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Breast cancer is a complex disease that is influenced by the concurrent influence

of multiple genetic and environmental factors. Recent advances in genomics and

other high throughput biomolecular techniques (-omics) have provided

numerous insights into the molecular mechanisms underlying breast cancer

development and progression. A number of these mechanisms involve multiple

layers of regulation. In this review, we summarize the current knowledge on the

role of multiple omics in the regulation of breast cancer, including the effects of

DNA methylation, non-coding RNA, and other epigenomic changes. We

comment on how integrating such diverse mechanisms is envisioned as key to

a more comprehensive understanding of breast carcinogenesis and cancer

biology with relevance to prognostics, diagnostics and therapeutics. We also

discuss the potential clinical implications of these findings and highlight areas for

future research. Overall, our understanding of the molecular mechanisms of

multi-omic regulation in breast cancer is rapidly increasing and has the potential

to inform the development of novel therapeutic approaches for this disease.
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1 Molecular origins of breast cancer

Molecular heterogeneity is one of the archetypal features of breast cancer. This

heterogeneity refers to the fact that breast tumors are composed of a mixture of cancer

cells with different genetic and molecular characteristics. This diversity of features and

origins within a single tumor can contribute to differences in tumor behavior, such as

response to treatment and risk of recurrence. Research has identified several molecular

subtypes of breast cancer, including estrogen receptor-positive, HER2-enriched, and triple-

negative, each with its own unique set of genetic and molecular features. Additionally,

within a given subtype, there can be further molecular heterogeneity, with different cancer

cells possessing varying combinations of genetic and epigenetic alterations. This molecular

heterogeneity can be driven by a variety of factors, such as inherited genetics, acquired

mutations, and environmental exposures. Understanding the molecular diversity of breast

cancer is important for developing personalized treatment approaches and for predicting

patient-specific outcomes. However, the complexity of this heterogeneity presents a

challenge for researchers studying the disease and for clinicians caring for breast cancer
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patients. Here we will present an overview of some of the molecular

(mostly genomic and epigenomic) factors behind, and will discuss

some of the already synergistic mechanisms giving rise to these

complex pathophenotypes.

Aside (but not independently) from the genomic and

epigenomic background, one additional source of complexity and

heterogeneity in breast tumors is the influence of metabolic

reprogramming in general, and hormone signaling in particular.

Estrogen, for instance promotes cell proliferation, and on the other,

it is oxidized to reactive products that damage DNA (1). Exposure

to estrogen is linked to the menstrual lifetime, with a higher risk for

women with early menarche and late menopause, but also to

prolonged use of contraceptives and obesity. Before menopause,

most of the estrogen in the body comes from the ovaries and a small

percentage from fat tissue, but after menopause, the main source of

estrogen is fat tissue, and the more there is, the greater the risk of

breast cancer. In addition, being overweight causes a higher level of

insulin in the blood, which has also been associated with breast

cancer (2).

Two related factors that reduce the risk are the age of the first

birth and breastfeeding. Experiments in mice show that pregnancy

causes the differentiation of mammary lobules into secretory units,

with lower proliferative activity, which would reduce the subset of

cells susceptible to carcinogenesis. The risk reduction from

breastfeeding is independent of childbirth and menopausal status,

without a strong functional explanation, but several hypotheses,

which include: interruption of ovulatory cycles, lower estrogen

production and terminal tissue differentiation (1).

Despite the variation between countries and stages, breast

cancer has a relatively good recovery rate compared to other

types of cancer. It is estimated that up to 15% of patients develop

distant metastases, which are mostly detected in bones, liver, lung

and brain, with an association between the site of metastasis and the

subtype of breast cancer (2, 3). In this regard, patterns have been
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identified that allow tumors to be grouped in different ways (4–6),

which affect the prognosis and treatment of the disease, as we will

discuss in the rest of this review.
1.1 Ductal and lobular origins of
breast cancer

Breast cancer is a possess complex histological origins, as it

is able to develop from different types of cells within the breast.

Two common origins are the ductal and lobular tissues. Ductal

carcinoma starts in the cells lining the milk ducts. These are thin

tubes able to carry milk from the lobules to the nipple. Ductal

carcinoma constitutes the most common type of breast cancer,

accounting for about 80% of all cases. Typically appears as a lump in

the breast that can spread to nearby lymph nodes if left untreated.

Lobular carcinoma, on the other hand, originates in the lobules, the

milk-producing glands within the breast. Lobular carcinomas are

about 15% of breast cancer cases. Unlike ductal carcinoma, lobular

tumors may not form a distinct lump. Instead, it often appear as a

subtle thickening in the breast tissue. Lobular carcinomas are also

able to spread to other parts of the body, including the opposite

breast, ovaries, and abdomen (See Figure 1).

Ductal and lobular breast tumors show a number of genetic and

molecular differences. These can be summarized as follows:
1. Genetic alterations: Ductal carcinoma characteristically

display a higher frequency of genetic alterations in the

tumor suppressor gene TP53. As is known, TP53 mutations

are associated with more aggressive tumor behavior, hence

poorer prognosis. Lobular tumors, in contrast often show

alterations in the E-cadherin gene (CDH1) involved in cell

adhesion. Mutations in CDH1 can lead to the loss of cell

adhesion, a hallmark of lobular carcinoma.
FIGURE 1

Ductal and Lobular breast tumors have different origins, development and outcomes. (Figure created using Biorender.com).
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2. Molecular subtypes: Breast cancer can be classified into

different molecular subtypes based on gene expression

patterns (see the next subsection). Ductal carcinomas are

more commonly associated with the basal-like subtype,

characterized by aggressive behavior and a higher risk of

recurrence. Lobular carcinoma, are instead often classified

within the luminal subtypes, which are typically less

aggressive and associated with hormone receptor-positive

tumors.

3. Hormone receptor status: Hormone receptor status,

including estrogen receptor (ER) and progesterone

receptor (PR) expression, differs between ductal and

lobular breast tumors. Ductal carcinoma tends to have a

higher frequency of hormone receptor-positive tumors,

meaning they respond to hormonal therapies targeting

these receptors. Lobular carcinoma is also hormone

receptor-positive in many cases, but it has a higher

tendency to have loss or reduced expression of hormone

receptors compared to ductal carcinoma.

4. Metastatic patterns: Ductal and lobular carcinomas are also

different in their patterns of metastasis. Ductal carcinoma

often spreads to the lymph nodes and distant organs such

as the lungs, liver, and bones. Lobular carcinoma instead

has a higher propensity for multi-focal and multi-centric

growth within the breast and has a greater tendency to

metastasize to the peritoneal cavity, ovaries, and

gastrointestinal tract.

5. Cellular morphology: Ductal carcinoma is characterized by

the formation of irregular glandular structures, while

lobular carcinoma often shows a characteristic single-file

pattern, where the tumor cells infiltrate the breast tissue in a

linear fashion without forming distinct masses.
We should note that individual breast tumors may indeed

present a combination of features from both the ductal and

lobular cellular origins. Moreover, as we shall see in the next

subsection, advancements in genomic and molecular profiling

techniques are allowing us to uncover additional subtypes and

molecular features that contribute to further refine our

understanding of breast cancer heterogeneity.
1.2 Breast cancer molecular subtypes

Most breast tumors affect the epithelium of the mammary

glands, a mesh of branching ducts, which extend radially from

the nipple and end in lobules (7). Therefore, histologically, they are

carcinomas, which can be further classified as ductal or lobular and

be invasive or presented in situ. The preservation of gene expression

patterns indicates that invasive carcinomas often arise from in situ

lesions (8). Less than 1% of breast tumors are sarcomas, which

develop from the stroma of the glands, including blood vessels and

myofibroblasts (2).

In connection with hormone and other signaling pathways,

estrogen receptors (ER), progesterone receptors (PR), and human

epidermal growth factor receptor 2 (HER2) have been used as
tiers in Oncology 03
immunohistochemical markers for clinical classification (5). The

presence of estrogen receptors in up to 1% of tumor cells indicates a

tumor that is (commonly) responsive to hormonal therapy (9),

well-differentiated, and less aggressive. Tumors that are positive for

HER2 may respond to treatment with monoclonal antibodies and

kinase inhibitors, but the prognosis depends on the status of other

receptors, among other issues. Tumors that are triple-positive

usually have a good prognosis, while those with the ER-PR-

HER2- phenotype are more aggressive and poorly differentiated.

