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Colorectal cancer (CRC) is a leading cause of death worldwide. Improved

preclinical tumor models are needed to make treatment screening clinically

relevant and address disease mortality. Advancements in 3D cell culture have

enabled a greater recapitulation of the architecture and heterogeneity of the

tumor microenvironment (TME). This has enhanced their pathophysiological

relevance and enabled more accurate predictions of tumor progression and

drug response in patients. An increasing number of 3D CRC spheroid models

include cell populations such as cancer-associated fibroblasts (CAFs),

endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in

vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the

3D spheroid models enables the identification of new therapeutic targets to

develop alternative treatments and test TME-target therapies. In this mini review,

we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid

models by incorporating CAFs, ECs, immune cells, and gut bacteria. We

introduce how, in these models, the diverse cells influence chemoresistance

and tumor progression of the CRC spheroids. We also highlight important

parameters evaluated during drug screening in the CRC heterocellular spheroids.

KEYWORDS
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Introduction

Colorectal cancer (CRC) is the third most common cancer in males and the second

most common cancer in females worldwide and continues to be a leading cause of death (1,

2). Reliable cancer models are imperative to advance cancer research and treatment (3).

The traditional two-dimensional (2D) cell culture models have been critical in developing

many first-line chemotherapeutics, such as cisplatin (4, 5). However, the limitations of

2D culture models prevent them from effectively recapitulating the physiological
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1148930/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1148930/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1148930/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1148930/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1148930&domain=pdf&date_stamp=2023-07-04
mailto:e0005862@u.nus.edu
mailto:giulia_adriani@immunol.a-star.edu.sg
https://doi.org/10.3389/fonc.2023.1148930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1148930
https://www.frontiersin.org/journals/oncology


Yau and Adriani 10.3389/fonc.2023.1148930
characteristics of native tumors. A key limitation of 2D cultures is the

change in cell morphology, signaling, and functions compared to in

vivo conditions in response to different external stimuli from the

culture substrate and the neighboring cells (5–7). Consequently, 2D

tumor models often overscore the effectiveness of potential drug

candidates, resulting in lower efficacy and greater toxicity than

predicted when translated into in vivo animal models or clinical

trials (8). Patient-derived tumor xenograft and in vivo tumor models

have been important for rational drug design and predicting response

and side effects of chemotherapeutic regimens (9, 10). However,

animal models often show a low success rate of engraftment (11), are

expensive, require a cross-species comparison, and raise ethical

controversies, challenging their utilization.

The TME is a complex and dynamic environment around the

tumor composed of blood vessels, fibroblasts, immune cells,

mesenchymal stromal cells, extracellular matrix, and cell-secreted

factors (12). The TME is now recognized as a leading player in

tumor development and response to chemo and immunotherapeutic

strategies (12, 13). Therefore, recapitulating in vitro the heterogeneous

human TME by introducing its main constituents in a three-

dimensional (3D) format is essential for developing preclinical

models with greater clinical relevance than 2D systems.

In this scenario, 3D tumor spheroid cultures that utilize

hydrogels made of natural biomaterials (e.g. collagens, fibrin,

hyaluronic acid) or synthetic polymers have been gaining

increasing attention to better recapitulate the structure of tissues

and native tumors compared to 2D cultures (3, 7, 14, 15). The

development of 3D tumor spheroid cultures has prompted a

paradigm shift in cancer research toward more clinically-relevant

models, further fueled by advancements in biotechnologies. For

instance, improvements in sampling and storage techniques allow

clinicians to culture patient-derived 3D spheroids to identify genetic

markers to predict disease progression and chemoresistance (16,

17). Tissue engineering techniques, such as the synthesis of scaffolds

mimicking the extracellular matrix (ECM), and advances in

microfluidic devices have improved the culture of spheroids in

3D settings to take into consideration cell-ECM and cell-cell

interactions leading to a greater correspondence with native

tumors compared to 2D cultures (18–24).

