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miRNA deregulation and
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parameters after Mediterranean
dietary intervention in
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Background: Breast cancer onset is determined by a genetics-environment

interaction. BRCA1/2 gene alterations are often genetically shared in familial

context, but also food intake and hormonal assessment seem to influence the

lifetime risk of developing this neoplasia. We previously showed the relationship

between a six-months Mediterranean dietary intervention and insulin, glucose

and estradiol levels in BRCA1/2 carrier subjects. The aim of the present study was

to evidence the eventual influence of this dietary intervention on the relationship

between circulating miRNA expression and metabolic parameters in presence of

BRCA1/2 loss of function variants.

Methods: Plasma samples of BRCA-women have been collected at the baseline

and at the end of the dietary intervention. Moreover, subjects have been

randomized in two groups: dietary intervention and placebo. miRNA profiling

and subsequent ddPCR validation have been performed in all the subjects at both

time points.

Results: ddPCR analysis confirmed that five (miR-185-5p, miR-498, miR-3910,

miR-4423 and miR-4445) of seven miRNAs, deregulated in the training cohort,

were significantly up-regulated in subjects after dietary intervention compared

with the baseline measurement. Interestingly, when we focused on variation of

miRNA levels in the two timepoints, it could be observed that miR-4423, miR-

4445 and miR-3910 expressions are positively correlated with variation in

vitaminD level; whilst miR-185-5p difference in expression is related to HDL

cholesterol variation.
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Conclusions: We highlighted the synergistic effect of a healthy lifestyle and

epigenetic regulation in BC through the modulation of specific miRNAs.

Different miRNAs have been reported involved in the tumor onset acting as

tumor suppressors by targeting tumor-associated genes that are often

downregulated.
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Introduction

Breast cancer (BC) represents one of the most common

malignancies affecting women worldwide (1). Its lifetime risk

development is associated with alterations in autosomal genes,

including the well-known Breast Cancer gene 1 and 2,

respectively BRCA1 and BRCA2 (2), which have a high

penetrance in, the so-called, Hereditary Breast and Ovarian

Cancer (HBOC) syndrome.

However, genetic predisposition is not the only factor

determining tumor onset. It has been reported that additional

factors could promote tumor development and influence the

cancer microenvironment, such as environmental and unhealthy

lifestyle factors (for example poor diet with weight-gain, alcohol

intake, and smoking) (3–5).

The elevated levels of blood glucose, insulin, free estradiol, and

inflammatory cytokines as a consequence of an increased quantity

of metabolically active adipose tissue, seems to affect BC risk and

survival (6). It has been demonstrated that these factors favor cell

proliferation at the expense of apoptosis, and by modifying cellular

lipid architecture, promote migration and metastasis.

This highlights the importance of paying particular attention to

susceptible subjects’ habits before the eventual BC onset or after that

due to the strict relationship between genetics and metabolic and

hormonal assessment influenced by lifestyle (i.e. diet). It is reported

that BRCA1/2 genes could be modulated by several metabolic and

hormonal factors (7, 8) and their loss of function variants can

influence insulin levels by a different response to the dietary

intervention (9).

For instance, obesity is associated with a higher risk of BC in

women with a high-risk family history, often in association with

high serum levels of insulin-like growth factor I (IGF-I), deriving

from high energy intake, that increases BC penetrance and

influences the prognosis. Many foods, in fact, could stimulate

insulin production or release, such as milk, and this is closely

related with higher IGF-I plasma levels (10).

BRCA and IGF-I are functionally related since the IGF-I

pathway seems to regulate the BRCA1 expression level while

wild-type BRCA1 strongly reduces the synthesis of IGF-I receptors.
02
Bordeleau et al. (2011) showed that women BRCA-mutated with

BC frequently developed type-2 diabetes (11), probably because the

mutation induces the loss of BRCA1 anti-tumor activity, leading to

an over-activation of IGF-IR signaling pathway (12).

Type-2 diabetes, in fact, is due to insulin resistance and

subsequent altered glucose metabolism (13).

Several studies demonstrated that a balanced diet could

improve the prognosis and the overall survival of BC patients,

combined with conventional therapies, limiting their side effects (3,

11, 14, 15).