As a result, tumors without these receptors do not have targeted

therapies and are generally of worst prognosis (10).

The relevance of the receptors has a biological reason, as

estrogen stimulates the proliferation of cells with the receptor and

induces the progesterone receptor - a mitogenic hormone - making

PR+ tumors commonly also ER+ (10). On the other hand, the

binding of the growth factor causes the heterodimerization of Her2

and the activation of its intracellular domain, which then

participates in multiple transduction pathways, such as MAPK

and PI3K (1).

To the previous sub-divisions, we must add the classification

by means of gene expression, also called molecular subtypes. The

classification by gene expression comes from the transcriptional

patterns shared between different samples of the same tumor,

which identify the intrinsic subtypes: luminal A, luminal B, Her2-

enriched, and basal (4). Originally, a subtype (Normal-like)

similar to normal tissue was also identified, but the possibility

that it was instead formed due to contamination by adjacent

normal tissue has kept the existence of this subtype in

controversy (11).

Although different molecular classifiers have been used, such as

Mammaprint and BluePrint, and even the subtypification with

immunohistochemical markers of proliferation and the

aforementioned receptors (12) has been approximated, the use of

the PAM50 classifier (Prediction Analysis of Microarray 50),

predominates in the databases and genomic studies. This is based

on an array that measures the expression of the 50 genes that best

separate the intrinsic subtypes (13) and provides highly predictive

information on recurrence and neoadjuvant response (11).

The improvement of high-performance techniques enriched the

description of breast cancer subtypes, allowing the transition from a

grouping of transcriptional signatures to sub-subtypes with their

own multi-omic characteristics (see Figures 2, 3). In this way, the

luminal subtypes can be clearly separated, as both are usually

positive for hormonal receptors and negative for HER2; however,

luminal B tumors have higher expression of genes associated with

cell proliferation and lower expression of luminal tissue-related

genes such as PR. A subset of luminal B tumors is characterized by

hypermethylation of the Wnt pathway (5). Luminal A tumors have

the lowest number of mutations but an increase in those affecting

PIK3CA and MAP3K1 genes compared to the luminal B subtype.

Interestingly, both subtypes have a good prognosis and high

frequencies of around 30% of cases each, but luminal B tumors

show greater chemosensitivity and the highest risk of recurrence in

10 years regardless of therapy. Therefore, this subtype has been

proposed as the one to study, above others with a worse prognosis,

to reduce mortality from breast cancer (13).
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Tumors of the Her2-enriched (HER2E) subtype are

characterized by the overexpression of HER2 and nearby genes

such as GRB7, both at the transcriptional and protein levels, and by

presenting the highest number of mutations in general and on the

APOBEC3B cytidine deaminase gene in particular (13). HER2

overexpression has been associated with amplification of the long

arm of chromosome 17, which nearly-always contains the receptor

but whose extent varies. However, this subtype remains somehow

controversial, as nearly half of the tumors with amplification are

classified as luminal, mostly, or even basal (5).

Furthermore, differential expression studies between tumors

with and without amplification identify few genes outside of

chromosome 17, with modest changes. In contrast, when

comparing HER2E tumors against non-HER2E tumors, the

androgen receptor (AR) and different ER targets stand out, which
Frontiers in Oncology 04
could be explained by the metabolic and molecular redundancy

between ER and AR. Adding the cooperation between HER2 and

AR, as well as the inverse relationship between HER2 expression

and ER/PR (10), it has been speculated that amplification could be a

driver event that masks the hormonal nature of the subtype, as

mostly apocrine (ER-PR-AR+) (14).

Basal tumors overexpress genes associated with cell

proliferation and breast basal tissue, are characteristically

hypomethylated, have the highest frequency of alterations on

TP53 and are associated with the inactivation of BRCA1. When

compared to different types of cancer, this subtype is molecularly

more similar to squamous cell lung cancer than to luminal breast

subtypes, while its pattern of mutations brings it closer to serous

ovarian tumors. Although basal tumors would correspond to the

triple negative (TN) phenotype of immunohistochemical markers,
FIGURE 2

Multi-omic gene regulatory mechanisms influence breast cancer phenotypes affecting the classification, diagnostics, prognostics and therapeutics of
breast tumors. (Figure created using Biorender.com).
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only 75% of TN tumors have the basal subtype expression pattern

(5). This expression pattern is associated with aggressive tumors

that present at early ages, with greater susceptibility in African

ancestry populations and the worst prognosis at 5 years (13). The

correspondence with the TN phenotype implies that there are no

targeted treatments, however, the use of PARP inhibitors in tumors

with BRCA1 mutations has recently been approved.

Molecularly, the basal subtype can be further divided, although

there is still no consensus on how many and which those sub-

subtypes would be, the subtypes claudin low, metaplastic and

interferon rich have been consistently mentioned though (10).

ATAC-seq studies identify categories similar to basal, mesenchymal

and ligated to the luminal androgen receptor. Each category has its

own mutations and clinical characteristics, of which the higher age of

diagnosis for tumors ligated to the luminal androgen receptor and the

activation without amplification of HER2 stand out. For their part,

basal tumors are further separated into two groups, BL1 and BL2,

according to the risk of progression. Those classified as BL2 are

associated with an intact G1/S checkpoint, while those identified as

BL1 lose copies of RB, which affects protein expression. Finally,

mesenchymal tumors are characterized by a high percentage of

mutations on epigenetic modifiers and DNA repair genes, as well

as frequent deletion of beta-2-microglobulin, which suggests a

reduced antigen presentation. Mesenchymal breast tumors also

exhibit DNA hypomethylation, which coincides with greater

chromatin accessibility over various enhancers (15).

The classification of basal tumors is particularly interesting

because recently differences in the immune response of each

subtype have been observed. For a long time, breast cancer was

considered as poorly immunogenic given its relatively low

mutational burden. However, a high survival rate has been

observed among patients of the basal subtype with PDL2

overexpression, suggesting that a subgroup of breast cancer

patients could indeed benefit from immune therapy (16).

When characterizing the basal subtype microenvironment,

three groups were defined by 1) the inability to attract innate
Frontiers in Oncology 05
immune system cells, 2) chemotaxis followed by inactivation of

innate immunity, and 3) increased immune inhibitory factors.

The phenotype of the first group has been explained by the

amplification of MYC, which induces the expression of various

chemokines and PDL1, as well as the inactivation of dendritic cells

and macrophages, limiting the recruitment of adaptive cells. The

second phenotype would be justified by the high infiltration of

cancer-associated fibroblasts (CAF) (17), which correlates

negatively with the infiltration of T cells (16) and depends on the

immunomodulator TGFB; in addition to the inhibitory effect that

the frequent mutation of the PI3K-AKT pathway would allow (17).

Because of the characteristics of the third phenotype, this would be

the subgroup of patients that could benefit more directly from

immune therapy

After considering the enormous differences between the subtypes

and sub-subtypes, it has been postulated that cells of different origin

are involved (15). In principle, the luminal-basal division reflects the

normal epithelium of the mammary gland, which is composed of a

two-layer of luminal cells that produce milk and basal cells that expel

the milk (8). Thus, the basal or myoepithelial layer is composed of

contractile cells that express KRT14, TP63, ACTA2/SMA, MME/

CD10, and THY1/CD90; while the luminal layer is formed by cells

that are able to respond to hormones and express EpCAM, KRT8,

KRT18, and MUC1 in addition to receptors. However, the luminal

layer can be further divided into luminal cells and luminal progenitor

cells. While luminal cells are clearly distinguished by their ER and PR

receptor status, luminal progenitor cells almost completely lack these

receptors and instead express KRT5/6, a marker of the basal layer in

many types of epithelium. Different genetic expression

characteristics and chromatin structure suggest that luminal

progenitors may be actually intermediate cells between basal and

luminal cells (7).

