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Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis.

Lynch syndrome (LS) is one of the most common HCS, caused by germline

mutations in the DNA mismatch repair (MMR) genes. Even with prospective

cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal,

endometrial, and other cancers. While significant progress has been made in the

timely identification of germline pathogenic variant carriers and monitoring and

early detection of precancerous lesions, cancer-risk reduction strategies are still

centered around endoscopic or surgical removal of neoplastic lesions and

susceptible organs. Safe and effective cancer prevention strategies are critically

needed to improve the life quality and longevity of LS and other HCS carriers. The

era of precision oncology driven by recent technological advances in tumor

molecular profiling and a better understanding of genetic risk factors has

transformed cancer prevention approaches for at-risk individuals, including LS

carriers. MMR deficiency leads to the accumulation of insertion and deletion

mutations in microsatellites (MS), which are particularly prone to DNA

polymerase slippage during DNA replication. Mutations in coding MS give rise

to frameshift peptides (FSP) that are recognized by the immune system as

neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and

predictable FSP neoantigens in the same and in different LS patients. Cancer

vaccines composed of commonly recurring FSP neoantigens selected through

prediction algorithms have been clinically evaluated in LS carriers and proven

safe and immunogenic. Preclinically analogous FSP vaccines have been shown to

elicit FSP-directed immune responses and exert tumor-preventive efficacy in

murine models of LS. While the immunopreventive efficacy of “off-the-shelf”

vaccines consisting of commonly recurring FSP antigens is currently investigated

in LS clinical trials, the feasibility and utility of personalized FSP vaccines with
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individual HLA-restricted epitopes are being explored for more precise targeting.

Here, we discuss recent advances in precision cancer immunoprevention

approaches, emerging enabling technologies, research gaps, and

implementation barriers toward clinical translation of risk-tailored prevention

strategies for LS carriers. We will also discuss the feasibility and practicality of

next-generation cancer vaccines that are based on personalized immunogenic

epitopes for precision cancer immunoprevention.
KEYWORDS

lynch syndrome, DNA mismatch repair deficiency, microsatellite instability, frameshift
mutations, tumor neoantigens, cancer vaccines, immunoprevention, precision
cancer prevention
Introduction

Cancer prevention strategies are generally centered around the

reduction of cancer risks. Modifiable cancer risk factors include

tobacco use, alcohol consumption, obesity, diabetes, and infection

with oncogenic viruses, such as human papillomaviruses (HPV)

and hepatitis B virus (HBV). Lifestyle changes and receiving

prophylactic vaccines against HPV and HBV can significantly

reduce these risks (1). In contrast, genetic predisposition to

cancer is not modifiable. Individuals with hereditary cancer

syndromes (HCS) account for 5 to 10% of all cancer cases (2).

They are clinically identifiable by genetic testing (3–5), are well

characterized with predictable ages of disease onset, organ

involvement, and molecular pathophysiology, and can be closely

monitored for early cancer detection and diagnosis based on HCS

guidelines (6). Cancer risk mitigation strategies for HCS carriers,

therefore, include primary prevention of cancer as well as detection

and elimination of cancer precursors and early-stage (in situ)

cancers before they progress to invasive cancers, the approach

referred to as cancer interception (7). While much progress has

been made in the development of new or improved methods of

detecting cancer early (8), with the exception of aspirin for Lynch

syndrome (LS) (9) there are currently no effective cancer preventive

or interceptive approaches available to them other than surgical

(endoscopic or surgical) removals. Most of the conventional

anticancer therapeutic agents are too toxic for cancer interception.
ynch syndrome; MMR,

ides ; TME, Tumor

bitors; cMS, Coding

ency; CRC, Colorectal

nal mismatch repair

ditary non-polyposis

icrosatellite instability;

lymphocytes; NSAIDs,

lifying RNA; circRNA,

oid derived suppressive

cells; ICR, Immune

02
Vaccine-preventable infectious diseases (10) are a good example

of illnesses that can be safely prevented if vaccines are used as

recommended. The unprecedented speed of successful development

and deployment of COVID-19 mRNA vaccines in 2020 ~ 2021 was

a tremendous scientific achievement that had culminated from

years of research in relevant scientific disciplines, including

coronavirus virology, vaccinology, and innovative mRNA vaccine

technology, and a strong public-private partnership (11, 12).

Prerequisites for successful vaccine development generally

include identification and characterization of causative agents,

understanding of disease pathogenesis and pathophysiology, and

availability of suitable preclinical tools and animal models, which

recapitulate human disease conditions and host immune responses

and therefore can provide a proof of principle for in vivo vaccine

efficacy. Compared to prophylactic vaccines against infectious

pathogens that have generally fulfilled these prerequisites

throughout the history of vaccine development (13), the

development of cancer vaccines in general has been met with

more challenges (14).

The effect of cancer vaccine was first evaluated in cancer patients

in 1959 (15) shortly after Burnet postulated the concept of cancer

immunosurveillance (16).While important advancements were made

in cancer immunology and vaccinology over the last several decades,

the majority of cancer vaccine research has focused on eliciting

effective antitumor immunity to treat advanced cancer (17).

Various therapeutic cancer vaccines were extensively evaluated in

patients with advanced cancer with little success, likely due to the

immunosuppressive factors locally in the tumor microenvironment

(TME) and systemically (18). The concept of cancer vaccines for

immunoprevention started gaining more traction in the last 20 years

owing to the pioneering work of Finn, Disis, and others against non-

viral cancers (14, 19–25). Target antigens selected for cancer

preventive vaccines have predominantly been tumor-associated or

tumor-specific antigens that are overexpressed or specifically

expressed in cancer precursors and cancer cells and proven

immunogenic across different HLA types (26, 27). Cancer vaccines

with such commonly expressed (shared) tumor antigens can be more

easily studied for efficacy in a well-defined high-risk cohort and thus

can be streamlined for further development.
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More recently, successful immunotherapy outcomes with