TheMediterranean diet, providing a high consumption of legumes,

fruits, vegetables, dried fruit and, olive oil at the expense of sweets and

red meat intake, may have a primary prevention effect on this tumor

type, by reducing some potential modulators of BRCA penetrance,

including circulating microRNAs (miRNAs). These molecules are

widely expressed and regulate several biological processes, among

which the glucose homeostasis, playing a direct role, for example, in

the control of insulin production, secretion, and signaling (16).

Previous studies demonstrated a deregulation of miRNAs

expression in subjects that followed a dietary intervention, also after

a short time, highlighting modulation of metabolic parameters (6, 17).

Therefore, miRNAs expression levels, also in body fluids [such

as plasma and serum samples in which miRNAs can remain highly

stable (18)], could be considered as potential new biomarker in BC

early diagnosis and monitoring, although it is not fully understood

how this imbalance occur in cells and how diet and miRNAs

expression are related.

In the present study we aimed to analyze the plasma miRNA

profile in a sample of women with BRCA mutations included in a

six-month Mediterranean dietary intervention trial (MedDiet trial,

NCT03066856) (19). In this trial, we demonstrated that a

Mediterranean dietary intervention is feasible and effective in

reducing some potential modulators of BRCA penetrance, such as

body weight, waist circumference and IGF-I expression, in the

intervention compared to the control group. Here, we focus on

understanding if there is a variation in the regulation of metabolic

and inflammatory pathways potentially linked to BRCA penetrance

and IGF pathway, following the expression levels of selected

miRNAs after a Mediterranean dietary intervention.
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Materials and methods

Patients

The multicenter two-arm prospective randomized controlled

trial on BRCA 1/2 mutant women has been fully previously

described (19).

Briefly, that study investigated whether an active dietary

intervention based on the ‘Mediterranean diet’ with moderate

protein restriction significantly reduced IGF-I and other

modulators of BRCA penetrance. Eligible study subjects were

women, aged 18-70, with or without a previous diagnosis of BC/

OC, without metastases, who underwent genetic counselling and

fulfilled high-risk selection criteria for genetic testing, and were

found to be carriers of deleterious BRCAmutations (Supplementary

Table 1 list the full alterations of the enrolled subjects).

Among the 416 volunteers, 216 randomized in the intervention

group and 200 in the control group, who concluded the six-month

dietary intervention, 56 have been recruited/randomized at the

IRCCS – Istituto Tumori “Giovanni Paolo II” from September

2017 and July 2019 and included into the present miRNAs analysis.

The study was approved by the local Ethics Committee (CE n. 597/

2016), and all women gave their signed informed consent. At

baseline and at the end of the six-month dietary intervention, all
Frontiers in Oncology 03
study participants underwent anthropometric and plicometric

examinations and gave 20 ml of blood to measure all the

hormonal and metabolic parameters under study (20, 21). The

percentage of fat mass (FT) was carried out using a FAT-1

plicometer (GIMA- Italy) which measures the thickness of skin

folds in various districts and assesses the nutritional status of the

subject under examination and the sectoral distribution of its

adipose tissue. The Durnin-Womerslay measurement of 7 folds

(bicipital, tricipital, axillary, subscapular, abdominal, over-iliac and

median thigh) was performed (22). Baseline features are displayed

in Table 1. In Supplementary Table 2, the comparison of baseline

features stratifying patients by sample set have been displayed.
Plasma collection and miRNAs isolation

Eight milliliters of peripheral blood were collected into Cell-

Free DNA BCT (Streck Corporate, La Vista, NE) at each time-point

and was centrifuged at 3000 rpm at 4°C for 15. The obtained plasma

samples were further centrifuged at 16,000 g at 4°C for 10 min to

remove cell debris. The separated plasma was stored at -80°C until

nucleic acid extraction. Total RNA was isolated from plasma using

mirVana™ miRNA Isolation Kit (Ambion, Austin, TX, USA),

according to the manufacturer’s recommendations.
TABLE 1 Baseline characteristics of the study population by treatment group.