When examining the growth capabilities of each cell type, it was

observed that all three types can generate colonies, but only about

0.1% of the basal fraction can produce two-layered structures

similar to the mammary gland when injected into mice and,
FIGURE 3

Main features of breast cancer molecular subtypes. (Figure created using Biorender.com).
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when appropriately stimulated, produce milk. Luminal progenitors

only produce cells with luminal characteristics, with very short

telomeres even when using samples from young women, and high

levels of reactive oxygen species (7). In this way, according to the

stem cell carcinogenesis model, poorly differentiated ER- tumors

would arise from the most primitive cells - from the basal fraction -;

Her2-enriched and luminal B tumors, which have been described as

basoluminal, would come from an intermediate stem cell - the

luminal progenitors -; finally, it is predicted that luminal A tumors

would originate from the transformation of ER+ stem cells (8).

Considering the limited division of luminal cells (7), the clonal

evolution carcinogenesis model might be more appropriate for

addressing the origin of luminal A tumors, as it proposes a

population of genetically unstable cells that gain fitness by

accumulating mutations and selection (8, 18). The origin of

tumor cells is relevant because treatments typically eliminate

proliferating cells, eliminating most of the tumor but often

ignoring quiescent cells such as stem cells (8).

Beyond the origin of each subtype, it is clear that these are

molecularly distinct entities and that these differences can affect

their clinical behavior. Although this work delves into the

transcriptional description, differences between subtypes can be

observed at many other levels such as the rate of cis and trans

interactions of the co-expression network (19) and the activation of

metabolic pathways (20). Although it is not expected that intrinsic

subtypes will replace immunohistochemical tests in the clinic soon,

given the dependence on receptors for the assignment of

treatments, nor should the tumor heterogeneity in these broad

groups be oversimplified (14); molecular classification has been

established as the unit of description of breast cancer and will be

used throughout this work (See Figure 2).
2 Anomalous gene regulation in
breast cancer

As data has been collected, the study of cancer has surpassed the

reductionist approach that considered it simply a disease of genes

(21). Thus, it has been considered a disease of gene deregulation (22,

23), a disease of cellular processes (24), a disease of pathways (25)

and, when the origin of deregulation is considered, a multi-scale

disease, where subcellular alterations affect the tissue, at the same

time that the properties of the tissue -irrigation-, affect the

phenotype and eventually the cellular genotype (26). In other

words, a systems biology approach has been adopted, where

interactions matter, whether they occur between genes or between

scales. After all, it is not isolated genes that perform functions, but

sets of proteins that have undergone regulated processes of

transcription and translation and that need signals to enter into

action or stop doing so.

The issue is that the regulation or deregulation of genes is

already a multiscale problem, which at least involves regulatory

sequences, transcription factors (TFs), histones, DNA methylation,

non-coding RNAs, and chromatin conformation (27). The

mentioned regulatory mechanisms can be organized into different

categories, such as epigenetic, transcriptional, and post-
Frontiers in Oncology 06
transcriptional (as we will do in the rest of this review), but in

reality they are interdependent and their simultaneous presence can

be indeed identified in the same sample (28–30).
2.1 Epigenetic level: DNA methylation +
transcriptomics

Epigenetic regulation involves modifications to chromatin that

affect the binding of transcription factors. DNA methylation,

specifically the addition of a methyl group to cytosine (5mC), is a

well-studied mechanism in this process. Methylation primarily

occurs in CpG dinucleotides, which are concentrated in CpG

islands (CGIs) found in human genome promoters. Detection of

DNA methylation can be done using sodium bisulfite treatment,

sequencing, microarrays, methylation-sensitive restriction enzymes,

or immunoprecipitation with antibodies against 5mC (22, 31–33).

Microarrays, like the Illumina HumanMethylation450K BeadChip

(HM450), have been widely used to characterize the methylome due

to their cost-effectiveness and accuracy. Sequence-based

methylation analysis such as the one carried out by sequencing

bisulfite-converted DNA is a more comprehensive technique, able

in principle to measure methylation at practically every cytosine in

the genome (34). The method methods relies on bisulfite conversion

of DNA to detect unmethylated cytosines. Bisulfite conversion

changes unmethylated cytosines to uracil during library

preparation. Converted bases are identified (following PCR) as

thymine in the sequencing data, and sequencing reads are used to

determine the fraction of methylated cytosines (35).

Methylation patterns generally correlate with CpG frequency,

but CpG islands exhibit unique characteristics and play a role in

transcriptional regulation (36–38). CGI promoters have distinct

features and differ from other promoters in terms of transcription

start regions, bidirectional transcription, and transcription factor

binding sites (22, 39, 40).

DNA methylation plays a role in long-term genetic expression

programming and cell type determination. After fertilization, the

genome undergoes generalized de-methylation, followed by the

establishment of permanent methylation patterns during

embryogenesis (32, 41). De novo methylation occurs in early

embryonic pluripotent cells, while maintenance methylation takes

place during cell division, maintaining methylation patterns from

the parental strand to the daughter strand. DNMT enzymes and S-

adenosyl L-methionine are involved in DNA methylation, linking

gene expression regulation to metabolism. To remove methylation,

both passive and active mechanisms are proposed. The passive

mechanism suggests that methylation is lost as cells divide, while

the active mechanism involves TET enzymes. These mechanisms

are associated with changes before implantation, with the maternal

genome undergoing passive dilution of methylation and the

paternal genome being influenced by Tet3. The gradual loss of

DNA methylation observed with aging, particularly in monozygotic

twins, may be attributed to the passive mechanism (42, 43).

The TET (Ten eleven translocation) protein family is a group of

DNA hydroxylases responsible for oxidizing the methyl group of

cytosine and its derivatives successively. The action of TET1, TET2
frontiersin.org
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and TET3 catalyzes the conversion of 5-methylcytosine to 5-

hydroxymethylcytosine (5hmC), which is converted to

5-formylcytosine (5fC), which in turn is oxidized to 5-

carboxylcytosine (5caC). The 5fC and 5caC forms can be replaced

by cytosines by the action of DNA glycosylase and base excision

repair. The three derivatives are found simultaneously on the DNA,

but cannot be specified by bisulfite sequencing, since 5hmC is read as

5mC, while 5fC and 5caC as cytosine. The identification of each form

is relevant because, unlike 5mC, the derivatives do not allow the

efficient binding of transcriptional regulators; but 5fC and 5caC favor

the binding of proteins involved in DNA repair (44).

The binding of transcriptional regulators to methylated

cytosines depends on proteins with MBD (methyl-CpG binding

domain) domains, such as MeCP2, which also recruit histone

deacetylases and methyltransferases and then reconfigure

chromatin to its inactive form (41). Many TFs can bind to both

methylated and unmethylated DNA, but with different affinities

(45), such is the case of MYC, which binds to the CACGTG motif

unless the central CpG has been methylated. Unlike MYC,

methylation improves the binding of other transcription factors

such as CEBPA and CEBPB (46).

The relationship between DNA methylation and transcription

is complex and varied. While methylation of promoters generally

inhibits transcription by blocking transcription factor binding,

methylation of gene bodies can promote gene expression by

facilitating transcriptional elongation (22, 31, 32, 41). However,

there are diverse interactions between transcription and DNA

methylation, including protection against methylation, promotion

of methylation, and demethylation (46). Certain proteins, such as

CFP1 and TET proteins, protect promoters from methylation by

binding to non-methylated CpG sites. These proteins recruit

methyltransferases or reverse de novo methylation. DNA-RNA

loops resulting from active transcription have also been suggested

to protect nearby promoters from methylation. On the other hand,

transcriptionassociated proteins can promote DNA methylation by

recruiting DNMTs. Examples include DNMT3B, MYC, and E2F6.

The KRAB-ZNF family of transcription factors, characterized by an

RH motif, can facilitate targeted methylation by interacting with

DNMTs. Demethylation, on the other hand, involves the

recruitment of TET proteins. Transcription factors like SPI1

and co-activators like PPARG can interact with TET proteins

to induce demethylation or the conversion of 5mC to 5hmC in

specific regions.

2.1.1 Methylation and cancer
Considering the importance of DNA methylation on defining

cell type through transcriptional regulation, it is understandable its

alteration in syndromes and diseases. Prader-Willi, Angelman,

Beckwith-Wiedemann and Silver-Russell syndromes have been

mapped to chromosomal aberrations, but also to imprinting

defects due to altered methylation of the involved genes: UPD,

ICR2, and ICR1 (42). In cancer, levels of DNMTs expression have

been reported similar to those observed in embryos, while TET

enzymes mutation has been recurrently identified in different liquid

tumors (47). The alterations in DNA methylation described in

cancer are not limited to specific point mutations or epimutations –
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Epimutations are changes in the epigenome relative to consensus,

equivalent to mutations (42), but reversible and more frequent (36),

but include simultaneous hypermethylation and hypomethylation

of multiple regions of the genome (41).