Specifically for CRC, recent reviews of 3D spheroid models

highlight the utility of spheroids for drug screening (25),

nanomedicine screening (26), and biomarker discovery (27).

These reviews discuss strategies for adapting spheroids of various

complexities for drug screening and developing better treatment

strategies. However, these reviews only partially address the

significance of recapitulating the heterogeneity of the CRC TME

for drug screening.

Various 3D CRC spheroid models were derived from cancer cell

lines only (monoculture) and used for drug screening (28–32) with

success in modeling hypoxia and necrosis associated with tumor

resistance to drugs (33).

CRC patient-derived xenografts (34) and patient-derived cells

(35, 36) have also been used for drug screening predicting the

efficacies of chemotherapy regimens in personalized medicine, as

extensively discussed in another review (37). Patient-derived
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characteristics, such as the integrity of the genomic profile (38). A

critical limitation of the patient-derived spheroid model remains the

accessibility of the tissue and the success rate of spheroid formation.

Unlike commercially available cell lines, in vitro cultures of patient-

derived cells require skilled technical personnel for consistent cell

isolation and culture conditions. Cell dissociation methods, either

mechanical or enzymatic, can dramatically affect the yield and quality

of the isolated cells (39). Conversely, commercially available cancer

cell lines are ideal for reproducible high-yield production of 3D CRC

spheroids for drug testing. 3D tumor spheroid models with an

increased cellular complexity have been developed by culturing

heterogeneous cell types within the spheroid, such as fibroblasts

(40, 41), immune cells (42, 43), and endothelial cells (44, 45). These

models aim to emulate the heterogeneity of the TMEbetter to achieve

a more significant physiological association with native tissue

(Figure 1). Broadening the heterogeneity of 3D cultures is essential

to drug development as cytokines released from immune cells and

fibroblasts are known to modulate chemoresistance (41, 46).

However, the validation of cell-line-derived heterotypic spheroids

in recapitulating tumor heterogeneity as observed in patients remains

challenging given the lack of a systematic comparison with patient

tissues, which are not always available for research purposes.

The integration of a microfluidic device to host the 3D CRC

spheroid culture in hydrogel has enabled greater control over the

cellular environment during therapeutic screening for monoculture

(47–49) as well as heterocellular spheroids (50, 51), including

critical molecular gradients to resemble in vivo conditions more

closely (52). CRC spheroid models are increasing their

heterogeneity by incorporating elements of the gut microbiome, a

unique component of the TME of CRC, which heavily influences

disease progression and response to anti-tumor therapies (53, 54).

Therefore, in this mini-review, we report the recent research

progress towards incorporating different cell populations in 3D

CRC spheroid models, namely CAFs, tumor-associated

macrophages (TAMs), ECs, and gut bacterial cells to mimic the

TME heterogeneity. Differently from existing reviews, we focus on

the significance of the heterogeneous cell populations during drug

screening to improve the prediction of tumor response to therapy.
3D CRC spheroid models
with fibroblasts

Fibroblasts are the major constituents of the CRC stroma and

play an essential role in tumor cell invasion and progression (55,

56). CAFs are generally characterized by an increased expression of

fibroblast activation protein (FAP) and smooth muscle alpha-actin

(a-SMA) (57) triggered by secreted factors from surrounding

cancer cells (58). CAFs secrete soluble factors, which include

cytokines, chemokines, and growth factors such as interleukin 6

(IL-6), C-type lectin domain family 3 member B (CLEC3B), C-X-C

motif chemokine 12 (CXCL12), and epidermal growth factor (EGF)

to transform the TME to support tumor growth (59–62). Elevated

serum levels of CAF-derived soluble factors stimulate signaling
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pathways that actively transform the TME to promote tumor

metastasis and survival (63). For instance, the Wnt2 secreted

from patient-derived CAFs has been shown to stimulate the Wnt

signaling pathway, enhancing colon cancer cell proliferation and

migration in vitro (64).

