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Mitochondrial metabolic
reprogramming-mediated
immunogenic cell death reveals
immune and prognostic features
of clear cell renal cell carcinoma

Lin Yang †, Jing Xiong †, Sheng Li †, Xiaoqiang Liu †, Wen Deng,
Weipeng Liu* and Bin Fu*

Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
Background: Mitochondrial metabolic reprogramming (MMR)-mediated

immunogenic cel l death ( ICD) i s c losely re lated to the tumor

microenvironment (TME). Our purpose was to reveal the TME characteristics of

clear cell renal cell carcinoma (ccRCC) by using them.

Methods: Target genes were obtained by intersecting ccRCC differentially

expressed genes (DEGs, tumor VS normal) with MMR and ICD-related genes.

For the risk model, univariate COX regression and K-M survival analysis were

used to identify genes most associated with overall survival (OS). Differences in

the TME, function, tumor mutational load (TMB), and microsatellite instability

(MSI) between high and low-risk groups were subsequently compared. Using risk

scores and clinical variables, a nomogram was constructed. Predictive

performance was evaluated by calibration plots and receiver operating

characteristics (ROC).

Results: We screened 140 DEGs, including 12 prognostic genes for the

construction of risk models. We found that the immune score, immune cell

infiltration abundance, and TMB and MSI scores were higher in the high-risk

group. Thus, high-risk populations would benefit more from immunotherapy.

We also identified the three genes (CENPA, TIMP1, and MYCN) as potential

therapeutic targets, of which MYCN is a novel biomarker. Additionally, the

nomogram performed well in both TCGA (1-year AUC=0.862) and E-MTAB-

1980 cohorts (1-year AUC=0.909).

Conclusions: Our model and nomogram allow accurate prediction of patients’

prognoses and immunotherapy responses.

KEYWORDS

mitochondrial metabolic reprogramming, immunogenic cell death, clear cell renal cell
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Background

Renal cell carcinoma (RCC) is one of the most common

urological malignancies, especially clear cell renal cell carcinoma

(ccRCC), with approximately 431 288 new cases of RCC in 2020,

70% of which were ccRCC (1, 2). For non-metastatic RCC, surgical

treatment can achieve curative results, but the high recurrence rate

(40%) after surgery is a major factor affecting the long-term survival

of patients (3). In addition, although systemic therapy is the

standard of care for metastatic RCC, the long-term survival of

patients with metastatic RCC has remained suboptimal for many

years. With the rise of immunotherapy, combined treatment

modalities targeting vascular endothelial growth factor and

immune checkpoints offer new hope for improving the prognosis

of metastatic RCC and high-risk limited RCC (4, 5). Nevertheless,

the response rates and durability of treatments observed in clinical

practice have not been satisfactory, mainly due to the lack of

guiding and effective biomarkers (6, 7).

Metabolic reprogramming is the phenomenon that occurs when

tumor cells undergo a rapid adaptive response to hypoxic and low

oxygen conditions to proliferate and migrate in the tumor

microenvironment (TME), and it is one of the important hallmarks

of cancer (8). Mitochondria are known to play a key role in

biosynthesis, energy metabolism, and signaling, and are dynamic

organelles that coordinate functions such as metabolism, cell

proliferation, and cell survival (9). Tumor cells are no exception, and

their malignant transformation and development are dependent on

mitochondrial energy metabolism. Interestingly, there is also

metabolic heterogeneity in tumor tissues. The adaptive metabolic

response of tumor cells not only regulates each other with the TME

they are in but also influences the way genes are expressed, leading to

great differences in the malignancy and therapeutic response of

different individual tumors (10, 11).

For example, in ccRCC, lipid metabolism, and lactate metabolic

processes, which are both closely related to the occurrence and

progression of ccRCC, as well as the identification of potentially

valuable therapeutic targets (FBP1, HADH, and TYMP) based on

genes related to lactatemetabolismbySun et al. (11–14).With a deeper

understanding of mitochondria in cancer development, cancer

therapeutic modalities targeting mitochondrial metabolism are

gradually being translated into clinical practice (15, 16). Surprisingly,

recent studies have shown that mitochondrial metabolic

reprogramming (MMR) can enhance immunogenic cell death (ICD)

effects and thus optimize cancer immunotherapy outcomes (17, 18).

ICD can activate antitumor immune effects by remodeling the TME.

ICD stimulates dendritic cell (DC) maturation under endogenous

conditions through the release of tumor-associated antigens and

danger-associated molecular patterns, including adenosine

triphosphate, high-motility group box 1, and calreticulin. Once DC

mature, they deliver antigens to cytotoxic T lymphocytes, which then

activate antitumor immunity (19, 20).

