P450 arranged by substrate type and phase I

functionalization of compounds (Figure 7F).
Construction of protein-protein network

Firstly, we obtained the DEGs between high- and low-risk

groups. The PPI network of these DEGs was constructed basing

on the STRING database and the Cytoscape software, and then we

screened the top 10 hub genes in the PPI network (Supplementary

Figures 4A, B). It was regretted that only two (G6PD and MYCN) of

the five genes which we have identified were in the DEGs between

the two risk groups. Therefore, we used the CytoHubba function of

Cytoscape software to find the hub genes of G6PD and MYCN. The

results showed that ENO2 was the intersection of G6PD andMYCN
Frontiers in Oncology 09
(Figure 8A). The overall survival analysis of ENO2 was performed

using Kaplan-Meier curve, which validate the prognostic value of

ENO2 (Supplementary Figure 4C).
Gene mutation analysis

After downloading the mutation data from the TCGA cohort,

we explored the differences in TMB and survival rates in the two

sub-risk groups. Unfortunately, there was no significant difference

in TMB between the high- and low-risk groups and the relationship

between TMB and survial rates was not obvious (Supplementary

Figures 4D, E). However, patients in the high TMB and high-risk

group had the worst prognosis than the other groups (Figure 8F).

The waterfall plot was performed to exhibit the top 20 genes with
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FIGURE 5

External validation of prognostic gene signature (A, B) Kaplan-Meier survival for overall survival in the two subgroups for the GEO cohort and ICGC
cohort. (C, D) ROC curve verified the prognostic value of the risk model in the GEO cohort and ICGC cohort. (E, F) Distribution of risk score,
correlation between the survival time and survival status of each patient, and the heatmaps of this signature expressions in the GEO cohort and
ICGC cohort.
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the high frequency of alteration in the two risk subgroups

(Figures 8B, C).Moreover, in these two groups, missense

mutations, single-nucleotide polymorphism (SNP), and C>T

mutation were the main mutation type of different classification

categories, respectively (Figures 8D, E). We also exhibit the median

variation and variant types (Figures 8D, E). In the whole samples,

the mutation rates of the five prognostic genes were not high, only

NRAS and MYCN could mutate (Figure 8G). Missense mutations

was also the main type (Figure 8G).
Correlation between risk score and
immune microenvironment

Immune cells in the tumor microenvironment profoundly affect

the biological behavior of the tumor (19, 20). The relationship of the

prognosis model with immune cell infiltration was investigated to

evaluate whether the risk score partly reflected the tumor immune

microenvironment(TIME) status. The results indicated that

neutrophils (Cor=0.308; p=4.088e-08), macrophages (Cor=0.407;

p=1.535e−13), DCs (Cor=0.279; p=7.719e-07) and CD8+T cells

(Cor=0.205; p=3.109e-04) contents showed association with high-

risk group (Figures 9A-D). However, CD4+T cells (Cor=0.147;

p=0.01) and B cells (Cor=0.199; p=4.676e-04) had not marked

relationship with risk score (Figures 9E, F). Besides, the infiltration

levels of immune cells were obtained online. HCC patients
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belonging to the high-risk group had higher proportions of

immune cells including nTreg cell, Th1 cell, macrophage,

exhausted cell and CD8+T cell, while the proportions of naive

CD8+T cell, Th17 cell and monocyte were lower in the high-risk

group (Figure 9G).
Immunotherapy response and
immune checkpoint

Considering the clinical importance of immunotherapy, we

then explored the association between the risk score and four

immune checkpoint genes (PDCD1, CTLA4, LAG3 and VEGFA).

The results showed a statistically significant difference in the

expression of immune checkpoints which was higher in the high-

risk group (Figures 10A-D). Then, some ICGs obtained from an

article were made a comparison in the two risk groups. These ICGs

were divided into T cell goups and Tumor cell/APC/DC group.

Likewise, the expression of these ICGs was higher in the high-risk

group whether in T cell or Tumor cell/APC/DC group (Figure 10

G). We also found that G6PD, NRAS and HRAS may have a

positively moderate correlation with most of IGCs in Tumor cell/

APC/DC group than in T cell group (Figure 10H). To further

evaluate the responses of patients to immunotherapy, we used the

TIDE algorithm, and patients with lower TIDE score may benefit

from immunotherapy. Dysfunction score and TIDE score were
D
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FIGURE 6

Construction and validation of nomogram (A) Univariate Cox regression analysis for risk score and other clinic pathological factors. (B) Multivariate
cox regression analysis for risk score and other clinic pathological factors. (C)The nomogram for predicting 1-, 2-, and 3-years overall survival by risk
score. (D) ROC curve analysis of nomogram according to the 1-, 2-, and 3-year overall survival.
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lower in the high-risk group, suggesting that high-risk patients

could respond better to immunotherapy (Figures 10E, F).
Chemotherapeutic drug sensitivity