Characteristic Control, N=271 Diet, N=291 p-value2

Age 49 (38, 54) 48 (42, 55) 0.7

Height (cm) 163 (160,164) 162 (160, 165) 0.7

Fat Mass 34.7 (30.0, 40.1) 37.1 (32.5, 39.2) 0.5

Adiponectin (ng/ml) 9.3 (7.1, 13.8) 10 (5.8, 14.8) 0.7

Leptin (ng/ml) 20 (15, 4,876) 15 (11, 31) 0.065

Weight (kg) 60 (56, 70) 61 (54, 68) 0.8

BMI 22.9 (20.1, 26.9) 23.5 (21.1, 26.2) 0.7

Glycemia (mg/dl) 91 (87, 96) 89 (87, 92) 0.3

Cholesterol Tot (mg/dl) 196 (158, 218) 200 (175, 225) 0.4

Cholesterol HDL 63 (56,76) 69 (61, 81) 0.3

Cholesterol LDL 131 (90, 147) 132 (92, 157) 0.6

Triglycerides (mg/dl) 89 (71, 108) 72 (61, 91) 0.088

Vitamin D (mg/L) 28 (21, 34) 23 (18, 33) 0.3

IGF-I (ng/ml) 149 (121, 200) 132 (119, 172) 0.6

Insulin (mU/ml) 7 (4, 13) 6 (3, 7) 0.10

HOMA - IR 1.43 (0.89, 3.02) 1.24 (0.67, 1.46) 0.079

Gene mutation (%)

BRCA1 14 (52) 20 (69) 0.2

BRCA2 13 (48) 9 (31)
fro
1n(%); Median (IQR).
2Wilcoxon rank sum test; Pearson’s Chi-squared test.
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miRNA expression profiling

miRNA expression profiling was performed by using

GeneChip™ miRNA 3.0 Array (Affymetrix, Santa Clara, CA)

which contains 179,217 probes, representing 19,913 mature

microRNA annotated in miRBase V.17, and covers 203 organisms

of all species including human, mouse, and rat. For each sample,

500 ng of total RNA was labelled using the 3 DNA Array Detection

Flash Tag RNA Labelling Kit (http://www.genisphere.com),

according to the manufacturer’s instructions.

Firstly, poly (A) tailing was carried out at 37°C for 15 min in a

volume of 15 ml reaction mix that contained 1 ml Reaction Buffer,

1.5 ml MgCl2 (25 mM), 1 ml ATP Mix diluted 1:500 and 1 ml PAP

enzyme. Subsequently, Flash Tag Ligation was performed at room

temperature for 30 min by adding 4 ml of 5 Flash Tag Ligation Mix

Biotin and 2 ml T4 DNA Ligase into 15 ml of reaction mix. Next,

2.5 ml of Stop Solution was added to stop the reaction. Each sample

was hybridized on the array, washed, stained with the Affymetrix

Fluidics Station 450, and scanned with the Affymetrix Gene Chip

Scanner 3000 7G using the Command Console software (Affymetrix).
Array data processing and
statistical analysis

Raw data were normalized with the Robust Multiarray Average

(RMA) method to remove systematic variations. Briefly, RMA

corrects raw data for background using a formula that is based on

a normal distribution and uses a linear model to estimate values on

a log-scale. The RMA normalization was performed using the ‘Affy’

R package. The normalized expression matrix has been filtered to

retain only hsa probes, that is human miRNAs. Differentially

expressed miRNAs were detected setting up a time-course

analysis. In detail, differentially expressed miRNAs have been

detected comparing the two time-points independently in the two

groups. miRNAs were considered deregulated if logFC>|1.5| and

adjusted p-value<0.05. The differential expression analysis has been

performed with ‘limma’ R package. Then, through depicting a Venn

diagram (http://jvenn.toulouse.inra.fr/app/example.html), miRNAs

specifically deregulated in each of the two groups have

been identified.
Validation of selected miRNA expression
with digital droplets PCR