Therefore, our study aims to use MMR and ICD-related genes

to identify and reveal clear cell renal cell TME and prognostic

features to screen individuals suitable for immunotherapy to help

clinicians in scientific decision-making.
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Materials and methods

Datasets

We obtained the training dataset from the Cancer Genome

Atlas (TCGA) database(https://portal.gdc.cancer.gov/). Including

TCGA-KIRC TPM and raw counts gene expression data (tumor

sample: 541, normal sample: 72) and clinical data of 533 patients.

TCGA-KIRC data was processed by log2 (TPM+1) for subsequent

analysis. Moreover, we excluded genes with too low expression

(more than 25% of samples with counts expression less than 10).

From the ArrayExpress database (https://www.ebi.ac.uk/biostudies/

arrayexpress), E-MTAB-1980, represented the validation cohort,

including 101 patients with ccRCC. The identification of MMR and

ICD-related genes was based on the GeneCards database and

previously published literature. To begin with, we searched the

GeneCards database for “mitochondrial metabolic reprogramming”

and “immunogenic cell death” and then screened for protein-

coding genes with a correlation score greater than 0.5. We

obtained 34 ICD-related genes from the results of Abhishek’s

study (21). Eventually, we obtained 3103 genes related to MMR

and 1732 genes related to ICD.
Weighted gene co-expression network
analysis (WGCNA)

The close association between MMR and ICD-related genes and

ccRCC was confirmed using the R package “WGCNA”. Co-

expression networks with scale-free topologies were selected using

appropriate soft-threshold power. Further, to investigate gene

connectivity in this network, a topological overlap matrix (TOM)

was converted from the adjacency matrix. A hierarchical clustering

tree (dendrogram) of genes was generated based on TOM, gene

modules are represented by different branches on the clustering

tree, and by different colors.

Clinical and immune features included stage, immune score,

and CD8 T-cell infiltration levels. Each sample was assessed using

the “estimate” package to determine its immune score, stromal

score, estimate score, and tumor purity. The online analysis tool

TIMER2.0 (http://timer.cistrome.org/) can download the immune

cell infiltration score file for each TCGA-KIRC sample, and we used

22 immune c e l l i nfi l t r a t i o n s c o r e s b a s e d on t h e

CIBERSORT algorithm.
Identification and analysis of target
genes (TGs)

Using the “DESeq2” package to screen the differentially

expressed genes (DEGs) (tumor VS normal). A differential gene’s

screening criteria require the p-value< 0.05, and the |log2fold

change|> 1.5. The DEGs, MMR, and ICD-related genes were then

intersected to obtain TGs for subsequent analysis.
frontiersin.org
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Somatic mutation data of ccRCC samples were downloaded

from the TCGA database, and the “Maftools” package was used to

calculate the tumor mutational load (TMB) and visualize the

mutation landscape of TGs. In addition, “clusterProfiler” was

used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses to understand which biological

functions are associated with the TGs.
Developing a risk model based on
prognosis-related genes

Univariate COX regression and K-M survival analysis

(screening criteria: p<0.01; GEPIA database, http://gepia.cancer-

pku.cn/index.html) were performed using TCGA-KIRC expression

and survival data to identify TGs most associated with overall

survival (OS), which was then used to perform a least absolute

shrinkage and selector operation analysis (LASSO) with the

“glmnet” package. Patients’ risk scores were calculated by

multiplying their expression value by their coefficient by

summing the scores of each OS-related gene. The median risk

score was used to distinguish low-risk patients from high-risk

patients. In addition, principal component analysis (PCA) was

used to assess how well model genes discriminated between

samples. Further validating the model’s predictive capability, we

analyzed TCGA-KIRC and E-MTAB-1980 cohorts using Kaplan-

Meier (K-M) survival analyses. As well, we compared the OS and

risk scores of patients with varying clinical characteristics.
The immune landscape across
different risk groups

For each sample, the TME score and infiltration level of 22

immune cells were calculated, and then the differences between the

two risk groups were observed. Furthermore, immunoinhibitors

and immunostimulators are closely related to the TME, we

evaluated their expression levels in samples from different

risk groups.
Functional and gene set enrichment
analysis (GSEA)

DEGs between the two risk groups were identified with the

“limma” package. After using the “ClusterProfiler” package, GO

and KEGG analyses were performed, and GSEA was to identify

differential signaling pathways, biological effects, and gene sets that

are enriched in different populations. The “GSVA” package was

used to compute normalized enrichment scores for pathway and

functional annotations using the gene set variation analysis (GSVA)

approach. The “c2.cp.kegg.v7.4.symbols.gmt” annotation file was

obtained from the MSigD. To further assess the immune-related

functions score for each sample, we used the “GSEABase” and

“GSVA” packages and then combined them with the immune gene

set annotation file “immune. gmt” for enrichment analysis.
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The prediction of immunotherapy
response and drug sensitivity

Palmeri’s study indicated that TMB and microsatellite

instability (MSI) could predict the effect of immunotherapy (22).