To identify the potential drugs for HCC, we analyzed the

efficacy of chemotherapeutic drugs by comparing IC50 values

between the high- and low-risk group (Figure 11). Results showed

that patients in the high-risk group had lower IC50s of mitomycin

C, bleomycin, bexarotene, gemcitabine, doxorubicin and tipifarnib

than those in low-risk group,which means these chemotherapeutic

drugs may have a good effect on patients in the high-risk group.
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Whereas the IC50s of temsirolimus, erlotinib and gefitinib were

higher in the high-risk group.
The mRNA relative expression of genes in
the risk model

Because the expression of NRAS and HRAS were significantly

different between Grade1+2 and Grade3+4, we selected these two

genes to perform the qPCR. The b-actin was exploited as an internal
control, and the results showed that NRAS and HRAS were

expressed differentially between HCC and paracancerous tissues

(Figures 12A, B).
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FIGURE 7

Functional enrichment analysis (A, B) GO enrichment analysis of the DEGs between the high- and low-risk groups. (C-F) Gene Set Enrichment
Analysis (GSEA). (C, D) Enriched KEGG pathways in the high-risk and low-risk groups. (E, F) Enriched Reactome pathways in the high-risk and low-
risk groups.
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Discussion

Although landmark advances in HCC prevention, early

screening and treatment options, HCC is still one of the most

common malignant disease with a high mortality and a poor

prognosis, accounting for more than 500000 deaths each year

(20–22). In our country, the incidence of HCC is mainly

concentrated in people aged 30-60 and the five-year survival rate

remains low, only 14.1% (23, 24). In order to improve the OS of
Frontiers in Oncology 12
HCC patients, it is necessary to search novel and effective markers

of prognosis. Ferroptosis has been regarded as a novel form of

regulated cell death, which could be closely related to HCC

tumorigenesis and progression. Regulation of iron metabolism

and ROS accumulation may affect the occurrence of ferroptosis.

Compared with normal cells, tumor cells exhibit higher intracellular

iron storage to facilitate their growth and proliferation, but the

excessive iron could also cause tumor cells more sensitive to

ferroptosis (25). Some genes are well-defined as DOFs which
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FIGURE 8

PPI network and tumor mutation analysis (A) The PPI network of G6PD and MYCN. (B, C) Waterfall plot of detailed mutation information of top
20 genes in high-risk (B) and low-risk (C) groups. (D, E) Mutation information distinguished by different classification categories in high-risk (D)
and low-risk (E) groups. (F). The K-M survival curve shows the combined effect of TMB and risk score on the OS. (G) Mutation information of the
prognostic genes.
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could promote ferroptosis. However, the effect of these DOFs on

prognosis of HCC patients has been unclear and required

comprehensive analyses.

In this study, we constructed a five-gene signature which

consisted of G6PD, HARS, NARS, TIMM9 and MYCN by

univariate Cox, LASSO-Cox and multivariate stepwise Cox

regression. This signature had an effectively and stably predictive

performance both in the training and testing cohort. High-risk

patients presented with worse overall survival. According to

corresponding analyses, the signature could be considered as an

independent factor for the prognosis of HCC. The data from GEO

and ICGC databases were used as validation cohorts to evaluate the

reliability and accuracy of this five-gene signature. Meanwhile, we

verified the expression of NRAS and HRAS which are consisted of

the prognostic model by qPCR. The qPCR results revealed that

these genes had the tendency of increasing their expression in HCC

and could affect the development of HCC.
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With regard to the five DOFs, numerous studies have

demonstrated their crucial roles in tumor development. The

expression of G6PD was elevated in many cancers, including HCC,

which was positively correlated with tumors proliferation, migration

and invasion (26, 27). G6PD could affected many enzymes, like

NADPH, which is important for ROS production (26). Ras protein

(HRAS and NRAS) are common oncogenes andmutant RAS could be

considered as a driver of tumor initiation and maintenance (28). The

RAS-RAF-ERK-pathway has a critical role in human tumor

occurrence. Sorafenib and regorafenib are the effective therapeutic

methods for advanced HCC, which target multiple kinase-related

pathways including the RAS-RAF-ERK-pathway in HCC cells (29).

HRAS and NRAS were proven to be correlated to the prognosis of

HCC. NRAS contributes to sorafenib resistance and NRAS

knockdown might partially restore the effect of sorafenib (29).

TIMM9 is a mitochondrial protein whose expression is increased in

various cancers, including thyroid, lung and liver cancer (30). MYCN
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FIGURE 9

Characteristics of immune microenvironment (A-F) Relationships between the risk score and infiltration abundances of six types of immune cells.
(G) Comparison of immune cell proportions.
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belongs to MYC family which has been proved to be a biomarker for

HCC and a valuable target for anti-HCC therapy (31). Lipid

biosynthesis has been confirmed to be important for MYCN-

derived tumors and silencing of MYCN could inhibit cell

proliferation and promote cell death in HCC cells (32).