immune checkpoint inhibitors (ICI) for various cancers have

clearly shown that the immune system can mount strong

antitumor immune responses leading to complete remission in

some cases if systemic and local immunosuppression in the TME

is effectively blocked (28, 29). Interestingly, antitumor immune

responses unleashed by immune checkpoint blockade have been

shown to target a large repertoire of tumor antigens that are unique

to individual patients (i.e., personalized antigens) (30–32). It is

conceivable that more robust and durable antitumor immunity can

be elicited by cancer vaccines in the prevention or interception

setting, wherein local immunity in the TME is less compromised

and there is still low clonal heterogeneity of tumor antigens (22, 33,

34). Naturally, questions arise as to whether immunopreventive

cancer vaccines can be developed based on personalized tumor

antigens and whether such personalized vaccines are more

efficacious and desirable than cancer vaccines that target shared/

common tumor antigens. This review will discuss the development

of LS vaccines as a model strategy for preventing cancer in HCS

cohorts, emerging enabling technologies, research gaps and

implementation barriers for cancer immunoprevention, and

research trajectory towards next-generation precision cancer

vaccines for immunoprevention.
Precision cancer prevention

Apart from the modifiable risk reduction strategies discussed

earlier, cancer prevention for high-risk cohorts can be improved by

determination of risks based on oncogenic mechanisms inherent to

a specific cohort, closer monitoring of affected individuals for early

cancer detection, and timely and effective interventions developed

specifically for each high-risk group. These risk-tailored cancer

prevention strategies are interchangeably referred to as personalized

or precision cancer prevention. For the purpose of this review,

which is focused on cancer prevention strategies for HCS cohorts, in

particular LS, we define precision cancer prevention as risk-tailored

cancer prevention strategies informed by underlying oncogenic

mechanisms responsible for the development and progression of

cancer and molecular alterations targetable for cancer prevention

and interception in high-risk populations (35). We will use the term

“personalized” when we refer to tumor antigens unique to each

individual as opposed to shared or commonly expressed

antigens (36).

The concept of precision oncology was originally introduced as

cancer genomics-informed “personalized or precision” cancer

medicine to facilitate the decision on treatment choices for

individual cancer patients (37). The common denominators of

precision cancer prevention and precision cancer medicine

strategies are the involvement of molecular and immune

mechanisms of oncogenesis in the decision-making process for

interventions rationally and uniquely developed for individuals.

Neoantigens are newly acquired and expressed “non-self” antigens

arising from gene mutations, exogenous genes (e.g., viral proteins),

or alternative antigen processing. The host immune system

recognizes these neo-peptides presented with MHC molecules on
Frontiers in Oncology 03
the cell surface as non-self, mount immune responses against them,

and eliminate the neoantigen-expressing aberrant cells from the

body (38). During tumor development and progression, tumors

accumulate numerous gene mutations, which, if translated, give rise

to neoantigens (39, 40). These neoantigens expressed in cancers can

be targeted by the host immune system for surveillance and

elimination. Although it’s been long postulated that tumor

neoantigens would serve as promising cancer vaccine antigens,

the discovery and neoepitope selection was a major hurdle until

recently. The advent of next-generation sequencing technologies

and rapid development of powerful computational analytical tools,

which enable comprehensive “mutanome” analysis of individual

tumors and the identification of personalized immunogenic

neoepitopes, has led to seminal neoantigen cancer vaccine studies

in melanoma patients either as peptide-based (41) or mRNA-based

vaccines (42). Both studies demonstrated immunized patients

mounted robust T cell responses to unique neoantigens,

associated with prolonged and objective responses in some cases.

The long-term outcome study of patients who received personal

neoantigen vaccines demonstrated the clinical benefit at a median

follow-up of 4 years post-vaccination and long-term persistence of

memory T cells specific to personal neoantigens as well as the

evidence of epitope spreading (43).

While there is mounting evidence to suggest that immune

responses directed against personal neoantigens can block or

control cancer growth and clinically benefit vaccinated patients

(30–32, 41–43), the approach cannot be generally translated into

the prevention setting unless tumor neoantigens could be

“predicted” in individuals who have yet to develop cancers. The

first breakthrough observation was made by Kloor, von Knebel

Doeberitz, and colleagues, who demonstrated that insertion/

deletion frameshift (FS) mutations could be predicted based on

the known genetic sequences of coding microsatellites (cMS) and

that the specific mutation frequencies could be evaluated in LS/

mismatch repair deficiency (MMRd)-associated tumors (44, 45).

They discovered that colonic adenomas from LS carriers harbored

MMRd-driven FS mutations in the cMS regions at high

frequencies for certain genes at levels similar to those found in

colorectal carcinomas (46). They further demonstrated frameshift

peptides (FSP)-specific T cell responses could be observed not only

in LS patients with colorectal cancer (CRC), but also in cancer-free

asymptomatic LS carriers (47). These findings clearly demonstrated

that LS carriers harbored FSP neoantigens before the onset of overt

CRC tumorigenesis and the host immune system was capable of

mounting anti-FSP immunity, which may play a role in keeping

tumor growth in check. Using commonly recurring (broadly

shared) FSP (rFSP) neoantigens as vaccine antigens, they

subsequently proposed an rFSP neoantigen-based cancer vaccine

for MMRd cancers and successfully demonstrated the safety and

immunogenicity in Phase I/IIa clinical trial (48), providing the

proof of principle of rFSP neoantigen-based cancer vaccine

strategies for cancer prevention and interception in LS carriers.

Tumor-specific neoantigens can be vastly heterogenous and

immune responses are restricted by MHC molecules (38). Their

expression levels also vary among different neoantigens. Because of

the intra- and inter-individual heterogeneity of tumor-specific
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neoantigens and the diversity of immune responses that are

determined by HLA alleles, it is extremely challenging, if not

impossible, to develop broadly applicable cancer vaccines

targeting shared neoantigens for different HCS carriers, with LS

being an exception as discussed earlier. In this regard, the

development of personalized cancer preventive vaccines may be

more straightforward. Similar to the approach used for the

development of precision cancer therapeutic vaccines (41, 42),

personalized immunogenic epitopes for preventive vaccines can

be identified from molecular and immuno-neoepitope analysis of

precancerous lesions. The question, however, is whether there is an

advantage to personalize FSP-based cancer preventive vaccines for

individual LS carriers when shared FSP antigens can be readily

identified. Considering the amount of time and resources required

to generate such personalized FSP vaccines for nearly one million

LS carriers in the US alone, the concept of personalized

immunopreventive cancer vaccines is prohibitively impractical for

the LS cohort at this time. At the same time, the debate on the use of

personalized neoantigen based vaccines for cancer prevention

should also involve the lifetime disease severity and progression

trajectory. For example, consider children with constitutional

mismatch repair deficiency (CMMRD) syndrome, one of the

most aggressive forms of childhood cancer predisposition

syndromes, resulting from biallelic deleterious germline mutations

in the MMR genes (49). As in LS, DNAMMR deficiency can trigger

FS mutations in the cMS, giving rise to FSP neoantigens in these

children (50). Children with CMMRD develop brain tumors,

hematological malignancies (in particular, non-Hodgkin

lymphomas of T-cel l l ineage, T cell ALL and AML),

gastrointestinal and other LS-associated cancers, sarcomas (e.g.,

osteosarcoma and rhabdomyosarcoma), and other childhood

cancers (e.g., neuroblastoma and Wilms tumor) (49, 51). Cancers

arising in children with CMMRD have the highest mutational and

MS insertion-deletion (MS-indel) burden, are resistant to chemo-

radiation interventions, and considered lethal (52). Children with

CMMRD therefore may clinically benefit from receiving

personalized cancer preventive vaccines. If we aim to develop and

deploy risk-tailored and risk-weighted precision cancer prevention

strategies, the critical first step is to identify the genetic

predisposition carriers and investigate the pathophysiology of

oncogenesis in each HCS population.
Advances in genetic predisposition
screening technologies