The expressions of selected miRNAs from microarray were

measured using ddPCR. Briefly, commercial Taqman probes of

selected miRNAs were produced by ThermoFisher Scientific

(Rodano MI, Italy). Specific reverse transcription of miRNA was

performed using TaqMan™ MicroRNA Reverse Transcription Kit

(ThermoFisher Scientific, Rodano MI, Italy). The preparation of
Frontiers in Oncology 04
ddPCR samples was performed according to the manufacturer’s

protocol for ddPCR supermix for probes (Bio-Rad Laboratories,

Inc., CA, USA). After the 96-well plate was loaded on and read by a

QX200 Droplet Reader and the data were collected using

QuantaSoftTM (Bio-Rad, Hercules, CA). U6 small nuclear RNA

(snRNA) was selected as an internal normalizer RNA.
Pathway enrichment analysis

To understand the biological role of miRNAs, the access to

TarBase v8 (23) has been requested and granted. Such a database

allowed the identification of the experimentally validated target

genes of miRNAs. In detail, TarBase has been filtered to detect

target genes that have direct interaction and down-regulation as an

effect on expression. The list of selected genes was then used to

perform pathway enrichment analysis, performed with the

‘EnrichR’ R package, including Gene Ontology (Biological

Process, Molecular Function and Cellular Processes), KEGG

and WikiPathways.
Statistical analysis

To detect relationships with metabolic features, miRNA

expression data coming from training and validation sets have

been normalized and standardized with the ‘caret’ R package. Such a

procedure allowed to merge the two sets and thus to gain

statistical power.

A further metabolic parameter has been added to metabolic

parameter, used to measure insulin resistance, HOMA - IR

(Homeostatic Model Assessment for Insulin Resistance):

HOMA − IR   =
1

22:5
(fasting   serum   insulin   mU ml=  X   fasting

plasma   glucose   mmol
l= )

Thus, miRNA expression data and metabolic features have been

merged to create a dataset, including data coming collected at the

two time-points. Delta values have calculated:

Dfeature   =   featurelast  −featurefirst

where: featurelast is the value detected at the second time point

and featurefirst is the basal measure.

Pearson correlation analysis has been performed with R cor()

function and statistical significance has been obtained with R

cor.mtest() function. Finally, a correlation plot has been depicted

with the corrplot R package.

Data, where necessary, have been categorized using median

value as cut value. miRNA expression values have been compared

with the Wilcoxon-Mann-Whitney test and boxplots were depicted

with the ggplot2 R package.
frontiersin.org

http://www.genisphere.com
http://jvenn.toulouse.inra.fr/app/example.html
https://doi.org/10.3389/fonc.2023.1147190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


De Summa et al. 10.3389/fonc.2023.1147190
Results

miRNA expression profiling

56 women carriers of BRCA mutations entered in the present

analysis and were splitted into training and validation sets. In detail,

30 women were included in the training cohort, including 16

patients that underwent dietary regimen and 14 control subjects

(Dietary Training, DTs; Control Training, CTs, respectively); in the

validation cohort, 26 patients out 13 underwent Mediterranean diet

and 13 control cases (Dietary Validation, DV; Control Validation,

CV, respectively). Both DTs and CTs underwent blood withdrawal

at baseline and at the end of the six-month dietary intervention.

miRNA expression profile was performed on training set by

microarray analysis. Two-time course analyses have been

performed both in DT and CT subgroups. Considering

log2FoldChange > |1.5| and p-value<0.05, differential expression

analyses, in time-course mode, highlighted 119 and 133 DEmiRNAs

(Deregulated miRNAs) in DTs and CTs, respectively (Figure 1A).

In order to identify DEmiRNAs specific for the DT subgroup, the

two previous results were intersected. In Figure 1B, Venn diagram

displays that 7 miRNAs are deregulated in the subgroup that

underwent dietary intervention. In detail, miR-4423-3p, miR-185-5p,
Frontiers in Oncology 05
miR-4445-3p, miR-498, let-7d-5p and miR-1263 were exclusively

upregulated in DTs (Table 2).
DEmiRNA validation in independent subset

The validation cohort included 26 subjects randomized in the

intervention or control group in a 50:50 proportion (DVs and CVs,

respectively. Digital droplet PCR (ddPCR) was elected as validation

method because of its high sensitivity, a specially needed parameter

for the detection of circulating miRNAs. ddPCR analysis confirmed

that five of seven miRNAs (miR-185-5p, miR-498, miR-3910, miR-

4423 and, miR-4445) were significantly up-regulated in subjects

after diet intervention compared with the baseline measurement

before participation in the lifestyle modification (Figure 2). Two

miRNAs (let-7d-5p and miR-1263) had no significant difference in

expression levels between groups.
Pathway enrichment analysis

To highlight how the validated DEmiRNAs act on cellular

processes, and eventually exert metabolic influences, pathway
A B

FIGURE 1

(A) Heatmap of DEmiRNAs in the two subgroups taking into account pre- and post- dietary intervention expression data. (B) Venn diagram depicting
deregulated miRNA distribution in DTs and CTs.
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enrichment analysis has been conducted. In detail, such analysis has

been performed through experimentally validated target genes, as

reported in the TarBase database.