Therefore, we assessed the TMB levels and MSI status of the

different risk groups. The TMB was calculated using the R

package “maftools” and the microsatellite instability score was

downloaded using the package “cBioPortalData” in the file

“kirc_tcga _pan_can_atlas_2018”. We choose “MSI_SEN

SOR_SCORE”, if the score is greater than 0.3, it is defined as

MSI, and vice versa as MSS. Furthermore, we used the “easier”

package (23) to obtain the immune response score file and identify

the relationship between risk score and immunotherapy response.

Each sample’s sensitivity scores to varying drugs were calculated

using the package “oncoPredict” (24), with higher scores indicating

greater. The reference file “GDSC2_Expr (RMA Normalized and

Log Transformed).rds” was from Cancer Drug Sensitivity

Genomics (https://www.cancerrxgene.org/).
Comprehensive analysis of model genes

Our subsequent analysis focused on the three genes with the

highest absolute risk coefficients among the twelve model genes.

The online analysis tools Gene Set Cancer Analysis (GSCA, http://

bioinfo.life.hust.edu.cn/GSCA/#/) and TISIDB (http://cis.hku.hk/

TISIDB/) were used to analyze the expression differences,

methylation profiles, prognostic significance of these three genes

in pan-cancer and immune relevance. In addition, we analyzed their

distribution in different cell types using single-cell sequencing data

from the online tool Tumor Immune Single-cell Hub 2 (TISCH2,

http://tisch.comp-genomics.org/).
Developing and validating nomograms

To screen for independent predictors of OS, univariate and

multivariate COX regression analyses were performed for age,

gender, stage, and risk score with a screening criterion of p<0.05.

Nomograms were then constructed using the “ survival” and “ rms”

packages. Furthermore, the model’s predictive performance was

validated with calibration plots and receiver operating

characteristics (ROC) analyses. The same analysis was performed

for the E-MTAB-1980 cohort.
Validation of gene expression and
protein expressions

The real-time fluorescence quantitative polymerase chain

reaction (RT-qPCR) was used to verify the expression levels of

key genes. Human RCC cells are derived from the Procell Life

Science&Technology Co., Ltd (Wuhan, China). After RNA was

extracted using TRIzol reagent (Invitrogen, Thermo Fisher
frontiersin.org
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Scientific, Inc.), reverse transcription was performed using the

Takara PrimeScript RT kit (Takara Bio, Inc., Otsu, Japan). Lastly,

RT-qPCR was performed using the SYBR premix Ex Taq kit

(Takara Bio, Inc., Otsu, Japan) on the Roche LightCycler96 real-

time fluorescent quantitative PCR system. Based on the 2^−DDCt
method, the FC in mRNA was calculated.
Statistical analysis

Our statistical analyses were performed using R (version 4.2.2)

or GraphPad Prism (version 9.0). All statistics were two-sided tests,

and p<0.05 was considered statistically significant if not otherwise

stated. An analysis of Spearman correlation was performed to

determine the correlation between two continuous variables.

Comparing two independent samples with Wilcoxon rank sum

tests and multiple samples with Kruskal-Wallis tests. Comparing

two categorical variables was accomplished with the chi-square test.

The significance of differences in K-M survival analysis was assessed

using the log-rank test.
Result

Screening of TGs for subsequent analysis

Using the WGCNA algorithm, we evaluated the correlations of

MMR and ICD-related genes with ccRCC prognosis and TME. As

shown inFigure 1A,we chose 11 as the optimal soft thresholdpower to

construct the co-expression network. Hierarchical clustering analysis

was then performed based on weighted correlations, and these genes

were classified intodifferentmodules (Figure1B). Figure1C shows that

most of the modules are remarkedly related to the stage, immune

infiltration score, and CD8 T cell infiltration abundance, with the red

module being the most relevant. Hence, the development of ccRCC

appears to be strongly linked to MMR and ICD-related genes.