Of the ~140,000 new diagnoses of CRC each year in the United

States, ~25% to 30% of patients diagnosed have a first or second

degree relative (parents, siblings, children, uncles, aunts and first

cousins) with CRC (53). The most common inherited CRC

syndromes is LS, which is diagnosed by germline autosomal

dominant mutations of DNA MMR genes, MLH1, MSH2, MSH6

and PMS2, or structural variations in EPCAM that drive MSH2

epigenetic inactivation (54, 55). LS is estimated to occur in

approximately 1:280 individuals (56). A related syndrome is

CMMRD discussed above, a much less frequent pediatric
Frontiers in Oncology 04
autosomal recessive disease where children inherit bi-allelic

MLH1, MSH2, MSH6 or PMS2 mutations that drive aggressive

cancer predisposition and are affected with cancers as often as every

2-3 years in early life and commonly perish from brain, GI, and

hematopoietic malignancies (50). Additionally, autosomal recessive

mutations of MMR genes, MSH3 or MLH3, cause colorectal

polyposis and CRC, which is a separate syndrome characterized

by distinct patient phenotype and familial inheritance pattern (57–

60). This review section focuses on LS.

Historically, LS was referred to as hereditary non-polyposis

colorectal cancer (HNPCC). However, LS is now preferred to

highlight that that these patients and their families have higher

rates of multiple other cancers, most notably endometrial and

gastric cancers, but also including ovarian, pancreatic-biliary,

urinary tract (kidney, renal pelvis, ureter, bladder, and prostate),

small intestinal, brain cancers and sebaceous neoplasms of the skin,

among others (61).

Overall, there are two primary strategies for diagnosis of LS.

Historically, family history followed by germline DNA mutation

testing performed on patients with personal or family history of

cancer suspicious for LS was the primary approach. This approach

uses different clinical criteria, most notably the Amsterdam or

Bethesda criteria (53), both of which focus on age on onset for

CRC, and family cancer history of first-, second- and third-degree

relatives for LS associated cancers. However, family history taking,

while virtually costless and in principle universally implemented,

was found to significantly underdiagnose LS (62–65). In part, at

least in the United States, this is driven by growing provider

economic and corporate medical pressures on primary care

physicians to rapidly provide comprehensive medical care for

ever growing panels of patients (which can average 1 patient

every 15 minutes in some clinics anecdotally) and primarily focus

on symptomatic crises rather than less urgent preventative medical

care that shortchange history and disease interception strategies.

Additionally, there are non-trivial rates of non-paternity, which

range from ~0.4% to as high as 30% in different populations but

roughly averaging to ~1% across different societies (66, 67), further

confounding family history taking. Most importantly, population

screening studies of CRC and endometrial cancer (68, 69), primarily

by immunohistochemistry (IHC) testing, provided direct data

revealing that many LS patients had limited family history and/or

later onset cancers. In addition to the practical health services

implementation issues with family history taking discussed above,

this is driven by the fact that family history does not capture

patients who have de novo LS mutations (aka, a new mutation not

inherited from either biological parent) and because many LS

patients carry MSH6 or PMS2 mutations, which confer lower

overall lifetime cancer risk than MLH1 or MSH2 mutation

carriers (54, 56).

Underdiagnosis of LS is not unique to the United States. It also

remains a challenging issue in Europe (70, 71). A Swedish study has

demonstrated that one third of LS patients referred for genetic

testing already had cancer, indicating that these individuals’ genetic

risk was unknown until they developed LS-associated cancers (72).

This proportion of individuals diagnosed with LS due to cancer

diagnosis has not changed over the decades (72). A survey across 14
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Western European countries showed that the quality of family

history taking was thought to be generally poor and there were

virtually no specific campaigns or strategies in place to increase the

public awareness of hereditary cancers except in one country

(Germany) (73). Another study has also reported that family

history has been poorly documented even in the electronic health

record (74) contributing to the deficiency in family history taking

approach. Thus, while personal and family history taking approach

has been the cornerstone of LS diagnosis, it significantly

undercounts its prevalence.

The second primary approach to LS diagnosis starts not with

clinical criteria per se, but molecular screening of CRC,

endometrial, pancreatic and other tumor specimens for evidence

of MMRd from patients who are diagnosed with carcinomas. This

can be performed as polymerase chain reaction (PCR)-based

microsatellite instability (MSI) testing of newly or previously

archived tumors after diagnosis, immunohistochemistry (IHC) for

MMR genes, or direct tumor gene panel sequencing and mutation

burden analysis to identify patients who then have germline testing

for MMR gene mutations (which is sometimes but not always done

simultaneously with tumor sequencing) (54). Importantly, these

molecularly initiated approaches also identify patients who have

sporadic (aka non-LS) MMRd tumors, which arise via somatic

(non-CMMRD congenital) bi-allelic mutation and/or epigenetic

inactivation of MMR genes, primarily MLH1 (54).

Cascade testing involves targeted mutation analysis testing of

blood relatives from patients who are affected by a genetic disease

(4, 75–77). Recent clinical trial and cost effectiveness research

studies have provided evidence that primary molecular screening

augmented by follow-up targeted cascade testing of family members

of affected LS (and other genetic disease) probands is a cost effective

public health strategy to diagnose a high percentage of LS mutation

carriers that is predicted to identify almost all affected individuals

after approximately a decade of implementation (4, 75–77).

Analysis of circulating cell-free tumor DNA (cfDNA) using

liquid biopsy has enabled non-invasive detection of tumor

mutations. Currently, liquid biopsy is an established technology

to replace and/or augment tumor biopsy sequencing, including the

detection of minimal residual disease (MRD) after surgery or

chemotherapy. Liquid biopsy can be used for detection of LS

germline mutations (78) and for detecting MMRd tumors, which

carry very elevated tumor mutation burdens. Currently, the highest

sensitivity for liquid biopsy detection of MMRd tumor DNA is

shown by low pass whole genome sequencing of cfDNA and

mutation signature analysis (79), which draws on sequence data

from low pass coverage sampling of the ~23,000,000 microsatellites

encoded in the human genome (50). However further studies, and

perhaps additional augmentation by orthogonal technologies

including protein and microbial analyte data streams, are needed

before this population surveillance strategy becomes useful for LS

diagnosis, screening, and surveillance.