Recent evidence has revealed subpopulations of CAFs with

different roles and prognostic significance in CRC (65, 66). Mosa

et al., for instance, distinguished inflammatory-like CAFs (iCAFs) from

contractile cancer-associated myofibroblasts (myCAFs) by reduced

endogenous Wnt activity. Heterogeneous tumor organoids with

iCAFs observed upregulated endothelial mesenchymal transition

(EMT) markers, promoting tumor metastasis, whereas those with

myCAFs did not (67). The heterogeneity of CAFs has been

attributed to different origins and differences in secreted factors from

cancer cells at each stage of tumor development (58, 65). Besides

representing potential therapeutic targets within the TME, CAFs in

heterotypic CRC spheroids contribute to angiogenic, invasiveness, and

chemoresistance mechanisms, modulating and regulating

inflammation and immunosuppression (68, 69). Therefore, CAFs

heterogeneity should also be included in 3D CRC models, especially

when screening for immunotherapeutic therapies.

To study the impact of fibroblasts during drug screening,

Zoetemelk et al. developed a multi-cellular CRC spheroid model

grown from various CRC cell lines (DLD1, HCT116, SW620) in the

absence (monoculture) and presence (co-culture) of normal human

fibroblasts (CCD18co) within the spheroids (45). CRC spheroids

were cultured within 96 u-bottom well plates with a 0.2% gelatin-

coated surface with up to 70% fibroblast population in a mixture of

cell culture media (DMEM, RPMI and EMEM) supplemented with

2.5% Matrigel®. The co-culture spheroids also included a 5%

immortalized human EC population to mimic the tumor stroma

better (Figure 2A). Some of the co-culture spheroids displayed a

higher metabolic activity and survival compared to monoculture

CRC spheroids after 72 h of treatment with chemotherapeutic drugs

regorafenib, erlotinib, and 5-fluorouracil (5-FU). The co-culture
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compared to the monoculture spheroids, whereby the co-culture

spheroids were characterized as irregularly shaped and with multi-

directional outgrowth. The decreased sphericity potentially

contributed to the enhanced survival of the co-culture spheroids

by increasing the surface area for improved exchange of oxygen and

nutrients. The co-culture spheroids exclusively produced

fibronectin, an extracellular matrix component that assists tumor

growth, progression, and invasion (72). Notably, this heterotypic

3D culture was maintained for up to 10 days, wherein the spheroids

observed sustained continuous proliferation measured by their

increasing diameter, making it ideal for studies on drug testing

lasting up to 10 days. Zoetemelk et al. simulated a multi-dose

regimen in patients through an additional 48 h treatment of their

co-culture spheroids after the initial 72 h incubation, which

improved the treatment efficacy in comparison to the single high-

dose drug administration. Zoetemelk et al. demonstrated that the

contribution of fibroblasts to tumor survival during chemotherapy

was successfully recapitulated in the co-culture spheroids and the

possibility for heterotypic spheroids to test multi-dose regimens

in vitro.

Dolznig et al. generated co-culture CRC spheroids in collagen

matrix containing 10x PBS, fibroblast growth medium (FGM)/20%

methylcellulose and collagen in 1:4:5 volumetric ratio at neutral pH

(41). They considered various colon adenocarcinoma cell lines

(LS174T, HCT116, SW480, SW620, Colo205, and HT29), colon

fibroblast cell lines (CCD18Co, Caco-2, and BJ-1), and CAFs

isolated from patients. The tumor model containing CAFs and

LS174T cells presented an enhanced invasive potential of the cancer

cells and a higher percentage of the nuclear b-catenin positive cells,

indicating the Wnt pathway activation as observed in patients (41).

This co-culture CRC spheroid model was applied to evaluate the

therapeutic efficacy of PI3K inhibitor LY294002 in FGM

supplemented with 2.5% serum, observing up to a 3-fold

suppression of spheroid growth over 7 days of incubation (41).
FIGURE 1

Scheme of the main components of the tumor microenvironment that could be recapitulated in heterotypic 3D CRC spheroid models for drug
screening. Created with Biorender.com.
frontiersin.org

https://www.biorender.com/
https://doi.org/10.3389/fonc.2023.1148930
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yau and Adriani 10.3389/fonc.2023.1148930
The enhanced fibroblast-associated cancer cell proliferation and

migration in patients makes CAFs potential therapeutic targets.