The hypermethylation of DNA in cancer affects 5-10% of CGI

promoters - which are normally not methylated - and has been

associated with the silencing of tumor suppressor genes (TSGs)

(22), responsible, for example, for inducing apoptosis and cell

arrest. In addition to epigenetic silencing, tumor suppressors

often suffer disruptive mutations such as indels and stop codon

substitutions in both alleles, as according to Knudson’s two-hit

hypothesis, both copies of the gene must be inoperable for TSG

inactivation (21). Promoter hypermethylation is usually the second

impact of these genes and is thought to progress gradually, from the

surrounding heterochromatin, to the transcription start site, subtly

and heterogeneously reducing gene expression and favoring tumor

plasticity (31). Thus, even the methylation coasts are differentially

methylated in cancer. The number of affected CGIs also gradually

increases as cell differentiation decreases (41).

Around half of the genes that cause familial forms of cancer can

be found hypermethylated in sporadic tumors. In the case of breast

cancer, 10-15% of women with sporadic tumors exhibit BRCA1

TSG hypermethylation, accompanied by an expression pattern

consistent with hereditary tumors (31). Apart from tumor

suppressors as such, hypermethylation causes harmful silencing of

miRNAs and more complex deregulation, such as interference with

ER-ERE binding (48) and loss of IGF2 imprinting. The expression

of IGF2, involved in Beckwith-Wiedemann and Silver-Russell

syndromes, is normally inhibited by the insulator H19, which

prevents the action of a distal enhancer on the IGF2 promoter;

however, in various types of cancer, H19 has been found to be

hypermethylated, allowing the expression of the maternal IGF2

copy and causing excess growth factor. As with this, there are many

examples of hypermethylation, to the point that filtering strategies

are needed to identify their functional consequences (22).

Equivalently, hypomethylation causes the percentage of

methylated CpG sites in the genome to drop from 80 to 60 or

even 40% and progresses such that metastases have lower levels of

methylation than primary tumors (49). The methylator phenotype

identified in a subgroup of tumors is characterized by the

coordinated methylation of a large number of CGIs, and has a

low risk of metastasis and better survival rates. Taking advantage of

these observations, agents have been found that reverse de-

methylation, inhibiting the invasiveness and metastasis of breast

cancer cell lines (41).

Unlike hypermethylation, hypomethylation does not occur in a

focused manner on CGI promoters, but rather on a large scale,

affecting repetitive elements that include transposons and

oncogenes and mapping to late-replication regions associated

with the nuclear lamina. Transcriptional activation of the

repetitions predisposes the genome to recombination, as

evidenced by the increase in the frequency of chromosomal

alterations in cancer. Transposons are kept under control in

basal tumors, due to compensation for the loss of methylation

by trimethylation of lysine 27 of histone 3 (48). While

hypomethylation promotes indels and translocations, methylation
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alone increases the susceptibility of cytokines to mutagenesis,

because it increases the hydrolytic deamination rate, which, due

to the methyl group, converts the base into thymidine instead of

uracil, as corresponds to cytosines, preventing efficient repair of

damage (22).

Although consistently an excess of variability in methylation

levels has been found in breast cancer compared to normal tissue

(49), specific patterns are known, at least for the basal, luminal B

and Her2-enriched subtypes. The basal subtype is the most

hypomethylated and, as expected, also has a high genomic

instability. Among luminal B samples, a hypermethylated

subgroup has been recognized, where the affected CpGs are

linked to the Wnt pathway (5). On the Her2-enriched subtype, a

bias towards hypermethylation - over hypomethylation - compared

to normal tissue has been reported, which is associated with Her2

amplification and particularly affects Hox genes (50).

Although regulation by methylation acts locally on genes,

coordinated methylation between distant loci can reflect the same

transcriptional program. In that sense, it has been reported that

more than half of the pairs of highly co-methylated genes - with

Pearson correlation coefficients above 0.75 - in breast cancer are on

different chromosomes and tend to participate in similar functions,

with enrichment in the pathways of adult onset diabetes,

hematopoietic lineage, long-term depression and interaction

between receptors and the extracellular matrix (40). Saving the

differences between studies, a pan-cancer analysis, which includes

breast cancer, reports tissue variability, but identifies 4 groups of

genes consistently co-methylated, two of which allow

discriminating between cancer and normal tissue samples, despite

containing only six cancer-associated genes: CSF2, GALR1, IRF4,

PTPRT, SOX11y NRG1 (51). However, the levels of methylation

and co-methylation do not necessarily imply a functional change in

the cell, there are more regulatory mechanisms at play and it is

estimated that only 15% of differentially methylated genes also

exhibit a change in expression (50).
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Estrogen receptor-a (ER) drives tumor development in ER-

positive (ER+) breast cancer. The transcription factor GATA3 has

been closely linked to ER function. Epigenetic changes in GATA3

function may thus be relevant to breast cancer biology. It has been

recently discussed how indirect changes in the activity

of the transcription factor GATA3 by TET2 knockdown

lead to epigenetic changes by significantly reducing 5-

hydroxymethylcytosine (5hmC) levels without similar changes in

methylated cytosine (5mC) (52). These changes are able to lead to

global transcriptional deregulation (see Figure 4).

Other specific findings are opening new avenues of research in

breast cancer biology. Such is the case of the recent discovery that

overexpression of MAGI2-AS3 diminishes DNA methylation of

MAGI2 in breast cancer cells (MCF-7) and thus would inhibit the

Wnt/b-catenin pathway also diminishing cell proliferation and

migration (53); the authors reported that MAGI2-AS3 may act as

a cis-acting regulatory element down regulating the DNA

methylation level of the MAGI2 promoter region.

In addition to providing information about the origin of tumors

and potentially active genes, DNA methylation has gained clinical

interest as a prognostic marker. DNA is a relatively resistant

material that can be manipulated more easily than the RNA

necessary to measure genetic expression (41) and that can be

recovered from different bodily fluids depending on the type of

cancer. As the tumor cells die, free DNA is released into the

bloodstream, where it can be detected with high sensitivity (31).

For example, from the levels of methylation in serum of women

with metastatic breast cancer, a subgroup with higher disease-free

survival could be distinguished, now recognizable by the

methylation of SFN, hMLH1, HOXD13, PCDHGB7, RASSF1 and

P16 (38). The hypermethylation of estrogen response elements is

used to predict reduced response to endocrine therapy, with the

methylation of PSAT1 as a specific indicator of response to

tamoxifen. There are also numerous studies exploring the early

detection of cancer using tests that measure DNAmethylation. Both
FIGURE 4

Epigenetic changes in the ER-complex may lead to global transcriptional deregulation in breast cancer [Figure created using Biorender.com, adapted
from (52)].
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their sensitivity and specificity exceed those reported for

mammography screening and are even higher for advanced

stages (48).

The other potential usefulness of DNA methylation is in the

treatment of cancer. The use of DNMT inhibitors as a sensitization

strategy to other treatments is promising for breast cancer, although

it has not yet been approved for routine clinical use. The DNMT

inhibitors decitabine and 5-azacitidine are used in the management

of hematological malignancies and can inhibit tumor growth in ER

+ breast cancer models in combination with chemotherapy or

immunotherapy. It is believed that these inhibitors activate the

immune response by stopping the silencing of tumor antigens.