The choired pathways enriched in the genes targeted by over-

expressed miRNAs were associated with cellular proliferation and

adhesion, cell-cycle, regulation of transcription, epithelial-

mesenchymal transition (EMT), drug resistance, angiogenesis,

chronic inflammation and diabetes.

The ana lys i s a l so showed an enr ichment in the

phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) and

AMP-activated protein kinase (AMPK) signaling pathway.

Moreover, noteworthy is the correlation of miRNAs with the

inhibition of the transient receptor potential melastatin 2 ion

channel (TRPM2, also known as clusterin) and with Hippo

pathway (Figure 3).
DEmiRNAs in dietary regimen and
relationship with metabolic features

To dissect the role of the validated DEmiRNAs, the variations in

their expression levels, following the dietary intervention, were

related to metabolic, and in particular, insulin-resistance

parameters. Correlation plot in Figure 4 displays significant

relationships: DmiR-4423, DmiR-4445 and DmiR-3910 expressions

are positively correlated with DvitaminD level; whilst DmiR-185-5p

is related to DHDL cholesterol (Figure 4). The other metabolic

parameters considered were unaffected by miRNAs deregulation.

Furthermore, focusing on the post-intervention group, the

subset was stratified according to median values of metabolic

parameters. Mann-Whithney test results highlighted that subjects

with IGF-I levels lower than median value cut-off have significantly

higher expression of miR-498 and miR-3910 than the other group

(Figure 5). Such a result indicated that the diet intervention was able

to modulate miR-498 and miR-3910 which bona fide are related to

IGF-I parameter.
Discussion

Disentangling the mechanisms necessary to improve diagnosis

and prognosis of BC patients is a critical point since this is still a
Frontiers in Oncology 06
highly heterogeneous disease. The necessity to have a non-invasive

biomarker for the disease monitoring must consider that circulating

biomarkers may originate from many cells or tissues in the body,

and in response to different conditions both physiological and

pathological. Previous studies demonstrated the feasibility of

using circulating miRNAs as biomarkers of tumors early

diagnosis and prognosis (24).

In addition to the conventional approaches, a lifestyle

intervention seems to be a good starting point to improve care of

women affected by BC. In order to select peculiar circulating

markers associated with a lifestyle intervention such as a diet in

subjects with BRCA pathogenic alterations, we followed plasmatic

miRNAs expression level after a Mediterranean dietary intervention

in women carriers of BRCA mutations.

In our hands, plasma-circulating miR-185-5p, miR-498, miR-

3910, miR-4423 and, miR-4445 were significantly up-regulated after

the dietary intervention in the IG compared with their baseline

levels and with the CG in the same conditions. These miRNAs are

associated with crucial pathways in BC and may explain the

mechanisms by which a Mediterranean dietary intervention

affects breast cancer progression in BRCA-mutated women.

In the present study, a tumor-suppressor miRNA (25), miR-

185-5p, often down-regulated in BC samples (26), was upregulated

after the Mediterranean dietary intervention compared to the

baseline levels but not in the CG (P-value<0.02) either in the

training and in the validation set.

miR-185 is reported to be linked to the tumor size, the tumor

stage, and the lymph nodemetastasis (26). In addition, a lowmiR-185

expression seems to contribute to the acquisition of stemness

characteristics in BC cells (27). In detail, miR-185 targeted the

cadherin 1 (CDH1) gene, which encodes for E-cadherin (E-cad)

protein involved in the maintenance of pluripotency and self-renewal

of embryonic stem cells and neural stem cells (28–30). Recently it has

been reported that E-cad may have oncogenic properties in some

tumor types. In particular, in BC cells a high E-cad expression level

seems to enhance the metastasis formation (31).