Consequently, researchers can use 3D CRC spheroid models to test

therapeutic strategies modulating CAFs (alone or in combination)

as done by Dana et al. (70) (Figure 2B). They demonstrated

resveratrol-loaded liposomes (L-RES) therapeutic efficacy in

reducing fibroblast activation and increasing drug sensitivity of

co-culture spheroid during 5-FU treatment. The co-culture

spheroids were formed with HT29 colorectal adenocarcinoma cell

line and human lung fibroblasts MRC-5 cultured for 3 days in 96

well round bottom ultra-low attachment plates. For the drug

sensitivity assay, the co-culture CRC spheroids were treated

with 25 mM of L-RES in combination with 5-FU at concentrations

of 5–25 mM for 2 more days (70).

All the described 3D CRC spheroid models well mimicked the

fibroblast-associated chemoresistance and cancer progression

observed in patients (64), supporting the importance of

recapitulating the cell heterogeneity within the TME in

heterotypic 3D CRC spheroid models for drug testing. In addition

to cell viability, proliferation, and migration previously mentioned
Frontiers in Oncology 04
as quantifiable parameters, several metastatic biomarkers (e.g.,

AGR2, CacyBP, and EphA2) could be measured in these 3D

models to further assess changes in the tumor metastatic

potential. As observed in Zoetemelk et al. (45), CRC spheroid

culture can be designed to accommodate multi-dose drug testing,

although 3D in vitro tumor models are mostly conceived to achieve

a fast prediction of the drug efficacy to speed up the drug

development rather than establish long-term cultures.
3D CRC spheroid models with
fibroblasts and immune cells

Colorectal tumors often observe a robust population of

infiltrating immune cells and an increased expression of pro-

inflammatory cytokines (73). Immune cells, specifically TAMs,

and their secreted cytokines are essential components of the TME,

significantly influencing tumor progression, immunosuppression,

and, indirectly, chemoresistance (74, 75). In particular, TAMs in

CRC, as in many solid tumors, consist of pro-inflammatory M1-like
D
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E

C

FIGURE 2

Selected images of representative heterotypic 3D CRC models from original figures of published scientific articles. (A) Brightfield and confocal
images of intra-spheroid localization of CRC cells (HCT116 and SW620), fibroblast, and endothelial cells over time. Spheroids were formed with a 1:1
ratio of cancer cells (HCT116, SSW620) and normal human colon fibroblasts (CCD18co) with 5% of human immortalized ECs (ECRF24) and used to
study drug sensitivity (45). Scale bar = 200 µm. (B) Brightfield images of monoculture and heterotypic HT29 spheroids treated with different
concentrations of 5-FU for 48 h. Heterotypic spheroids consisted of HT29 spheroids co-cultured with (2 x 105) activated MRC-5 fibroblasts (70).
Scale bar = 500 µm. (C) Brightfield images of 3D CRC models cultured for 48 h and consisting of cancer cells (HT29) and CD19-CD14- peripheral
blood mononuclear cells (PBMC) from healthy donors to study immunomodulatory antibodies (43). Scale bar = 600 µm. (D) Confocal images of
bacteria-spheroid co-culture consisting of HT29 cancer cells and Fusobacterium nucleatum (labeled in pink), and HT29 only spheroid at 12, 24, and
36 h. Scale bar = 200 µm. (E) High magnification (63 x) confocal images of 3D CRC spheroids at 12 and 36 h with and without F. nucleatum (in pink)
(71). Scale bar = 20 µm.
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and anti-inflammatory M2-like macrophages, with a dynamic

population ratio that varies with tumor progression (76).