What has been demonstrated is an increase in the expression of the

immunomodulator PD-L1 in cell lines and xenografts treated with

decitabine, which improves the recruitment of CD8+ cells and the

effectiveness of immunotherapy. Additionally, a benefit has been

reported in patients with BRCA1 methylation with the use of PARP

inhibitors and it is believed that the epigenetic characterization of

the response to CDK4/6 inhibitors could improve the management

of patients with ER+ and metastatic breast cancer who receive this

medication as first-line treatment, but do not always respond to

treatment (48).
2.2 Transcriptional level: transcriptional
factor analysis + transcriptomics

Transcription factors are a large family of proteins involved in the

regulation of gene expression. They can be categorized into general

factors involved in the transcription of most genes and sequence-

specific factors that direct the spatial and temporal expression

patterns of organisms. The ENCODE Factorbook database contains

profiles of nearly 700 proteins related to transcription, including

specific factors, cofactors, and members of the RNA polymerase II

complex. Transcription factors can recruit RNA polymerase directly

or rely on accessory factors for their function. Many eukaryotic TFs

require co-activator or co-repressor complexes involved in chromatin

remodeling. Some TFs interfere with the binding of other proteins

(54–56). The HumanTFs database defines transcription factors as

proteins that bind to DNA through a DNA binding domain (DBD)

and regulate transcription. The database includes 1639 probable

human transcription factors, with the C2H2-ZF and homeodomain

DBDs being the most common. TFs often have multiple copies of a

single DBD type and a combination of effector domains. The

expression patterns of TFs largely depend on the DBD, with

homeodomains showing tissue specificity. Transcription factors are

often grouped based on the family of their DBD, which reflects the

sequences they recognize. The largest families include C2H2-ZF,

homeodomain, bHLH (basic helix-loop-helix), bZIP (basic leucine

zipper), and NHR (nuclear hormone receptor), which were among

the earliest described. This grouping by DBD family has its roots in

homology and may have limited the identification of new factors, but

it aligns with the evolutionary history of DBDs, which originated

from a common ancestral set and underwent duplication and

divergence (55, 57–59).
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Transcription factors (TFs) can bind to specific sequences,

called motifs, in the regulatory regions of target genes. These

motifs are typically 6 to 20 base pairs long. Methods like ChIP-

seq and HT-SELEX are used to identify binding sequences and

determine motifs (56, 60). Weight matrices or hidden Markov

models are then used to characterize the binding preferences of

TFs, and databases like JASPAR store collections of motifs.

However, the presence of a motif alone does not guarantee that a

TF regulates a gene. Factors such as the accessibility of chromatin,

DNA methylation state, nucleosome positioning, and interactions

with other TFs also influence TF binding. Only the structural factor

CTCF binds to almost 14,000 instances of its motif in the genome,

while other TFs exhibit more complex binding patterns (61). TFs

compete or interact with nucleosomes to access their motifs. The

binding of TFs is associated with nucleosome repositioning, which

is anti-correlated with DNA methylation levels. The absence of

nucleosomes indicates a high and stable level of gene expression.

Single-molecule tracking studies have shown that TFs transiently

bind to DNA, and interactions between TFs can affect their

diffusion dynamics (62).

Although transcription factors have been divided into activators

and repressors, many TFs can recruit multiple cofactors with

opposing effects, making it more appropriate to include the target

and the condition under which a factor is operating. KRAB C2H2-

ZF factors are repressors of transposable elements, by promoting

their silencing (55); while HOXA5 functions as an activator of p53

in breast cancer cells (63, 64). Therefore, binding to the motif may

be insufficient to determine the effect of the TF on the locus, and

may simply reflect chromatin accessibility (54).

The binding of transcription factors (TFs) near the

transcription start site can provide insights into gene expression

levels. The binding of specific factors like E2F4 to non-methylated

promoters explains a significant portion of gene expression

variance, especially in CGI promoters. However, the predictive

power decreases in promoters with low CpG density, suggesting

the involvement of methylation in regulation. General factors

contribute to a larger percentage of expression variance, and this

percentage decreases when incorporating sequence-specific factors

and histone modifications, indicating redundant regulatory

mechanisms. Genes regulated post-transcriptionally, involved in

cell cycle control and exhibiting tissue-specific expression

differences, are particularly challenging to predict (54). In a study

by Inoue and Harimoto, four expression patterns were identified

among gene-TF pairs: no change, correlated expression, non-

correlated expression due to constant TF levels, and lack of

correlation due to variable genes. Correlated expression was

associated with cell cycle and DNA replication genes, while

various human diseases were linked to non-correlated expression.

The lack of correlation revealed additional regulatory mechanisms.

The third pattern, characterized by constant TF binding and gene

degradation based regulation, was associated with genes whose

expression is primarily determined by transcript degradation

rather than synthesis. Disruption of degradation in such cases can

have detrimental effects, as seen in the accumulation of the

oncogene b-catenin (65).
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2.2.1 TFs in breast cancer
Transcription factors regulate a large number of biological

processes and are essential for maintaining homeostasis, so it is

not surprising that their alteration is associated with different

diseases. In particular, TFs represent almost 20% of the identified

oncogenes (47). However, transcription factors are not only affected

by direct mutations, but the mutation and methylation of regulatory

regions can also disrupt their binding and function (55).

In addition, there are a large number of transcriptional

cascades triggered by the action of a few factors, which act as

master transcriptional regulators. Master regulators are the

genes that control the specification of a lineage either by direct

or indirect regulation, whose altered expression can change cell

fate (66). In breast cancer, AGTR2, ZNF132, and TFDP3 have

been identified as master regulators linked to the distinctive

features of cancer. Focusing on the signal transduction pathways,

TSHZ2, HOXA2, MEIS2, HOXA3, HAND2, HOXA5, TBX18,

PEG3, GLI2 and CLOCK were also identified, with the latter

being the only positive regulator. Regulators in both sets show

some redundancy in their targets, suggesting robust regulation.

In the case of signal transduction, the Hedgehog pathway stands

out for its relationship with morphogenesis and the self-renewal

of stem cells (64, 67).

This relationship between cancer and cell differentiation and

morphogenesis fits with the oncogenic theory of cancer, according

to which, the aberrant expression of development genes allows the

reprogramming of somatic cells to an immortal stem cell line of

cancer cells, and then to a new cell identity (68). The epithelial-

mesenchymal transition is a good example of this theory, as it

depends on the same transcription factors - Snail, Slug, Twist and

FoxD3 - during development as well as during cancer progression.

Eventually, metastasis also resembles embryonic development of

different structures, as it depends on the same morphogens: Wnt

and Hedgehog ligands, bone morphogenetic proteins (BMPs), and

fibroblast growth factors (FGFs) (47).

On the other hand, while the alteration of transcription factors

or their expression modifies complete processes, the alteration of

binding motifs also has an effect, perhaps more limited, by affecting

only the relationship between the TF and a target gene, but equally

problematic. When analyzing the accessibility of DNA in 23

different types of cancer, hundreds of non-coding and somatic

mutations were found that affect the binding of transcription

factors, suggesting a ubiquitous mechanism for manipulating

genetic expression. The grouping of cancer types by DNA

accessibility agrees with the grouping by multi-omic expression -

expression of transcripts, microRNAs and proteins, in addition to

DNA methylation and copy number - suggesting functional

relevance (69). Accessible and specific regions of a group are

hypomethylated compared to other clusters, while exhibiting

enrichment of SNPs and cancer-associated TF motifs better

represented in the cluster. Approximately 65% of these SNPs do

not have the nearest gene as a putative target. When focusing on

breast cancer, 36% of accessible regions were also accessible in other

types of cancer, establishing a division between basal and non-basal

tumors, and, as a result, a survival difference dependent on the

accessibility of ESR1 motifs (6).
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Of the 294 oncogenic TFs (70), the androgen and estrogen

receptors, the BRCA1 and BRCA2 genes, MYC and GATA3 stand

out for their association with breast cancer subtypes. The androgen

receptor has been associated with the Her2-enriched subtype (14),

although it also has clinical relevance, and is in fact more common

in ER+ tumors (71). The estrogen receptor, on the other hand, is the

marker par excellence of the luminal subtypes; while germline or

somatic mutations of the breast cancer susceptibility genes and

MYC activation are frequent in the basal subtype. Finally, the

transcriptional factor GATA3 is particularly mutated in luminal

tumors, where it is also often overexpressed (5).

Given the relevance of the estrogen receptor in the classification

of breast cancer, it is worth delving into its functioning. In addition

to its role as a transcriptional factor, ER is a member of the nuclear

hormone receptor superfamily, encoded by the paralogs ESR1, on

6q25.1 and ESR2, on 14q22-24. The receptors that result from each

gene, ERa and ERb, respectively, have tissue-specific expression

and differences in terms of structure and DNA binding, which

nevertheless allow the formation of homodimers and heterodimers

with a similar affinity for DNA. Steroid hormones diffuse through

the plasma membrane and once the ligand binding domain of the

receptor receives estrogen, a stable dimer is formed, capable of

interacting with specific sequences through the DNA binding

domain. The estrogen response elements (EREs) are palindromes

of 5 base pairs separated by 3 bps, whose consensus sequence is

GGTCAnnnTGACC. When the activated receptor binds to the

ERE, it is believed that a pre-initiation complex for RNA

polymerase is formed, through the inactivation or dissociation of

co-repressors and the recruitment of co-activators, which favors cell

proliferation (1).