The role in cancer of the other upregulated miRNAs after

dietary intervention is still not well elucidated. Only miR-498 has

been reported in literature to be often down-regulated in several

tumor types such as colon and ovarian cancers (32, 33) and, also in

BC (34). Furthermore, Leivonen et al. (2013) identified several

miRNAs, among which miR-498 (35), regulating the human

epidermal growth factor receptor 2 (ErbB2/HER2) pathway which

is one of the driver pathway of BC, showing HER2 overexpression

with the constitutive activation of its receptor and leading to a more

aggressive form of the disease with the promotion of the metastatic

process (35).

Pathway enrichment analysis performed using the five

upregulated miRNAs (miR-185-5p, miR-498, miR-3910, miR-

4423 and, miR-4445) and their target genes showed these

miRNAs involvement in important interconnected pathways: the

Hippo pathway, the PI3K-Akt, and the AMPK.

The Hippo pathway, a regulator in several signaling processes,

such as organ size, tissue homeostasis, cell proliferation and

differentiation, plays a peculiar role in BC (36–38), where it is

reported an overstimulation of the AKT kinase activity, also via the
TABLE 2 DEmiRNAs exclusively detected in subjects of the DT
subgroup.

logFC adjusted Pval

hsa-miR-4423-3p 1,888 4,47E-12

hsa-miR-185-5p 1,556 2,26E-08

hsa-miR-4445-3p 1,533 3,4E-09

hsa-miR-498 1,533 8,75E-16

hsa-let-7d-5p 1,519 1,38E-11

hsa-miR-1263 1,514 2,72E-15

hsa-miR-3910 1,507 7,34E-17
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HER2 protein, resulting in the majority of cases in a higher-grade

carcinoma (38, 39). In particular, the Hippo pathway is a kinase

cascade that results in the phosphorylation of the transcription co-

activators YAP (yes-associated protein/yes-related protein) and

TAZ (Tafazzin protein), inhibiting the activation of other

transcription factors and, thus the tumor progression (40).

The AMPK activity is a serine/threonine kinase, mainly

involved in the maintenance of cellular energy homeostasis by
Frontiers in Oncology 07
acting on glucose and lipid metabolism. Activated AMPK can

lead to the stimulation of several regulatory processes involved in

cancer pathogenesis (41). Recent studies reported AMPK as a novel

druggable target (41).

These biological processes also involved specific metabolites

controllable with the food intake. For instance, a link between the

Hippo pathway and IGF-I is shown, since this molecule could

modulate the hypoxia-activated YAP signaling, as previously
A B

D

E

C

FIGURE 2

Boxplot depicting validated DEmiRNAs in independent cohort subgroups (DV and CV). It could be observed that miR-185-5p (A), miR-498 (B) and
miR-3910 (C), miR-4423 (D) and miR-4445 (E) are significantly upregulated in DV subjects.
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demonstrated by Zhu et al. (2018) (42) and later confirmed also in

BC by Rigiracciolo et al. (2020) (43). Furthermore, it has been

highlighted how their inhibition could significantly enhance the

efficacy of therapies.

Our work focused on the interactions between genetic profiles,

lifestyle risk factors, and intermediate biomarkers. The inhibition of

this complex network seems to be a requirement to develop anti-

tumor strategies and we corroborate the hypothesis that miRNAs

could improve the hormonal and metabolic pattern associated with

BC risk, such as IGF-I, in response to the dietary intervention,

slowing or inhibiting cancer growth in BRCA mutation carriers.

It has been reported that IGF-I is overexpressed in about 70% of

BC patients and associated with higher BC risk (44), and this results

in the activation of specific signaling pathways, i.e. Ras, Raf and

mitogen-activated protein kinase (MAPK) and, the above-

mentioned, PI3K-Akt and Hippo pathway. As previously

discussed, BRCA1 negatively regulates IGF-I, and its defectiveness

keeps always active the IGF-I/PI3K-Akt pathway, which

significantly promotes tumor cell survival and proliferation (45–

47). Hence, the carriers of BRCA mutation may be more affected by

the mitogenic effect of insulin, stimulating mitosis and inhibiting

apoptosis (48).

IGF-I could also, by the stimulation of different biological

pathways, lead to significant TRPM2 expression (49).