Väyrynen et al., for instance, observed that higher cancer survival

was associated with higher density of M1-like macrophages than

M2-like macrophages (77), in agreement with the evidence of M1-

like macrophages having anti-tumor properties (e.g., inhibiting

angiogenesis and tumor cell infiltration) whereas M2-like

macrophages promoting tumor progression (78). This suggests

that the roles and functions of TAMs must be considered during

drug screening in 3D CRC spheroid models. However, we found

only a few examples in the literature of 3D CRC spheroid models

including immune cells that were applied for testing therapeutics.

To the best of our knowledge, the only 3D CRC spheroid model

including both fibroblasts and macrophages within the tumor

spheroid used for chemotherapeutic screening was presented by

Bauleth-Ramos et al. (42). A heterogeneous CRC spheroid model

was formed in 7 days, consisting of (90.8 ± 2.4%) CRC cancer cells

(HCT116), (5.6 ± 1.6%) human intestinal fibroblasts, and (7.5 ±

1.2%) macrophages matured from blood derived monocytes from

human donors. The spheroids were developed in agarose micro-

molds produced with 3D Petri Dish® and cultured in 12 well plates

with RPMI medium for the evaluation of a combined chemo-

immune treatment for 48 h. The macrophages, identified by flow

cytometry as mixed M1/M2 population with a major proportion of

M2-like macrophages, promoted continuous tumor cell

proliferation in spheroids through days 1 to 7, whereas spheroids

lacking the macrophages demonstrated stagnant growth. The

metastatic potential of the CRC spheroids was observed as cell

dispersion from the spheroids but not quantified to compare

monoculture and triculture (42). However, the consistent increase

in diameter over time of the triculture CRC spheroids suggested a

tumor-promoting role of M2-like macrophages in line with

previous literature (79). The spheroids with increasing

heterogeneity were treated with the chemotherapeutic Nutlin-3a

(Nut3a) and granulocyte-macrophage colony-stimulating factor

(GM-CSF) loaded in spermine-modified acetylated dextran

nanoparticles (NPs). The Nut3a-loaded NPs showed a dose-

dependent anti-proliferative effect in triculture and promoted the

M1 over M2 polarization in spheroids as measured by the ratio of

CD163 (M2 marker) to CD86 (M1 marker) expression (42).

Aside from macrophages, other immune cells are found in the

TME and play important roles in regulating tumor growth,

metastasis, and drug sensitivity, including dendritic cells (80), T

cells, and NK cells (81). Courau et al. demonstrated that T cells and

NK cells, enriched from human donor peripheral blood

mononuclear cells (PBMC) and co-cultured with CRC spheroid

in RPMI medium in 96 well plates after spheroid formation,

successfully infiltrated the spheroids to initiate tumor cell

apoptosis after 48 h (Figure 2C) (43). T and NK cells'

contribution to the CRC TME is important, especially for

screening immunotherapies that have yet to achieve satisfying

clinical efficacy as CRC treatment (82). For instance, Herter et al.

developed a CRC spheroid model with cancer cells (LoVo and

LS174T) and fibroblasts (CCD18Co) in an FGM-2 medium to

evaluate an interleukin-2 variant, IgG-IL2v, as novel
Frontiers in Oncology 05
immunotherapeutic. They measured the IgG-IL2v influence on

the infiltration of human peripheral blood monocytes into the

CRC spheroids after 72 h (40), highlighting the possibility of

studying the influence of various immune cells infiltrated within

3D CRC spheroid models.