In addition to the nuclear ER, there are receptors on the plasma

membrane and in the mitochondria. On the membrane, the ER

associates with lipid vesicles, interacts with growth factor receptors

such as EGFR and HER2 and participates in non-genomic

responses to estrogen, which range from the activation of kinases

to the modulation of cellular migration, survival and proliferation.

In the mitochondria, the presence of ERb affects metabolism and

anti-apoptotic signals (72).

The activity of the receptor changes with the nature of the

ligand, phosphorylation and interaction with other TFs. The ER can

promote transcription without hormone, either by interacting with

the transcription factor Sp1 and its response elements or because

extracellular growth factors cause phosphorylation and activation of

the ER, crossing steroid hormone signaling pathways and receptors.

The interaction with other TFs explains the activation of genes

without ERE, while the interaction of ER with cyclin D1 allows the

receptor to bind to EREs, also without estrogen and additively when

there is hormone.

In addition, the function of the ER depends on the expression of

the receptor, which is subject to regulation at multiple levels. The

receptor promoter contains the motifs of different transcription

factors such as Sp1, FoxA1 and Ezh2; in addition to several

incomplete EREs. For its part, the six known isoforms of the

messenger encode the same protein, but exhibit tissue-specific

expression patterns and include different 5’UTRs, which seem to

fold with more or less stability and could alter the efficiency of
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translation. On the other hand, the 3’UTR contains the seeds of 72

microRNAs, including miR-22, miR-206, miR-221 and miR-222,

which are overexpressed in ER- tumors compared to ER+ and; the

miR-17-92-miR-18a, miR-19b and miR-20b cluster, whose

expression depends on ERa and cMYC, forming a negative

feedback loop. Normally the 29 CpGs on ESR1 lack methylation,

however extensive methylation has been documented in ER- cell

lines (1).

The main alteration of the ER during the progression of breast

cancer is in terms of its genetic expression. Although normal tissue

only presents ERa, early ductal tumors have high levels of ERa and

low levels of ERb, while in advanced stages both receptors are lost.

On the contrary, lobular tumors begin with high levels of both

receptors and end up losing ERb (73). Large disruptions and loss of

heterozygosity rarely affect the receptor, so they cannot be used to

explain ER- status. In other words, there are few documented

mutations in primary tumors, which become frequent in

metastatic lesions. For example, the Y537N mutant, which has

been linked to bone metastasis and allows the constitutive activation

of the TF, by abolishing the phosphorylation site. In addition, about

7% of tumors have mutations in the enhancers linked to ESR1 (7).

Therefore, the alteration in breast cancer of the ER is more at the

level of expression and has transcriptional effects.

Chromatin precipitation studies indicate between 5000 and

1000 EREs, which are reduced to approximately 1500 estrogen

response genes (1). However, the effect of the TF is not solely local.

Initially, it was described that ERa, FOXA1 and AP-2gmediated the

long-distance interaction between GREB1 and TFF1, but thanks to

ChIA-PET studies, 689 chromatin loops formed by the interaction

between distal and proximal EREs are now known. The loops are

formed both intrachromosomally and interchromosomally and are

believed to form subcompartments in the nuclear space (1, 74).
2.3 Postranscriptional level: microRNA
expression + transcriptomics

MiRNAs are small, non-coding RNAs that regulate gene

expression post-transcriptionally (36). They inhibit translation

through base complementarity and can positively influence

translation (75). MiRNAs are evolutionarily conserved, tissue-

specific, and crucial for various cellular processes like

proliferation and apoptosis (76–78). They can regulate a large

portion of coding genes, impacting the cell’s gene expression

profile (79). MiRNAs are abundant in somatic tissues and play a

vital role in maintaining transcriptional network integrity (80).

MiRNA production involves several steps: transcription of

primary miRNAs (pri-miRNAs), recognition by the Drosha

complex, formation of pre-miRNAs, export to the cytoplasm,

processing by DICER, and transfer to the RISC complex (81, 82).

Pri-miRNAs undergo cuts and modifications to become mature

miRNAs, which play important roles in cellular processes (83). The

production of mature miRNAs is efficient in healthy adult

tissues (84).

MiRNA transcription can originate from their own promoters

or coding gene promoters. They can be mono or polycistronic, with
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families sharing sequence similarity and functionality (75). For

example, the miR-200 family is transcribed from different loci

(81, 85). MiRNAs function as guides within the RISC complex,

binding to messenger RNAs (mRNAs) in the 3’UTR region through

miRNA response elements (MREs) (78). Binding leads to mRNA

degradation mediated by argonaute proteins (77).

Predicting target messengers for miRNAs is challenging due to

the size and low specificity of miRNAs. In addition to sequence

information, conservation and thermodynamic stability play

important roles. Various algorithms have been developed,

including sequence-based and gene expression-based approaches

that consider negative correlation or employ more complex

methods (86). Databases like miRanda, TargetScan, and

miRTarBase, which store predictions and validated cases, are

valuable resources for miRNA target information (87).

2.3.1 miRNAs in breast cancer
Counterintuitively given its pleiotropic role, many microRNAs

are found in fragile regions of the genome and suffer from

alterations in copy number (88), as seen with miR-125b, let-7g,

miR-21, and 72.8% of miRNAs associated with breast cancer (23).

While mutations on specific microRNAs have a limited effect,

alterations to the miRNA production process affect the cell on an

even wider scale, as they simultaneously alter multiple pleiotropic

regulators. As a result, mutations in DROSHA and DICER are

linked to low survival in patients with ovarian, lung, and breast

cancer. Genetic expression alteration has been attributed to the

regulators MYC and ADARB1 in the case of DROSHA, and miR-

103/107 and let-7 in the case of DICER. Under-expression of

DICER is associated with the basal subtype of breast cancer (77).

Interestingly, there are miRNAs that are over-expressed when

DROSHA or DICER are under-expressed, suggesting an

alternative mechanism. The binding of KSRP to the RISC

complex along with some pre-miRNAs, such as miR-21, posits

this splicing protein, which is induced in response to DNA damage,

as a possible part of that mechanism (82).

Other components of the microprocessor complex that are

altered in cancer are DGCR8 and the helicases p68 and p72,

which connect the microprocessor complex to p53. In the next

step in miRNA production, inactivating mutations of XPO5 in

tumors with microsatellite instability in colon, gastric, and

endometrial tumors have been identified. The mutation of XPO5

increases the risk of breast cancer. The phosphorylation of XPO5 by

MAPK/ERK in liver cancer has the same result as inactivating

mutations, by preventing the export of pre-miRNAs to the

cytoplasm. Outside the nucleus, factors associated with DICER,

such as TARBP2 and AGO2, also exhibit alterations. Mutations in

TARBP2 identified in carcinomas with microsatellite instability

change the reading frame of the gene; while its under-expression

is associated with melanomas and metastatic tumors of the breast

and prostate. Over-expression of AGO2 has been reported in breast,

gastric, and head and neck tumors (89).

Dependent on transcription, miRNAs are also modulated by

DNA methylation and transcription factor binding. It is estimated

that about 33% of the de-regulated miRNAs in cancer have

alterations in DNA methylation (84). In cell lines without
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DNTM1 or DNTM3B, placentary miRNA expression is observed,

normally silenced. In this regard, an important overlap has been

reported between microRNAs marked by the Polycomb silencing

complex in embryonic stem cells and those with CGI methylation in

tumor cells (90). To mention a specific example, there is miR-205,

whose sub-expression is associated with methylation of its

promoter and resistance to treatment and epithelial-mesenchymal

transformation (EMT) (75).

Another recent example is upregulation of miR-375 via EZH2

methylation leading to FOXO1 inhibition. Inactivation of FOXO1

in turn promotes deregulated responses of the p53 pathway

associated with breast cancer oncogenesis (91). Thus mir-375 has

been recognized as a epigenetically regulated oncomir in breast

cancer (Figure 5).