The TRPM2 is a secreted glycoprotein that shows a key role in

cell survival, cancer progression and drug resistance development

(50). Its expression level is highly connected with various cellular
Frontiers in Oncology 08
stress responses (51); in fact, it has been reported overexpressed in

several tumor types, including BC, involved in the promotion of

cancer cell survival (52).

Several studies report that TRPM2 pharmacological inhibition

could lead to a decreased tumor proliferation and viability,

enhancing cell death and increasing drug sensitivity (53–55).

All these findings may corroborate the hypothesis to develop

new drugs, starting from miRNAs as inhibitory molecules for these

connected processes.

Moreover, as previously discussed, insulin resistance and

obesity are linked with hereditary BC (11, 56).

We also reported the correlation of selected miRNAs with the

levels of several molecules involved in metabolism in BC patients,

such as vitamin D and cholesterol, creating a close connection

between food, b io logica l processes , metabol i tes and

analyzed miRNAs.

Numerous studies, in fact, reported that low levels of vitamin D

are linked to several pathological conditions, such as inflammation

and cancer (57). Moreover, BC incidence and vitamin D levels seem

to be negatively related (58), and this situation is associated with a

worst outcomes for BC patients since this molecule is involved in

the EMT process, inhibiting tumor migration, invasion, and

metastatic potential (57, 59–62).

We observed that the changing in miRNA circulating levels in

subjects that followed the dietary intervention is positively related to

an increase in vitamin D levels in comparison to their baseline,

contrary to what was shown in the CG, fortifying our thesis that a
A

B

C

FIGURE 3

Pathway enrichment analysis results related to (A) GO_Biological Process, (B) KEGG and (C) WikiPathway databases.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1147190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


De Summa et al. 10.3389/fonc.2023.1147190
FIGURE 4

Correlation plot including differences between post and pre values of metabolic parameters and DEmiRNAs (INS: insulin; chol=cholesterol; TG:
triglycerides; *, p-value< 0.05; **, p-value< 0.01; ***, p-value< 0.001).
A B

FIGURE 5

DEmiRNA (in detail, miR-498 (A) and miR-3910 (B)) expression in the post-diet group stratified according to IGF-I median levels, thus 0: subjects
with IGF-I.≤median value; 1: subjects with IGF-I>median value.
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healthy diet, such as the Mediterranean diet, by influencing several

biological processes, may represent an adjuvant approach to

improve BC prevention and treatment.

Moreover, several studies focused their attention on the

relationship between BC progression and cholesterol circulating

levels. In particular, it has been reported that low levels of High-

Density Lipoprotein (HDL) were associated with worse overall

survival and disease free survival (63). Cancer cells, in fact,

display a deregulated lipid metabolism, which can affect several

cellular processes, including proliferation, differentiation and

inflammation-related pathways.

In our hand we demonstrated that subjects who followed a

specific sustenance, with the up-regulation of target miRNAs,

displayed low levels of HDL compared to the CG. In addition,

HDL-cholesterol levels have been reported to have a negative

relationship with IGF-I expression (44).

In conclusion, we showed that post a short lifestyle intervention

a significant increase of HDL circulating levels, but also a decrease

in IGF-I and insulin expression were reported linked by

miRNAs overexpression.

Therefore, these results, although further investigation are

necessary, suggest that by changing the dietary habits of women

at high genetic risk to develop BC, it is possible to affect different

signaling pathways linked to cancer risk.
Conclusion

Many studies have reported the benefits following a balanced

diet to reduce the risk of multiple diseases, including BC. Here, we

have widely discussed benefits to carry out lifestyle modification in

subjects BRCA-mutated, who have a very high risk to develop BC,

suggesting this approach as a risk-reduction measure.

Importantly, we highlighted the synergistic effect of a healthy

diet and epigenetic regulation in BC through the modulation of

specific miRNAs. Different miRNAs have been reported involved in

the tumor onset acting as tumor suppressors by targeting tumor-

associated genes that are often downregulated.

Accordingly, we showed that this situation could be reversed,

albeit with a short period of dietary intervention, leading to a better

physical condition of BRCA-mutated carriers.

Further investigations are necessary to elucidate if

Mediterranean diet could really improve overall survival and

disease-free survival in BC in a larger cohort, to develop primary

prevention recommendations for women with BRCA mutations

and provide an effective alternative therapeutic approach for this

aggressive disease.
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