Therefore, we first screened the DEGs between tumor and normal

tissues (Figure 1D) and then took the intersection of it andMMR and

ICD-related genes to identify 140 target genes for subsequent analysis

(Figure 1E). Comparatively to normal tissues, volcano map analysis

showed that 108 genes had up-regulation and 32 genes had down-

regulation (Figure 1F). In addition, the mutation landscape of TGs

showed the highest frequency of mutations in BRCA2 and ERBB4

(Figure 1G). Their close association with immune-related functions

and pathways was revealed by enrichment analysis, including

regulation of T cell activation, cytokine receptor binding, cytokine

activity, and Cytokine-cytokine receptor interaction (Figure 1H). This

further corroborates that TGs are closely associated with the TME

of ccRCC.
Risk model based on 12 genes

According to the screening criteria (p<0.01), 23 prognostic

genes most associated with OS were identified (Figure 2A). On

the basis of LASSO regression analysis, a 12-gene risk model was
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subsequently developed (Figure 2B) [risk score=ABCB1*(-0.114) +

CCND1*(-0.002) +CENPA*0.328+CXCL5*0.053+DPEP1*

(-0.058) +EPCAM*(-0.028) +FGF1*(-0.021) +KITLG*(-0.094)

+MYCN*(-0.232) +OSM*0.052+PLIN2*(-0.047) +TIMP1*0.149].

The results of PCA also showed strong risk differentiation of

model genes (Figure 2C). Furthermore, it can be observed from

(Figures 2D, E) that the trends of risk scores and survival status of

the training set TCGA and validation set E-MTAB-1980 are highly

consistent. The heat map of the distribution of model genes with

risk scores also remained almost consistent. The results of the K-M

survival analysis also showed significant differences in OS between

the two risk groups (Figures 2F, G), which indicates the strong

predictive performance of our model.
The risk score and clinical variables.

Depending on the patient’s age, gender, and stage, we classify

them into different groups. It can be seen from Figure 3A that

patients in the high-risk group had a worse prognosis regardless of

age (<=65 years, >65 years). Risk scores between the two age groups

did not differ significantly, however (Figure 3B). Patients with high-

risk outcomes had shorter survival rates in both males and females,

and males had a higher percentage of high-risk patients (Figures 3C,

D). As well, both early (stage I/II) and late-stage (stage III/IV)

patients in the high-risk group had a worse outcome, with a higher

proportion of late-stage patients at high risk (Figures 3E, F).
Immune landscapes in different risk groups

In the high-risk group, we observed higher estimated scores,

immune scores, and tumor purity scores (Figure 4A). Furthermore,

higher levels of CD8+ T cells, TFH T cells, and memory-activated

CD4+ T cells were found in the high-risk group (Figure 4B). There

were also differences in immunoinhibitor and immunostimulator

expression levels between the two risk groups. According to

Figure 4C, high-risk individuals expressed higher levels of

CTLA4, LAG3, PDCD1, TGFB1, and TIGIT. High-risk patients

also expressed higher levels of immunostimulators, such as CD27,

CD276, CD28, CD70, IL2RA, IL6, and TNFRSF18 (Figure 4D). In

addition, we observed the same expression trend in the

validation cohort.
Functional and pathway differences
between high and low-risk groups

The results of GO and KEGG analysis showed that the

differential genes between high and low-risk groups were mainly

enriched in immune-related biological functions and pathways,

such as immunoglobulin complex and antigen binding

(Figure 5A). It appears that pathway enrichment distribution in

the two groups differs significantly according to the GSVA results,

with the high-risk group mainly enriched in immune-related

pathways and the low-risk group enriched in metabolism-related
frontiersin.org
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pathways (Figure 5B). As a result of GSEA, the top 5 most

significantly enriched pathways are shown. The immune-related

pathways that were significantly enriched in the high-risk group

included cytokine-cytokine receptor interaction and primary

immunodeficiency (Figure 5C). Furthermore, we calculated the

immune function score for each sample. High-risk individuals

scored higher on all immune-related functions except type II IFN

response (Figure 5D). The same trend was maintained in the

analysis of the validation cohort. Hence, combining the results of

these analyses, it is reasonable to assume that risk scores are closely
Frontiers in Oncology 05
related to the TME of ccRCC and could potential ly