Examples of transcriptional regulation of microRNAs include

regulation of MYC over miR23a and of NFkB over miR-29b (79).

The case of miR-29 is interesting, because both regulators and

effectors of the miRNA are known. MYC binding seems to be the

initial step of silencing, and is followed by recruitment of histone

modifiers. As part of the so-called epi-miRNAs, the miR-29 family

inhibits DNMT3A, DNMT3B and DNMT1 (75, 79).

Finally, the tumor microenvironment can also alter miRNA

levels, as observed in hypoxic breast tumors, where hypoxia inhibits

oxygen-dependent histone demethylases KDM6A and KDM6B. As

a result, the methylation - at the histone level - of the DICER

promoter increases and its expression decreases, which also

decreases the processing of miRNAs. The miR-200 family is one

of the main ones affected by the sub-expression of DICER (82).

By regulating the expression of transcription factors ZEB1 and

ZEB2, which inhibit the transcription of epithelial genes such as
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E-cadherin; the loss of miR-200 favors the epithelial-mesenchymal

transformation and is associated with metaplastic and aggressive

breast tumors (76). In parallel to EMT, the loss of miR-200 releases

the transcription factor ETS1 from the repression of the miRNA.

ETS1 regulates the expression of angiogenic factors and, together

with ELK1, triggers the methylation - at the DNA level - of the

DROSHA promoter, further reducing miRNA levels, which has

been associated with poorly differentiated tumors (76, 82).

On the other hand, it is common to find circulating miRNAs in

fluids such as plasma and saliva. MicroRNAs in blood serum can

even be used as prognostic biomarkers in breast, prostate, colon,

ovarian and lung cancer. Specifically, the detection of mir-21, miR-

92a, miR-10b, miR-125b, miR-155, miR-191, miR-382 and miR-30a

would allow early identification of breast cancer (36). These

miRNAs are protected from the action of RNAses thanks to their

binding with lipoproteins and ribonucleoproteins or by their

packaging in microvesicles (77). Once they are endocytosed, the

regulation of translation in receptor cells is altered, involving

microRNAs as signaling molecules. In this sense, it has been

shown that cancer-associated fibroblasts secrete a different

spectrum of miRNAs than normal fibroblasts, and these are not

the only components of the microenvironment releasing

microRNAs (78).

Even without considering circulating miRNAs, there is a clear

difference between the profiles of normal breast tissue and tumors,

with miR-10b, miR-125b, miR-145, miR-21 and miR-155 showing

the most significant differences (88). In addition, miRNA

expression profiles can distinguish between subtypes of breast

cancer (5) and between cell subpopulations, with luminal

progenitors being the cells most similar to basal tumors and
FIGURE 5

Epigenetic activation of the mir-375 oncogene [Figure created using Biorender.com, inspired from (91)].
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mature luminal cells being the closest to luminal B subtype tumors.

Luminal microRNAs regulate cell differentiation and development;

while basal microRNAs regulate intracellular localization, organelle

transport and biosynthesis, secretion and cell-cell interaction (92).

Although the correspondence between intrinsic subtypes and

miRNA profiles is noisy (5), the over-expression of miR-206 has

been associated with ER- tumors and the under-expression of miR-

125a/b with those enriched in Her2 (76).

MiR-206 inhibits the expression of ESR1; while its expression is

favored by ERa and not by ERb or progesterone, suggesting a

negative feedback loop. Other miRNAs that regulate ESR1 are

miR-18a/b, miR-193b and miR-302c, whose expression, along with

that of miR-206, causes cell cycle arrest and inhibits estrogen-

dependent proliferation. In addition, miR-17-5p has the same

effect, due to an indirect regulation of ERa through AIB1. The

miRNA profile of breast cancer stem cells is also different, being

enriched with miRNAs associated with self-renewal, such as let-7 and

miR-34. Let-7 regulates oncogenes such as HRAS, HMGA2, MYC

and caspase-3. In breast cancer over-expression of miR-34 causes cell

cycle arrest and its under-expression increases invasive capacity (77).

miRNAs with a role in cancer can function as oncogenes or as

tumor suppressors, depending on their targets. Tumor suppressor

microRNAs inhibit the expression of genes that promote tumor

development, so their sub-expression is harmful, as is the case with

miR-200. OncomiRs, on the other hand, regulate tumor suppressors

and it is their over-expression that is harmful, as is the case with

miR-21, which regulates promoters of apoptosis and cell migration

(77). In addition, a subcategory of oncomiRs could be defined

with miRNAs exclusively pro-metastatic, such as miR10b and the

miR-373/520c family. It has been reported that miR-10b is over-

expressed only in metastatic breast cancer cells and not in the

primary tumor; miR-10b inhibits the transcriptional factor

HOXD10 and, in doing so, triggers a cascade of changes that

ultimately lead to pro-metastatic RHOC expression, cell migration,

and invasion (76).

However, the role of a miRNA could depend on the cellular

context, as miRNA-mRNA regulatory interactions may not

necessarily exist in all types of cancer (86). In a pan-cancer,

computational study of miRNAs that direct genetic expression, it

was observed that miRNA-gene interactions are not conserved,

even though there are 22 miRNAs that do function as drivers in

different types of cancer. Except for miR-5001 in colorectal cancer

and miR-2276 in endometrial cancer, in this study all miRNAs are

classified as tumor suppressors and the let-7 family functions as a

TSG and as an oncomiR at the same time (93).

Despite the fact that each miRNA can regulate hundreds of

genes, miRNAs have been proposed as possible means to regulate

cancer genes, either by introducing oligonucleotides similar to

miRNA to restore miRNA expression and suppress oncogenes, or

by introducing antagonists to inhibit the miRNA of interest. An

example of antagonists or antagomiRs are miRNA sponges,

synthetic messengers with multiple binding sites for a specific

miRNA, which then capture it, preventing it from inhibiting

TSGs. There are formulations of miRNA-like oligonucleotides,

miRNA sponges, anti-miRNA oligonucleotides, and small

molecules that are being studied in cancer models. For breast
Frontiers in Oncology 13
cancer, at least an antagomiR-10b and a miR-195-like oligo have

been tested. The antagonist inhibits lung metastasis, but not the

growth of the primary tumor in mice; whereas the miR-195-like

oligo increases sensitivity to treatment and inhibits Raf1 and Bcl2

translation in cell lines (77, 78).
3 Single cell breast cancer
multi-omics

In recent times, multi-omic approaches have been further

advanced with the advent of single cell sequencing techniques

that have allowed for the integration of transcriptome data, as

well as, other omics such as ATAC-seq (Assay for Transposase-

Accessible Chromatin using sequencing) (94) to achieve a deeper

understanding of molecular profiles and its functions at the level of

a single cell or cell-type. These already outstanding methods are

being further advanced by the integration of spatial multi-omics

(95). The goal of spatial approaches is to be able to assign cell types

(as identified by the mRNA and other omic sequencing readouts) to

their locations in the histological sections of a given sample tissue.

Spatial omics allow, for instance, to uncover cellular heterogeneity

in tissues, tumors, immune cells as well as determine the subcellular

distribution of biomolecules in diverse phenotypes.

Single cell and spatial multi-omics are thus becoming relevant

tools and methods to analyze cancer biology from its basic

principles (e.g. oncogenesis) (96) to the way these tumors evolve

and their related outcomes by allowing to account for issues such as

how dynamic processes and clonal selection manifest in cellular

states, epigenetic profiles, spatial distributions and interactions with

the microenvironment (97, 98).

Single cell studies in breast tumors, although quite recent, are

starting to render fruits in the understanding of breast cancer

heterogeneity as exemplified by the recent discovery of two lipid-

associated macrophage states LAM1 and LAM2 (99) that are being

established as biomarkers distinct clinical outcomes in several

breast cancer datasets (100). Single cell multi-omics is also being

used to develop strategies for clinical trial evaluation and drug

discovery (101).
4 Applications of concerted
multi-omic regulation analysis
in breast cancer

The concurrent activity of several biological processes as measured

by diverse omic technologies is paving the way towards advancing,

both our knowledge about breast tumor biology and our therapeutic

approaches. A number of these advances have ben summarized

recently by Mehmood and collaborators (102). These authors have

described the power of multi-omics to face the challenges of multidrug

resistance (MDR) and relapse in breast carcinoma treatment. They

emphasize the importance of elucidating multi-omic mechanisms to

design therapies able to overcome drug resistance. Since breast

carcinoma treatment decisions rely not only on prognosis factors but
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also on the assessment of pathological and clinical factors, the

integration of data from multiple factors through a multiomics

approach can provide valuable insights for therapeutic decisions.