Because of the high tumor mutation burden, it has been long

been appreciated that MMRd tumors have elevated numbers of

tumor infiltrating lymphocytes (TILs) and other enriched

histopathology features of the tumor microenvironment (54).

Recently, there has been evidence that machine learning of
Frontiers in Oncology 05
histopathology images of tumors can detect “MMRdness (80)”.

However, although innovative and expected to improve in the

future with advances in computational analysis, the sensitivity

and specificity of ML histopathology detection of MMRd status

may currently be problematic and not just yet ready for clinical

application (81).

In summary, identification of LS is important because it is a

clinically actionable diagnosis driving increased tumor surveillance,

chemoprevention [primarily aspirin, discussed at length elsewhere

(9)] and post-tumor therapy choice [immune checkpoint

inhibition, discussed at length elsewhere (82)] in a high-risk

cancer population. Screening and diagnosis of LS mutation

carriers is an evolving paradigm that begins with personal and

family history as its cornerstone, but requires additional molecular,

computational and health services analyses to reach its potential for

improving survival for affected patients. This point is particularly

true regarding underrepresented and underserved minority

populations, which often have lower rates of information

collection or access from detailed family history taking, in

addition to less access to preventative medical care and cost-

intensive medical technologies (62–65).
Lynch syndrome vaccines for
immunoprevention

LS is an ideal model disease for testing the potential of cancer

immunopreventive approaches due to the pathogenesis of LS-

associated tumors. The penetrance of the disease varies widely

depending on the MMR gene affected in the germline, with

MLH1 and MSH2 genes being associated with relatively high

cancer risk (about 50%: Prospective Lynch Syndrome Database or

PLSD) (83) and found in about 90% of LS-associated tumors. In

addition to the affected MMR gene, further factors are suspected to

influence individual cancer risk in LS carriers, as also within-gene

and even within-family differences in cancer risk have been

observed. These factors include other genetic constellations

(polygenic risk score) and environmental influences. More

recently, the possible influence of the immunological factors has

also been gaining substantial attention, which is related to the

growing knowledge about a close interplay between arising MMR-

deficient tumor cell clones and the immune microenvironment.

The driving force of carcinogenesis in LS is MMRd, leading to

the inability of affected cells to repair base mismatches occurring

during DNA replication. When unrepaired, such errors cause indel

mutations, typically indels of one or two nucleotides at short

repetitive DNA stretches (microsatellites). The molecular

phenotype of MMR-deficient cells is characterized by the

accumulation of insertion/deletion mutations at microsatellites

and called MSI as discussed earlier. Microsatellite regions are

dis tr ibuted over the ent ire human genome. Because

approximately 99% of the genome has no protein-coding

function, most microsatellite mutations do not have an

immediate effect on a cell’s functional phenotype. However,

mutations at microsatellites in protein-coding genomic regions
frontiersin.org
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(coding microsatellites, cMS), which are mostly mononucleotide

repeats, can have drastic consequences on the function of the

encoded protein and its immunological properties. Due to an

insertion or a deletion of one or two nucleotides, the entire

subsequent reading frame is shifted (frameshift mutations). This

can lead to premature stop codons and translation of truncated,

non-functional proteins. cMS mutations affecting tumor suppressor

genes can drive tumorigenesis in the mutated cell. Simultaneously,

the newly translated FSP sequence often contains numerous

epitopes, which are foreign to the host’s immune system,

rendering the affected cells highly immunogenic.

Thus, the carcinogenic process of LS cancers is tightly linked to

the generation of highly immunogenic antigens. This provides a

basis for immune-modulatory therapies, e.g., using immune

checkpoint inhibitors, which can reactivate a pre-existing, but

exhausted immune response. However, for a largely applicable

preventive approach, the predictability of the antigens plays a

crucial role. The Darwinian selection principles behind the

evolution of MSI cancers allow the prediction of antigens before a

cancer develops (Figure 1A). As microsatellite mutations that

confer proliferation and growth advantage (by disabling tumor

suppressor genes while evading immune recognition and

elimination) will be selected for, the respective antigens are over-

represented in cancer precursors and manifest cancers and thus

serve as promising vaccine targets.

Using a comprehensive bioinformatics approach, we and others

previously characterized cMS across the human genome,

establishing two major findings: (1) the mutation frequency of a

microsatellite largely depends on its length, following a sigmoid

curve; (2) cMS mutations with a frequency higher than what was
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predicted based on microsatellite length are the likely drivers of

tumorigenesis, reflecting selection during MSI cancer evolution.

Using the information about length-adjusted mutation frequency, it

is possible to predict the relevance of specific mutations in the

carcinogenic process and their frequencies.

Using this approach, we were able to trace the evolution of MSI

cancers down to a few recurrent mutations shared across tumors

and patients, opening a new avenue in the field of cancer

prevention. By identifying key driver mutations in the MSI

carcinogenic process, we predicted the resulting peptide structures

resulting from these mutations and demonstrated their ability to

induce T cell responses in vitro (47, 84) (Figure 1B). In the next step,

these candidates were combined in a trivalent vaccine containing

three recurrent and immunogenic antigens derived from AIM2 (-1

deletion), TAF1B (-1 deletion) and HT001 (-1 deletion) frameshift

cMS mutations that were shared by more than 85% of MSI tumors.

This vaccine was evaluated in a first-in-human Phase I/IIa clinical

trial analyzing the safety and immunogenicity of a cancer vaccine in

a total of 22 patients (48). The study demonstrated a favorable safety

profile with no treatment-related severe systemic adverse effects

observed in any of the vaccinated patients. However, grade 2 local

injection site reactions have been observed in 3/22 vaccinated study

participants, indicating that vaccination-related side effects need to

be accounted for in future vaccine formulations and strategies,

particularly in LS carriers with pre-existing FSP-specific immune

responses. Importantly, all patients vaccinated per protocol

demonstrated FSP-specific cellular (predominantly CD4 T cells)

and humoral immune response against at least one vaccine antigen.