Triculture 3D CRC spheroid models with fibroblasts and TAMs

may be considered more suited for evaluating immunotherapy

strategies compared to 3D CRC spheroid models with only cancer

cells or co-culture of cancer cells and fibroblasts. Further, as the

crosstalk among cancer, stromal and immune cells modulate the

release of immunosuppressive cytokines within the TME, impacting

cell metabolisms, cell differentiation and functions (83–85), the

stromal and immune components should be taken into

consideration for a more comprehensive evaluation when testing

not only immunotherapies (86) but any anti-tumor therapeutic,

providing insights into drug mechanisms and influence over critical

parameters in the TME.
3D CRC spheroid models with ECs

The secretion by tumor cells of pro-angiogenic growth factors,

such as vascular endothelial growth factor (VEGF) and vascular

endothelial growth factor receptor 2 (VEGFR2), promotes the

development of new irregular blood vessels that supply tumors

with nutrients and oxygen (87). The ECs contribute to a

disordered TME, influencing tumor progression (88) and

chemoresistance (89). The ECs associated with tumor angiogenesis

have demonstrated phenotypic and genetic differences from normal

ECs and are, at times, specifically referred to as tumor-associated

endothelial cells (TECs) (90, 91). Consequently, TECsmay influence

the TME and the tumor sensitivity to drugs differently from normal

ECs (92). Therefore, it is advisable to determine the nature of ECs (as

“normal” or “tumor-associated”) when integrated into spheroid

models to rationalize the contribution of incorporating the EC

population in mimicking the TME. This determination could be

performed by genomic profiling (91) or by comparing the relative

expressions of key markers of TECs such as biglycan (93).

As anticipated, Zoetemelk et al. introduced a 5% cell population

of human immortalized vascular endothelial cells, ECRF24, in their

heterogeneous human 3D CRC spheroid model containing cancer

cells and fibroblasts (45). The authors discussed the spatial

localization of ECs close to fibroblasts in the center of the

spheroids for those formed with DLD1, SW620, and HCT116

cells. However, since the drugs were screened on either

monoculture or triculture condition, no specific association

between the spheroid sensitivity and EC presence was possible.

More recently, Carvalho et al. published a quadruple multi-

cellular human CRC spheroid model by co-culturing HCT116

with human intestinal fibroblasts (HIFs), human pulmonary

microvascular endothelial cells (HPMECs) and human monocytes

to mimic a pro-angiogenic TME and test anti-angiogenic

nanoparticles (NPs) containing bevacizumab (BVZ) (94). Three

different ratios of HCT116:HPMECs:HIFs:monocytes (1:1:1:1,

1:4:4:4 and 1:4:1:4) were tested to form spheroids on agarose
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micro-molds and cultured in RPMI medium over 7 days. The

1:1:1:1 model contained the highest expression of angiogenic CD31

marker and was selected to best recapitulate the pro-angiogenic

TME. The NPs-based treatment resulted in the reduction of the

endothelial cell marker CD31 and consequently reduced the

angiogenic potential of the CRC spheroids, demonstrating

the efficiency of the CRC model in screening anti-angiogenic

drugs and nanoparticles. Furthermore, while not discussed, the

high heterogeneity of the model by inclusion of stromal, endothelial

and immune cells also enables the evaluation of chemo-

immunotherapy strategies and multi-action drugs, although a

different cell ratio may be optimal.

While vascularized heterotypic CRC spheroids will indeed

represent a pathophysiologically relevant TME for drug screening

(95) and studying the permeation of drugs through vasculature (96),

few vascularized CRC models (97, 98) have been presented.
3D CRC spheroid models
with gut bacteria

The gut microbiome is among the most important

environmental factors contributing to CRC development (53, 99,

100). The gut microbiome consists of several micro-organisms,

including bacteria, viruses, and fungi (54, 99, 101). Over 1000

species and 7000 strains of bacteria may be found in an adult gut

(53). Disturbances to the gut microbiome balance, such as an

individual’s psychosocial stress or consuming antibiotics, can

contribute to CRC (53, 54, 99, 100). For example, Clostridium

butyicum helps to generate butyrate, folate, and biotin, which are

important for regulating epithelial proliferation, thereby mitigating

the risks of specific diets for developing CRC (53). Other biotas may

have the opposite effect, secreting epigenetic factors that promote

CRC (102). For example, a high-fat diet can cause excessive

accumulation of lipopolysaccharides, a bacteria side product, that

can enter the intestinal circulation and cause inflammation which

may develop into CRC (103). Apart from carcinogenesis, the gut

microbiome has implications for the development of

chemoresistance, and it contains potential therapeutic targets

(100). For instance, Fusobacterium nucleatum (F. nucleatum) has

been linked to the chemoresistance of CRC to 5-FU through two

separate mechanisms (104). However, few 3D models have been

developed to consider the gut microbiome’s role in CRC.