To reveal the biological functions and molecular mechanism of the

DEGs between the high- and low-risk group and the five DOFs, we

further conducted GO and GSEA analysis. The GO analysis showed

these DEGs may be related to cell division. The KEGG pathways,

including spliceosome, base excision repair, RNA degradation, oocyte

meiosis and P53 signaling pathway, were significantly enriched in high-

risk group. Some pathways are closely associated with cell cycle and

tumor progression. The “spliceosome” pathway were the most

enriched in high-risk group. Previous study showed that genes in the

spliceosome pathway were upregulated in tumor tissue and these genes

had influence on HCC progression (33). Furthermore, the GSEA

analysis, along with reactome pathways, showed that the enriched

pathways were involved transcriptional regulation and SARS-CoV-2 in

the high-risk group. FromKEGG and reactome analyses, we found that
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TP53 is a critical gene for patients in the high-risk groups. Study has

indicated that the infective SARS-CoV-2 is related to immune escape

through different approaches like IFN-1 production dysregulation and

cytokines related immune escape (34).

Immunotherapy has become a new strategy of treatment and

offered survival benefits for HCC patients around the world (35). The

clinical researches of immune checkpoint are relatively mature and

adequate. Regulation of immune checkpoints has gradually become

the widely used form of immunotherapy (36). Additionally, current

studies have revealed that TMB may become a potential predictive

biomarker for immunotherapy, and high TMBmay be correlated with

good response of immune checkpoint inhibitor (ICI) therapy (37–39).

Firstly, we studied gene mutations in the high- and low-risk groups,

and analyzed mutations of the prognostic genes in HCC. The results

showed no statistical difference in TMB between the high and low-risk

groups, and TMB had an unobvious effect on the survival rates.

However, we found that missense mutations were the common type,

and TP53 and CTNNB1 were the predominat mutated genes in the

two groups. It is well known that TP53 and CTNNB1 are frequently
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FIGURE 10

Immunotherapy response and immune checkpoint in the two risk groups (A-D) Comparison between the expression of four immune checkpoints in
the high- and low-risk groups. (E, F) Comparison of dysfunction score and TIDE score. (G, H) The correlation between the five-gene signature and
immnue checkpoint genes. Tumor cell/APC/DC groups genes (blue), T cell group genes (red).
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mutated in various cancers. TP53 has been shown to be a tumor

suppressors in regulating metabolism of tumor cells (40, 41).

Nevertheless, HCC tissues with TP53 mutation could detect the

vascular invasion and angiogenesis, and these tissues are
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characterized by hypodifferentiation (42, 43). CTNNB1 gene

encodes the protein b-catenin which has been found could promote

immune escape and may affect the immunotherapy in HCC (44).

Moreover, better understanding of the immune microenvironment
D

A B

E F

G IH

C

FIGURE 11

Prediction of sensitivity to certain drugs (A) Mitomycin (C, B) Bleomycin. (C) Bexarotene. (D) Gemcitabine. (E) Doxorubicin. (F) Tipifarnib.
(G) Temsirolimus. (H) Erlotinib. (I) Gefitinib.
A B

FIGURE 12

The mRNA relative expression of genes in the risk model (A, B) The mRNA relative expression of HRAS and NRAS in paired tumor tissues with b-actin
as an internal control. *P< 0.05; **P< 0.01.
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will help to develop newmethods to treat HCC. According to immune

infiltration analysis, there were significant difference in multiple

immune cells between the two groups identified by the risk scores.

We found the patients in high-risk group had higher proportion of

nTreg cell, Th1 cell, macrophage, exhausted cells and CD8+T cells,

while the proportions of naive CD8+T cell, Th17 cell and monocyte

were lower. Treg cell could enhance immunosuppressive environment

and play a role in tumor progression, which has been well documented

in many cancers, including HCC (45). Macrophages could promote

cancer stem cells by secreting IL-6 and activating of STAT3 signaling

and subsequently contribute to tumor growth (46). Above results

suggested that the poor prognosis in the high-risk group may due to

the immunosuppressive environment. Besides, based on the immune

checkpoint inhibitors (ICIs), immunotherapy offers great promise in

the treatment of HCC. We detected the immune checkpoints between

the two risk groups. Higher expression of PDCD1, CTLA4, LAG3 and

VEGFA was exhibited in the high-risk group, suggesting the high-risk

patients may benefit from ICIs. In addition, patients in high-risk

group showed a lower dysfunction score and TIDE score, suggesting

that these patients may have the better responses to immunotherapy.

Finally, we evaluated the drug sensitivity using the “pRRophetic”

package that indicated potential benefits from chemotherapy

for patients.

This study was to explore the function of DOFs in HCC prognosis,

which screened out a five-gene signature with potential values in

predicting the prognosis of patients with HCC. Besides, our study has

demonstrated that immunotherapy is more appropriate for patients in

the high-risk group, and some effective drugs for patients were also

selected. There exited certain limitations in this study. We validate the

study with clinical experiment, while the experimental result is not

abundant and more samples are required for further validation. In

addition, the specific role of the five genes in ferroptosis and HCC

need to conduct experiments in the future.
Conclusion

We have constructed and verified a five-gene signature consisted

of G6PD, HRAS, NRAS, TIMM9, and MYCN that can predict

accurately. The five-gene signature could be regarded as a potential

biomarker and provide the possibility to predict the prognosis for

HCC patients. The prognostic model also profoundly impacts tumor

immunity, immunotherapy, and drug sensitivity.
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