Although the results of the first clinical trial with the trivalent

FSP peptide vaccine described above were highly encouraging,
A B

FIGURE 1

Schematic illustration of MMRd tumor clone selection process and workflow for selecting a pool of shared immunogenic neoantigens. (A) Schematic
illustration of Darwinian selection process underlying MMRd cancer evolution. The random accumulation of indel mutations in cMS, caused by
impairment of the MMR system, is followed by a non-random persistence of mutations. Cell clones carrying mutations that promote tumor
outgrowth or provide other survival advantages, such as immune evasion, are positively selected. This evolutionary selection of mutations leads to
recurrent cMS mutation patterns in MMRd cancers and thus a predictable pool of FSPs. (B) Strategy for the selection of shared, immunogenic FSPs
for immunoprevention. Screening of a genome-wide cMS database forms the basis for the identification of recurrent cMS mutations shared by
MMRd cancers. Accounting for mutation frequency in MMRd cancers, immunogenicity prediction in silico and immunogenicity testing in vitro, a
pool of candidate neoantigens can be selected for FSP vaccines.
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antitumor efficacy was not the primary objective, which would have

required a long-term follow-up if tumor recurrence was used as the

primary endpoint. To ask whether the FSP-based cancer vaccine

could prevent or intercept CRC tumorigenesis, pre-clinical studies

in mouse models have been performed. Based on the VCMsh2 LS

mouse model developed by Kucherlapati and Edelman et al. (85),

which recapitulates human LS-associated intestinal tumorigenesis

by biallelic Villin-dependent conditional knockout of Msh2 in the

entire intestinal epithelium, the preventive effect of rFSP

vaccination was evaluated. Bioinformatics analysis of 488,235

cMS in the murine genome combined with the gene expression

and mutation frequency data identified thirteen candidates possibly

relevant for the MSI tumorigenesis in Lynch mice (86). The

immunological assessment including epitope prediction and

immunogenicity analysis revealed four promising candidates for

vaccination. Vaccination with these candidates, Nacad (-1 deletion),

Maz (-1 deletion), Senp6 (-1 deletion), and Xirp1 (-1 deletion) alone

or in combination with non-steroidal anti-inflammatory drugs

(NSAIDs) (aspirin or naproxen), which have been examined for

chemo preventive effects in LS patients (9, 87, 88), elicited robust T

cell immune responses as measured by IFNg ELISpot and a

significant tumor-preventive effect in VCMsh2 mice. Interestingly,

the tumor-preventive effect was strongest in the rFSP vaccine plus

naproxen combination arm, supporting the hypothesis that

NSAIDs may enhance vaccine-induced antitumor efficacy by

reshaping the immune microenvironment in the intestinal

mucosa and enhancing immune surveillance (89, 90). Clinically,

this suggests that the reduction of tumor incidence by NSAIDs,

reported for Lynch carriers in retrospective (91) and controlled

prospective studies (9, 87, 88), could further be enhanced by

FSP vaccines.

In addition to the peptide based FSP vaccination approach,

further studies pursuing a different vaccination approach are

currently underway, including viral vector-based FSP antigen

delivery with a substantially higher number of antigens (over

200), which have been derived from human MSI tumors as

analyzed by in vitro, in vivo and ex vivo tools. The study is

currently recruiting LS patients for evaluation in clinical trials (92).
HLA genotype and tumor
antigen evolution

Both clinical and preclinical data on FSP vaccines’ effectiveness

hinted at the importance of epitope selection for eliciting CD4 or

CD8 T cell responses. Although the dominant role of cytotoxic CD8

T cell response has been suggested in the efficacy of tumor cell

elimination, immune responses engaging CD4 T cell response have

been gaining more relevance with growing knowledge in tumor

immunology (93, 94). Specifically, the human trivalent FSP vaccine

trial (48) demonstrated that FSP-specific immune responses were

predominantly mediated by CD4-positive T cells, whereas less than

50% of vaccinated patients developed significant CD8-positive T

cell responses. Although this may in part be related to the use of

long peptides and Montanide ISA51 used as an adjuvant, the
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response pattern may also reflect the availability of epitopes in

the FSP sequences compatible with the HLA genotype of

vaccinated individuals.

The induction of cellular immune responses requires the

presentation of epitopes through HLA (or MHC) molecules.

Whereas CD4-positive T cell receptors interact with HLA class II

molecules, CD8-positive T cells interact with HLA class I molecules.

As the structure of the HLA molecules determines the binding

affinity and presentation of certain epitopes (95, 96), the HLA type

of an individual influences the epitope repertoire presentable by

tumor cells and antigen-presenting cells. As the repertoire of HLA

molecules is large and the HLA class I and HLA class II antigen-

encoding gene loci are highly diverse, the clinical efficacy of cancer

vaccines will vary depending on an individual’s HLA genotype.

Observations from the recent COVID-19 pandemic regarding the

disease course and responses to vaccination with SARS-COV-2

antigens support this association (97–99). Thus, although the

shared nature of the driver cMS mutations among different

patients and tumors allows the use of a limited set of recurrent

candidate neoantigens, response to vaccination and tumor-

preventive effectiveness might be substantially improved by the

adaptation of the epitopes derived from these neoantigens to the

specific HLA type of an individual. Accounting for HLA type

specificity is therefore an important task for future immune

prevention and interception approaches, potentially enabling

higher vaccine effectiveness by individualization of the vaccine

formulation to a person’s HLA genotype (100).

It is plausible to assume, that HLA genotype influences not only

immune responses induced by vaccination, but also natural

immune responses in LS carriers prior to and after tumor

manifestation (47, 101, 102). If HLA type in fact influences

immune surveillance, the HLA genotype may influence the tumor

incidence or tumor risk in LS carriers. Studies analyzing the possible

effect of the individual HLA type on cancer risk in LS have been

initiated (100, 103). The findings expected from these studies will

guide the future development of next-generation HLA-adapted

individualized neoantigen vaccines.

Significant recent advances in vaccine technology and

immunology indicate that individualized vaccine strategies hold

potential for future cancer immune prevention and interception. At

the same time, this strategy poses a challenge to the production

process of vaccines. Even if certain HLA genotypes with similar

peptide-binding characteristics can be united under an HLA

supertype, vaccine formulations need to be adapted and produced

on a relatively short-term. Peptide-based vaccination, though

offering a robust and well-studied and evaluated technology, may

lack sufficient flexibility for adaptations, particularly in the scenario

of therapeutic application in patients with manifest cancer.

The application scenario (preventive, interceptive or

therapeutic) also directly affects the maximal possible level of

individualization. Preventive applications can maximally target

likely antigens derived from predictable mutation events. The

selection of candidate epitopes is restricted to the candidate

ant igens proven high ly re l evant and immunogenic .

Personalization according to the current knowledge would

concern the HLA genotype-adjusted epitope selection, although
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not the candidate spectrum itself. Such “warehouse” vaccines (104,

105) transferred to the high-risk scenario of LS would focus on the

most frequently shared FSP neoantigens adjusted to the

predominant HLA alleles (Figure 2). In this setting, peptide-based

vaccine may possibly offer a time- and cost-saving solution. In a

therapeutic or intercepting approach, the presence of a manifest

tumor would enable the analysis of tumor mutanomes and

peptidomes (36), binding affinity to the specific HLA molecules

of the patient, and immunogenicity, thus enabling the construction

of a vaccine based on the given specifics of the tumor and patient.