Kasper et al. developed a 3D model of a spheroid derived from

CRC cell lines (HCT116 and HT29) capable of housing and

promoting the growth of two strains of the anaerobic bacteria F.

nucleatum (Figures 2D, E) after spheroid formation in McCoy’s 5 A

medium (supplemented with serum) to observe bacteria-tumor cell

interactions and metabolic crosstalk within the TME (71).

Interestingly, the tumor-bacteria spheroids shown an enriched IL-

8 metastatic signaling, mirroring the increased IL-8 expression in

CRC patients with high F. nucleatum. IL-8 has been shown to

promote proliferation and survival of cancer cells (105, 106).

However, the model has a limited culture time because the F.
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nucleatum induced tumor cytotoxicity after 24 h (71). Therefore,

this human tumor-bacteria co-culture in a 3D setting should be

further optimized for evaluating potential drug candidates or

therapeutic regimens for treating CRC while considering the

potential chemoresistance induced by F. nucleatum.

Lee et al. evaluated the potential anti-cancer activity of another

component of the gut microbiome, the probiotic bacterium

Lactobacillus fermentum (grown and expanded in Lactobacilli De

Man, Rogosa, Sharpe broth), in their 3D CRC spheroid model

cultured in RPMI medium (supplemented with serum) in 96 well

round bottom plate (107). The effect of Lactobacillus fermentum

was observed through increased apoptosis of HCT116 cells after

72 h, which was observed solely in the 3D CRCmodel and not in 2D

monolayer cultures (107). Rubert et al. instead demonstrated that

the native (poly)phenols and gut microbial metabolites inhibited

the propagation and viability of HCT116 spheroids cultured in

RPMI medium (supplemented with serum) in 96 well round

bottom plate after 72 h incubation (108).

Indeed, the gut microbiome’s influence on CRC progression,

survival, and chemoresistance warrants research work to determine

their potential as therapeutic targets. However, 2D cultures are

insufficient to assess the gut microbiota's activity in CRC (107). In

this resepct, 3D CRC spheroid models provide an attractive in vitro

strategy for exploring the specific role of gut microbiota in

influencing chemoresistance, tumor progression, and survival. Drug

evaluations in human 3D CRC spheroid models should, therefore,

include a systematic evaluation of the activity of the gut microbiota to

better appreciate their role in the TME during treatment.
Conclusions

There needs to be more standardization and validation of the

methodologies for applying human 3D CRC spheroid models to

preclinically assess the efficacy of drugs or other therapeutic

strategies. This limitation has challenged the reproducible

implementation of 3D spheroid models in drug development and

confidence in the drug efficacies observed (109). Monoculture

spheroids are simple and quick to optimize, justifying their use for

high-throughput screening of drugs until the processes for

heterogeneous spheroid formation, treatment, and assessment are

better validated and automated. Indeed, heterogeneous spheroids

have been demonstrated to have pathophysiological similarities and

relevance to native tumor tissue. By incorporating fibroblasts, ECs,

TAMs, and gut microbiota, human CRC spheroid models enable

more in-depth investigations into the role of specific cell populations

on tumor progression, survival, and chemoresistance unfeasible in

traditional 2D cultures and spheroid monoculture. Diverse cell

populations within the 3D models also represent attractive

therapeutic targets that cannot be identified and validated in

monoculture. Heterotypic 3D CRC spheroids thereby offer great

potential for more precise predictions of the efficacy of

chemotherapies to aid the discovery and development of new drug

candidates, representing a promising preclinical tool for overcoming

some of the limitations of previous in vitro and in vivo models.
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