Along the same lines Ektefaie et al. (103), describe the development

of weakly supervised deep learning models for analyzing multiomics

from breast cancer biopsy samples. These automatedmodels developed

for tumor detection and pathology subtype classification demonstrated

high accuracy and were validated in independent cohorts.

Regarding the interplay of epigenomic and genomic features, it has

been discussed (104) that the CT83 gene is frequently activated in triple

negative breast carcinomas (TNBC) and several other cancers, while it

remains silenced in non-TNBC, normal nontestis tissues, and blood

cells. A significant correlation was found between hypomethylation on

chromosome X and the abnormal activation of CT83 in breast cancer.

Furthermore, the activated CT83 was associated with unfavorable

overall survival in breast cancer and worse outcomes in other

cancers. The authors argue that abnormal activation of CT83 is likely

oncogenic by triggering cell cycle signaling. Also in the context of

TNBC multi-omic studies (17) combined with immune profiling have

revealed a classification of the microenvironment phenotypes in triple-

negative breast cancer (TNBC) into three distinct clusters. Cluster 1,

known as the immunedesert cluster, exhibits low infiltration of

microenvironmental cells. Cluster 2, referred to as the innate

immune-inactivated cluster, demonstrates the presence of resting

innate immune cells and nonimmune stromal cells infiltration.

Lastly, cluster 3, the immune-inflamed cluster, shows abundant

infiltration of both adaptive and innate immune cells. The clustering

results were validated internally using pathologic sections and

externally using The Cancer Genome Atlas and METABRIC as

independent cohorts. These microenvironment clusters also

displayed significant prognostic efficacy. The authors describe

potential immune escape mechanisms associated with each cluster.

Cluster 1 is characterized by an inability to attract immune cells, with

low immune infiltration correlated with MYC amplification. In cluster

2, chemotaxis but innate immune inactivation and low tumor antigen

burden potentially contribute to immune escape, with mutations in the

PI3K-AKT pathway possibly associated with this effect. Lastly, cluster 3

is distinguished by high expression of immune checkpoint molecules.

A similar approach to classification was made by Coria-Rodriguez and

coworkers (105) to infer epigenomic signatures to define TNBC classes

with differential response to therapy with drug repurposing goals

in mind.

Tumor metabolic reprogramming has been studied with a

multi-omic strategy by Iqbal and his group of collaborators (106)

to show that there are antagonistic roles of CBX2 and CBX7 in

metabolic reprogramming of breast cancer. They identified

significant roles of CBX2 and CBX7 in positive and negative

regulation of glucose metabolism and provided functional

evidence for the mTOR complex 1 signaling in mediating

competing effects of CBX2 and CBX7 on breast cancer

metabolism. Disease-specific survival and drug sensitivity analysis

revealed that CBX2 and CBX7 predicted patient outcome and

sensitivity to FDA approved/investigational drugs.

Muli-omic analysis have also provided relevant clues, for

instance on the role of lipid metabolism for the development and

outcomes on early breast carcinomas (107). Concurrent ultrahigh-
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experiments along with transcriptomics, and genomics data led to

the identification of 18 oxylipins, metabolites of omega-3 or omega-

6 polyunsaturated fatty acids, that were differentially expressed in

breast tumors versus healthy sample tissues, including anandamide,

prostaglandins and hydroxydocosahexaenoic acids. The authors

hypothesize that oxylipin signatures reflect the organism’s level of

response to the disease and may become markers of malignancy.

Tumor survival and drug-response predictions have been

discussed at the light of breast cancer multi-omics (108) aimed on

quantifying survival and drug response. The framework utilizes

Neighborhood Component Analysis (NCA) for feature selection

from multi-omics datasets obtained from The Cancer Genome

Atlas (TCGA) and Genomics of Drug Sensitivity in Cancer

(GDSC) databases. A Neural network framework, fed with the

NCA selected features, is used to develop prediction models for

survival and drug response in breast cancer patients. The results

demonstrate a strong linear relationship between predicted and

actual IC50 values outperforming previous approaches and

highlighting the importance of multi-omics data integration.

The improved knowledge provided by multi-omic studies is also

impacting on novel treatment designs such as immunotherapy, as

has been recently summarized in the review work by Leung, et al.

(109); a well as clues helping to advance druggable targets and

autophagic modulators such as SF3B3 and SIRT3, that may improve

the treatment of invasive breast carcinomas (110); and on exploiting

the therapeutic and diagnostic value of IMMT in breast cancer as

well as its immunological role (111). Immune infiltrate activity in

breast tumors has been also further clarified by multi-omics as

exemplified by the work of Tian and collaborators (112) about the

relationship plasmacytoid dendritic cells and breast cancer.

Multi-omic strategies have also allowed to discern particular

sets of biomolecular interactions relevant to certain aspects of breast

cancer biology. Some of these interactions are indeed becoming

interesting clues towards targeted therapy. Such is the case of the

mechanisms by which the mitochondrial protease ClpP is activated

by drugs that are able to breakdown essential mitochondrial

pathways in triple-negative breast cancer (113). Similarly, the role

of heat shock proteins (which may be either acting as oncogenes

and onco-suppressor genes) has been recently discussed at the light

of multi-omic analysis (114). Discerning the mechanisms of novel

therapeutic drugs such as signaling inhibitors is crucial on our

advance towards precision therapeutics of breast cancer. In this

regard, Marczyk and collaborators (115) have studied the effects of

navitoclax, a BCL2 family inhibitor, on the transcriptome,

methylome, chromatin structure, and copy number variations of

MDA-MB-231 triplenegative breast cancer (TNBC) cells. They

were able to derive an 18-gene navitoclax resistance signature.

Other pharmacological resistance mechanisms have been further

elucidated. For instance, methylation events leading to HSD17B4

silencing have been identified as part of a predictive and response

marker of HER2-positive breast cancer to HER2-directed

therapy (116).

Breast cancer multi-omic integration tools have been recently

developing at a fast pace. In order to better exploit the available and

upcoming resources, researchers at the Chinese Academy of
frontiersin.org

https://doi.org/10.3389/fonc.2023.1148861
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ochoa and Hernández-Lemus 10.3389/fonc.2023.1148861
Sciences implemented MOBCdb a database integrating multi-omics

data on breast cancer (117). MOBCdb is a user-friendly and readily

available database that combines genomic, transcriptomic,

epigenomic, clinical, and drug response information from various

subtypes of breast cancer. It offers a convenient platform for users to

access simple nucleotide variations (SNV), gene expression,

microRNA expression, DNA methylation, and specific drug

response data through different search methods. Additionally, the

genome-wide browser and navigation feature in MOBCdb enable

simultaneous visualization of mult i-omics data from

multiple samples.
5 Conclusions

We have discussed how various types of gene regulatory

phenomena in breast cancer arise from several omics data, such

as gene and non-coding RNA transcriptomics, methylation and

transcription factor activity, as reported in the recent literature. We

have also discussed how this knowledge can be integrated to provide

a more comprehensive understanding of gene regulation in breast

cancer, highlighting the importance of considering the spatial and

temporal context in which gene regulation occurs, as well as the role

of regulatory elements such as non-coding RNA and epigenetic

modifications. In this regard, recent advances in single cell

approaches to breast cancer multi-omics have been also

presented. Some applications to tumor sub-classification,

prognosis and survival analysis, drug repurposing and

personalized therapeutic designs were introduced.

For concreteness, other potentially relevant aspects of the

complex regulatory patterns in breast cancer have been left out

for future discussion. Such is the case of the role played by copy
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number variants, long non-coding RNAs and the multi-scale three

dimensional structure of nuclear chromatin. However, by

considering the levels discussed in this review article, we have

tried to unveil the potential of multi-omic approaches to improve

our understanding of the complex molecular processes underlying

breast cancer that may hopefully help us identify new

therapeutic targets.
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et al. Consenso Mexicano sobre diagnosticó y tratamiento del canceŕ mamario (Mexican
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