guide immunotherapy.
Immunotherapy response
and drug sensitivity

Further exploring immunotherapy response, we compared the

difference between the two risk groups according to TMB, MSI, and

easier scores, with higher values predicting a greater likelihood of
D

A B

E F

G H

C

FIGURE 1

Screening process of target genes. (A) Determine the appropriate soft threshold power equal to 11. (B) Generate a hierarchical clustering tree of
genes based on TOM, with different colors representing different modules. (C) The modules are closely related to the clinical features and TME of
ccRCC, with the red module being the most important. (D) Differential ranking map of DEGs between tumor and normal tissues. (E) Venn diagram of
DEGs, MMR, and ICD-related genes taking the intersection. (F) Volcano plot of 140 target genes. (G) Mutation waterfall plot of target genes. H
Enrichment bubble map of biological functions and pathways of target genes.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1146657
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2023.1146657
benefiting from immunotherapy. We observed that patients in the

high-risk group had higher TMB and easier scores, and that risk

scores changed positively with TMB (Figures 6A–C). A higher risk

score was also observed in the MSI group (Figure 6B).

Consequently, immunotherapy was more likely to succeed in

high-risk patients, resulting in an improved outcome.

Subsequently, we calculated the sensitivity of each sample to

different drugs and then compared the differences in sensitivity of

the top 5 drugs in two risk groups by ranking the mean of the

sensitivities. Among those at high risk, Carmustine, Nelarabine,

MIRA-1, and EPZ5676 appeared to be more sensitive. Perhaps, the

combination of these drugs with immune checkpoint inhibitors
Frontiers in Oncology 06
could lead to surprising therapeutic effects, which provides new

ideas for future prospective study designs.
Key model genes affecting risk scores

We in-depth explored the three genes with the highest risk

coefficient, including CENPA, TIMP1, and MYCN. Firstly,

Figure 7A demonstrates their expression levels in pan-cancer.

CENPA and TIMP1 are highly expressed in the tumor tissue of

most cancers, while MYCN is usually lowly expressed. We also

found that they were closely associated with OS in several cancer
D
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E

F G

C

FIGURE 2

Development of risk model. (A) Prognostic genes were screened based on univariate COX regression and K-M survival analysis. (B) LASSO regression
was used to construct a 12-gene-based risk model. (C) PCA analysis showed that the model genes had a good discriminatory ability. (D, E) Risk
scores of TCGA and E-MTAB-1980 cohorts were correlated with survival status and model genes. (F, G) K-M survival analysis for high- and low-risk
groups.
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types. As with CENPA, TIMP1 was associated with poor prognosis

in most cancers.MYCN was mainly associated with good prognosis,

especially in ccRCC, where higherMYCN expression was associated

with longer OS in patients (Figure 7B). We also evaluated the

methylation status of the three genes in tumors and normal tissues.

The methylation levels of CENPA and TIMP1 were downregulated

in tumor tissues, while MYCN, in contrast to them, had elevated

methylation levels (Figure 7C). Moreover, their expression levels

were negatively correlated with the methylation levels (Figure 7D),

which suggests that methylation could be responsible for their

differential expression levels. Using single-cell sequencing data

from GSE159115, we further investigated CENPA, TIMP1, and

MYCN expression levels in different cell types. As shown in

Figure 7E, all cells can be broadly classified into three types,

including immune cells, malignant cells, and stromal cells.

Compared with normal tissues, CENPA expression in tumor

tissues was elevated in all three cell types; TIMP1 was elevated in

stromal cells and decreased in malignant cells; MYCN expression

levels were not significantly different in different cell types.

Subsequently, we analyzed the relationship of CENPA, TIMP1,

and MYCN with the clinical features and TME of ccRCC. To begin

with, the expression levels of CENPA and TIMP1 increased with the
Frontiers in Oncology 07
tumor stage, while MYCN did the opposite (Figure 8A). A similar

trend was observed in tumor grade, where the expression levels of

CENPA and TIMP1 were positively correlated with grade and that

of MYCN was negatively correlated (Figure 8B). Based on these

genes, ccRCC can be classified into different immune subtypes

(Figure 8C), suggesting a close relationship between them and the

tumor’s TME. This is further confirmed by the analysis presented in

Figure 8D, where CENPA and TIMP1 were positively correlated

with the infiltration level of most immune cells, andMYCN showed

the opposite trend (Figure 8D). Therefore, we believe that CENPA,

TIMP1, and MYCN are all therapeutic targets with significant

potential in ccRCC.
Nomogram

An independent predictor of OS in patients with ccRCC was

age, stage, and risk score, as identified by univariate and

multivariate COX regression analyses (Figures 9A, B). A

nomogram was developed to predict survival probability in

patients with ccRCC at 1, 3, and 5 years (Figure 9C). As seen in

the calibration plots (Figure 9D), the predicted probabilities were
D

A B

E F

C

FIGURE 3

Relationship of risk scores to clinical variables. (A, B) K-M survival analysis and comparison of risk scores for high and low-risk groups in patients <=65
years and >65 years. (C, D) K-M survival analysis of high and low-risk groups of male and female patients with comparison of risk scores by gender. (E, F)
K-M survival analysis of high- and low-risk groups of early and late-stage patients, with a comparison of risk scores by stage.
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almost in a straight line with the actual possibilities for both the