However, this process is time-consuming and may not be ideal for

timely initiation of interventions required for cancer interception

and treatment.

Throughout the continuum of tumor development, the immune

system constantly interacts with emerging tumor cell clones, the

process known as tumor immunoediting. When developing

immunopreventive or immunotherapeutic approaches, tumor

immune evasion should be taken into consideration, as the host

immune system will not recognize “escape” tumor clones effectively.

The interplay between arising tumor cell clones and host’s immune

cells and characteristics of tumor evolution have been illustrated by

several studies (101, 106–110). Such an interplay is particularly

pronounced in the scenario of the highly immunogenic MSI

cancers. Among those, the ones with LS background could be

exposed to a longer process of immunoediting, as the LS carriers

have been reported to present with microscopic lesions with normal

histomorphology but lacking MMR protein expression (111). Such

lesions were proposed to induce the systemic and local immune

responses measurable in the blood and colon of tumor-free LS
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carriers, respectively (47, 102), suggesting the process initiated long

before a clinically detectable tumor. We have previously shown that

higher frameshift mutation frequency is correlated with lower

immunogenicity of resulting neoantigens, whereas a lower

frequency of mutations correlated with highly immunogenic

antigens (101). This inverse correlation suggests counter-selection

of cell clones expressing highly immunogenic neoantigens

according to the tumor immunoediting concept. On the other

hand, such counterselection may be negated in cases where

antigen presentation machinery is dysregulated. In fact, general

alterations of the antigen presentation machinery are common in

Lynch-associated cancers and observed at higher frequency in

advanced lesions. Such evasion phenomena, including complete

breakdown of HLA class I-mediated antigen presentation following

mutations of the Beta-2-microglobulin (B2M) gene, can interfere

with the effectiveness of vaccines. Immune evasion is considered

one of the most important reasons for the limited success of

previous cancer vaccine trials with a therapeutic design.

Therefore, transferring vaccine approaches towards earlier stages

(interception) or entirely to cancer prevention in high-risk

individuals marks a paradigm change with high potential for re-

shaping the field of anti-cancer vaccines and cancer prevention in

general. The complexity of this biological process and limited

possibilities for experimental investigation calls for mathematical

modeling approaches that could account for possible variables and

predict the repertoires of relevant antigens or even model the

possible outcomes of immune interception approaches.

Advances in next-generation sequencing together with the

development of in silico epitope prediction algorithms and ex vivo
FIGURE 2

Conceptual illustration of next-generation FSP preventive cancer vaccines. After the selection of immunogenic FSP frequently shared among MMRd
cells, FSP epitopes can be HLA supertype-adjusted, facilitating higher vaccine effectiveness. Vaccine delivery can be pursued, among others, with
different approaches including peptide, viral vector-based, or mRNA technology. Immunologically, the first step will be vaccine-induced priming,
during which the delivered neoantigens encounter antigen-presenting cells, most importantly dendritic cells at the injection site. Neoantigen-loaded
dendritic cells traffic to lymph nodes which are primary sites of T cell priming. There, vaccine-derived antigens on HLA class I and II molecules are
presented to CD8+ and CD4+ T cells. Activated T cells proliferate and mature into effector T cells which leave the lymph nodes entering the
periphery. Ideally, neoantigen-specific CD8+ T cells can induce apoptosis in MMRd cells, which present the respective antigen on HLA class I
molecules, and thereby prevent cancer.
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assessments of immune responses revolutionized the identification

of tumor neoepitopes suitable for cancer vaccines (30, 112). Tumor

neoantigens originating from genomic alterations beyond those

resulting from MMRd-triggered frameshift mutations can also be

targeted by the immune system as non-self, leading to tumor-

specific T cell responses (32, 113, 114). In fact, vaccination strategies

targeting specific tumor neoantigens have demonstrated effective T

cell responses against tumor specific antigens and potential clinical

benefit (41, 42, 115–117). Neoantigen-based cancer therapies are

highly personalized, requiring the development of a vaccine for each

individual patient, which limits scalability and availability. To

ensure broader applicability, cancer vaccines targeting shared

immunogenic neoantigens originating from functionally relevant

driver mutations on genes such as KRAS (114, 118), TP53 (119,

120), BRAF (121), PIK3CA (122), and EGFR (123, 124) or from

recurrent gene fusions typically occurring in sarcomas (125, 126)

have been pursued. However, compared to FSP in LS cancers, the

pool of such antigens is limited and their effectiveness in an HLA-

diverse population needs to be investigated for other HCS setting.

Therefore, the development of personalized cancer vaccines may be

warranted for cancer prevention in other HCS carriers, who unlike

in LS do not share recurrent neoantigens for “off-the-shelf” vaccine

formulations with defined and validated neoantigens. Neoantigen

based approaches are promising and likely to improve further with

advances in neoantigen prediction pipelines.

Computational tools predictive of peptide binding affinity to

specific HLA molecules are available (96, 127–129). These are

typically neural network-based algorithms that were trained using

existing allele-specific peptides such as those stored in the Immune

Epitope Database (130) and Dana-Farber Repository for Machine

Learning in Immunology (131). Recently, HLA immune-

peptidomics-based approaches to discover HLA-restricted

peptides generated large-scale datasets of endogenous HLA-

bound peptides that resulted in the development of more accurate

epitope prediction algorithms. These algorithms not only predict

epitope binding to a specific HLA allele but also consider epitope

expression and proteasomal processing to predict epitope

presentation more accurately (132). The final frontier in the

prediction of neoantigens is the development of an algorithm that

can accurately predict antigenicity. Neoantigens can be presented

on surface HLA, however not all presented epitopes generate a T

cell response, and even presented viral epitopes may not be

recognized by T cells (41, 42, 115–117, 133) in some cases. The

development of an accurate machine learning algorithm requires

thousands of validated T cell epitopes per HLA allele, which are

currently unavailable for many alleles. There are ways to overcome

this obstacle. Researchers observed more stable HLA ligands yield

more immunogenic epitopes (134, 135) and epitopes mimicking

pathogen-derived known antigens are more immunogenic (136,

137). Incorporation of these motifs to the neoantigen prediction

pipelines may improve vaccine outcomes. Utilization of all these

informatics and genomics pipelines may identify validated

immunogenic shared neoantigens for LS patients in an HLA-type

specific manner that could be the basis of a cancer preventative

vaccine. It is plausible that such vaccines may prevent not only LS-

associated CRC, but also endometrial and other extracolonic
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tumors (61, 138) as certain neoantigens are likely shared by the

spectrum of cancers arising in LS (Figure 3).
Emerging technologies, research gaps,
and translational barriers

Emerging new mRNA-based vaccine technologies (139, 140)

have transformed the medical field by offering a technological

platform with high adaptive capacity, allowing rapid translation

of newly gained genomic knowledge into clinical applications for

the prevention and treatment of human diseases (42, 141–143). In

addition to its high immunogenicity, flexibility and versatility,

relatively straight forward regulatory requirements successfully

established during the COVID-19 pandemic make mRNA-based

vaccination approaches attractive for personalized medical

interventions such as precision cancer preventive vaccines. Other

innovations in mRNA vaccine platforms include the use of self-

amplifying RNA (saRNA) (144–148), circular RNA (circRNA)

(149, 150) and modified LNP formulations for mRNA delivery

(151–155). While these non-linear mRNA molecule-based vaccines

are expected to offer “amplified” expression of encoded proteins in

vivo requiring lower RNA doses (saRNA) and improved scalability

with potentially lower toxicity concerns (circRNA), novel

formulations of LNP can be developed to steer the host immune

system towards mounting specific immune responses desired for

the intended applications (e.g., Th1 vs. Th2 immunity) (156).

Innovative engineering of RNA molecules and their delivery

systems is expected to further help advance the optimization of

next-gen RNA vaccine design strategies for precision cancer

preventive vaccines for LS and other HCS.

The gold standard of screening for immunogenic recurrent

neoantigens, for example for “off the shelf” vaccines, has been to test

an individuals’ autologous T cells for immune responses to specific

neoantigen peptides in vitro as measured by interferon gamma

production either by ELISPOT or fluorescent activated cell sorting

assays. For personalized neoantigen-based therapeutic cancer

vaccines, however, because of the large number of potential

candidate neoantigens, individualized immunogenicity screening

is challenging and time-consuming, which is not ideal due to the

urgency for starting vaccinations in patients who have established

cancers. Thus, immunizing peptides were selected based on the

basis of HLA binding predictions for personalized cancer

therapeutic vaccines (41, 42). For off the shelf antigens, one new

approach is screening in transgenic mice with human HLA.

Currently, these are available for selected alleles including HLA-

A2 (157), HLA-A1 (158), and HLA-B7 (159). Importantly, these

models have ablated endogenous murine MHC (157). More

recently, a series of HLA class I knock-in (KI) mouse strains have

been generated (160). In these novel HLA class I transgenic mice, a

chimeric HLA class I molecule (a1/a2 domain of HLA-A and a3
domain of H-2Db) was covalently linked with 15 aa to human Beta-

2-Microglobulin (B2M) and introduced into the endogenous mouse

B2m locus, resulting in the loss of endogenous mouse MHC class

molecules in homozygous KI mice. HLA-restricted, epitope-specific
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cytotoxic T cells (CTLs) were induced in HLA KI mice upon

vaccination (160). These HLA mouse models can be used as a

filter towards selecting human common neoantigens as potential

vaccine cargo. However, given the diversity of human HLA alleles

(161), and the lack of HLA-C mouse models, these models can only

be used for frequent HLA alleles.

As with any other agents under development, the

demonstration of efficacy is of paramount importance to the

successful development of cancer preventive vaccines. If a cancer-

free period is used as a primary endpoint for efficacy in cancer

prevention studies, however, it will require a larger number of study

subjects and long-term follow-up in order to obtain conclusive

evidence (162, 163) even in the LS and other cohorts with an

increased cancer risk. Therefore, potential surrogate biomarkers, if

carefully selected and included in cancer prevention clinical trials,

will help delineate clinical correlates of cancer-preventive efficacies.

Long-term fortification of the host immune defense against cancer

is the ultimate goal of cancer preventive vaccines. Such vaccines

must be able to drive and maintain antitumor immune surveillance

that can effectively intercept and eliminate emerging tumor

precursor cells while avoiding the immune evasion. Because

immune biomarkers of cancer preventive vaccines’ efficacies have

yet to be fully elucidated, multi-pronged research strategies are

needed to establish immune correlates of protection, including

emerging knowledge from immune biomarker studies conducted

in cancer patients (164, 165), which may inform the direction of

research. For example, clinically beneficial adaptive antitumor

immune responses have been characterized locally in the TME

and systemically. Tumor infiltrates in the TME with higher

densities of antigen-specific Th1 cells, CTLs, and memory T cells,
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myeloid derived suppressive cells (MDSC) are generally predictive

of better outcomes in cancer patients (164, 166–172). Systemically,

immune signature of more favorable responses to ICI

immunotherapy has been observed in patients, who at baseline

had a diverse TCR repertoire (173), a higher number of CD8+

effector T cells in the periphery and at the tumor margin (174, 175),

and a lower level of MDSC (176–178), and had higher levels of TCR

repertoire (173, 179), increased levels of CD127low PD-1low CD4 T

cells (180), and peripheral expansion of CD8+ T cells (181–183) at

post-treatment. Evaluation of some of these immune biomarkers

that are linked to favorable clinical outcomes should be included in

preclinical and clinical studies of candidate cancer vaccines, so the

immune response profiles can be correlated with in vivo antitumor

efficacies observed in vaccinated animals and with surrogate

biomarkers of efficacies in human study subjects, respectively.

More recently, the roles of tissue-resident memory CD8+

T (TRM) cells have been extensively studied in cancer

immunosurveillance. TRM cells are known to function as

“pathogen alert” system against invading pathogens for the local

organ systems (184–187). Mounting evidence suggests that TRM

cells are a critical component of the host immune surveillance and

defense mechanisms against developing cancer (184–186, 188–190).

A higher number of intratumoral TRM cells is predictive of better

overall survival (191–194). Mechanistically, these cells in the TME

express immune checkpoint receptors (ICR) and exert antitumor

effector functions when ICR are blocked by ICI (188, 189, 195), thus

linking the presence of TRM in the TME to more favorable responses

to ICI in cancer patients. Furthermore, TRM cells have been shown

to recognize neoantigens (192, 193, 196) and can amplify ICI-
FIGURE 3

Immunopreventive potential of neoantigens shared by tumors in different organs. In addition to the characteristic LS-associated tumors in the
colorectum and endometrium, the tumor spectrum in LS also encompasses other organs such as brain, skin, and kidney tumors. It is possible that
certain neoantigens are shared across different tumor types (red, purple, green, and aqua blue antigens in the upper panel). Immunopreventive
vaccines with these shared neoantigens that are further adjusted by an individual’s HLA genotype may allow the development of a personalized,
preventive vaccine without organ restriction. Such an approach would be particularly valuable for cancers without screening options. This is
illustrated by the example in the lower panel of the figure, where one of the shared neoantigens (green) is not included in the vaccine formulation
because this green antigen does not contain neoepitopes that bind to the individual’s HLA molecules.
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mediated antitumor immunity not only by exerting effector

functions but also promoting epitope spreading through dendritic

cells (193, 196). Preclinical studies have shown TRM cells can be

induced by vaccination against tumor neoantigens and that

vaccine-induced TRM cells potentiated the host antitumor

immunity, rejecting tumor challenge (192, 197, 198). In contrast

to clinically beneficial cell-mediated antitumor immune responses

widely reported to date, the prognostic value of B cell-mediated

humoral immune responses in cancer patients has yet to be fully

elucidated (164). Recently, a higher number of B cells in the TME

and the presence of intratumoral tertiary lymphoid structures,

which include B cell follicles as well as T cells, macrophages, and

dendritic cells, have been observed in patients who had better

clinical outcomes (164, 199). The role of B-cell mediated

immunity for cancer control warrants further investigation.

As discussed earlier, in the first clinical study with trivalent FSP

vaccine in patients with LS-associated or non-LS associated MSI-H

CRC, all evaluable vaccinated patients showed FSP-specific humoral

and predominantly CD4+ T cell responses (48). In the VcMsh2 LS

mouse study discussed earlier, murine rFSP vaccination elicited

robust FSP antigen-specific T cell responses (CD4+ and/or CD8+)

and humoral immune responses systemically and upregulated

intratumoral Th1 signaling pathway more so than Th2.

Moreover, intestinal tumors from vaccinated VcMsh2 mice had

significantly elevated levels of CD4+ and CD8+ T cell infiltrates as

compared to control tumors (86). These immune response findings

are consistent with what has been reported clinically and suggest

that rFSP vaccine-induced immune responses were responsible for

the observed cancer preventive efficacy in vivo. Cancer preventive

vaccines, regardless of whether based on commonly shared tumor

antigens or personalized neoantigen repertoire (predicted or omics-

informed), should be able to at a minimum elicit clinically beneficial

antitumor immunity discussed above ideally with long-term

memory. To learn and establish immune correlates of protection

against cancer, these immune parameters should be included in

clinical trials for cancer preventive vaccines as part of investigative

biomarker analysis.

In the premalignant and pre-invasive stage setting, there is

accumulating evidence to suggest pro-tumorigenic MDSC and

immune escape mechanisms mediated through immune

checkpoints and immune-suppressive interleukins are already

present and contributing to the malignant progression (200–202),

which may suppress or hinder adaptive antitumor immune

responses to cancer vaccines. Immune profiling of LS polyps has

previously demonstrated a significantly increased level of pro-

inflammatory and immune checkpoint molecules (203). Cancer

vaccine-induced antitumor immunity, therefore, may not be

sufficient to effectively prevent or arrest tumorigenic process

especially in the setting of intercepting premalignant lesions.

According to current knowledge, about two-thirds of LS CRC

develop from MMRd crypts, suggesting loss of function of the

MMR system as the initiating somatic event (204–206). In such a

scenario, the generation of MMRd-triggered FSP likely precedes

local immunosuppression, potentially opening a window for

vaccine-mediated interception. However, the differential
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effectiveness of rFSP vaccines for the prevention of LS CRC

triggered by MMRd vs. those resulting from MMR-proficient

adenomas and subsequent MMR inactivation needs to be

evaluated in future studies.

The addition of immunomodulatory agents to cancer vaccines

may be warranted to induce more robust adaptive immune

responses for LS and other high-risk cohorts. For example, chemo

preventive effects of NSAID (aspirin and naproxen) have been

extensively studied in LS patients (9, 87, 88). In addition to directly

reducing the level of pro-tumorigenic prostaglandin E2 (88),

naproxen has been shown to potentiate antitumor immune

responses by rFSP vaccination in the VcMsh2 mouse study (86)

and boosted immune surveillance in LS patients (88). In preclinical

models of CRC tumorigenesis, naproxen administration has been

shown to decrease the expression of PD-L1 in colon tumors and

increase the density of CD8+ TILs (207). Since the efficacy of ICI has

already been demonstrated in LS and MSI-high cancer patients,

ICI-based treatment is being considered for immunointerception in

the premalignant setting in LS cohort (208). There are other classes

of immunomodulatory agents that can be potentially used to boost

the host immune responses to cancer-preventive and interceptive

vaccines (209–212). Feasibility, efficacy, and safety of combination

of cancer preventive vaccines and these newer immunomodulatory

agents should be explored especially for LS and high-risk cohorts

through preclinical and clinical research.
Concluding remarks

The first clinical study with FSP neoantigen-based cancer

vaccine (NCT01461148) was launched more than a decade ago in

MMR-deficient colon cancer patients (48). This seminal study,

which was built on the culmination of many years of extensive

research on LS tumor molecular biology and endogenous immunity

led by the same group, Kloor, von Knebel Doeberitz, and their

colleagues, has dramatically changed the landscape of neoantigen-

based cancer vaccine research. Over the last decade, there has been

an explosion of research on tumorigenesis and genetic triggers,

tumor immune surveillance, immune checkpoint mechanisms that

can unleash antitumor immunity, contexture of tumor-immune

microenvironment, and dynamic interplay between evolving

tumors and immune defense, all of which are generating the

consensus that better cancer control and favorable outcomes are

achievable if tumorigenesis is intercepted earlier than later.

Together with technological advances in tumor genomic

landscape profiling, cancer vaccinology, and innovative

immunomodulatory agents, precision cancer prevention and

interception for LS carriers is within the reach. There are,

however, remaining questions that must be addressed. For

example, even if technical challenges of personalized FSP vaccine

production can be overcome, can personalized neoantigen-based

precision cancer vaccines lead to more efficacious and long-term

immune protection than shared FSP neoantigen-based vaccines in

LS carriers? To remain cancer free, how long do LS carriers need to

maintain antitumor immune memory? Does the combination of
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immunomodulatory agents help sustain the durability of immune

protection in LS carriers? There are translational barriers that also

need to be overcome before the true benefit of precision cancer

preventive vaccines are realized for LS carriers. The preclinical

research field will greatly benefit from better preclinical models that

can more closely mimic human LS tumorigenesis and human

immune system. Newer generation of humanized preclinical

models may help bridge the inter-species knowledge gap that has

been a major obstacle in translational research for LS and other

cancer vaccines. Lastly, as next-generation novel surrogate markers

emerge from preclinical and clinical studies in the next decade,

regulatory approval pathways will have to be reviewed and

improved for scientific harmonization without delay. The success

of FSP neoantigen-based cancer vaccines for LS cancer prevention

will hopefully demonstrate the potential marketability of cancer

preventive vaccines in the next decade, which will bring an

increasing interest from the private sector and can lead to the

partnership opportunities between academia, government, and

industry for the betterment of quality of life for LS and other

high-risk populations.
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