TCGA and E-MTAB-1980 cohorts, indicating that the prediction

results of the Nomogram were very accurate. Additionally, the

results of ROC analysis also show that our nomogram has a high

predictive value. The one-year Area Under Curve (AUC) of the

nomogram in the TCGA cohort equals 0.862 (one-year AUC for

risk score=0.732). The 1-year AUC of the nomogram for the E-

MTAB-1980 cohort is 0.909 (0.890 for the risk score). In other

words, our nomograms provide accurate prognostic information to

patients and clinicians.
Expression validation of key model genes

Wang (25) and Shou (26) have confirmed through detailed in

vitro experiments that CENPA and TIMP1 are highly expressed in

ccRCC tumor tissues and promote tumor progression through
Frontiers in Oncology 08
different mechanisms. As a result, we assessed MYCN expression

levels in tumors and normal tissues using RT-qPCR. Primer

sequence of MYCN : F: CAGGCAAGACAGCAGCA; R:

ATGTGCAAAGTGGCAGTGA. The MYCN expression in

ACHN and OSRC cell lines was significantly lower than that in

HK-2 normal cells (Figure 10B), which was in perfect agreement

with the results of TCGA-KIRC analysis (Figure 10A).
Discussion

As the most common pathological type of RCC, ccRCC is

highly immunogenic and heterogeneous. In other words, the TME

may be dramatically different for different ccRCC, and this may

account for the large differences in response rates to immune

checkpoint inhibitors in different patients (27). Furthermore, it is

due to such a highly heterogeneous TME that metabolites
D

A B

C

FIGURE 4

Immune landscapes in different risk groups. (A) Estimated scores, immune scores, stromal scores, and tumor purity for high- and low-risk groups.
(B) 22 levels of immune cell infiltration. (C, D) Expression levels of immunoinhibitor and immunostimulator agents in TCGA and E-MTAB-1980 cohorts.
“*”<0.5, "**" <0.01, and "***"<0.001.
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associated with tumor biological behavior are also increased (28). In

numerous studies, metabolic reprogramming has been shown to

occur during the development of ccRCC, which controls the

tumor’s energetic and biosynthetic metabolisms (29). p M Herst’s

study also pointed out that MMR is an important factor in

determining tumor fate (30). Furthermore, Bianca’s study showed

that MMR can induce the onset of ICD and thus exert tumor-killing

effects (31). Therefore, an in-depth investigation of the significance

of MMR and ICD in the TME of ccRCC is highly promising. As far

as we know, our study is the first to combine these factors to reveal

ccRCC prognostic factors and TME characteristics.

Our study integrated MMR and ICD-related genes and

identified 140 genes with a significantly different expression

between tumor and normal tissues. From these, 12 genes most

associated with OS were then screened for use in constructing risk

models. PCA and K-M survival analysis showed that risk grouping

could distinguish different ccRCC patients well. Subsequently, we

analyzed the differences in the TME, TMB, MSI, and functional
Frontiers in Oncology 09
clustering between the two risk groups to help identify ccRCC

patients who have a greater chance of benefitting from

immunotherapy. In addition, our comprehensive analysis of key

model genes showed that CENPA, TIMP1, and MYCN are all

therapeutic targets with significant potential. In the end, we

constructed a nomogram with strong predictive performance to

predict the survival probability of patients, which makes our study

more clinically relevant.

According to our findings, in the high-risk group, CD8 T cells

and TFH were more prevalent, as well as higher immune scores. this

may seem contradictory, as generally, a high level of immune cell

infiltration would inhibit tumor progression and thus improve

patient prognosis. Perhaps the heterogeneity between different

tumors causes ccRCC to differ from other immunotherapy-

responsive solid tumors (32). We also found higher expression of

the immune checkpoints PD-1 and CTLA4 in the high-risk group.

The study by Pramod et al. points to the abundance of immune cell

infiltration in the TME and the expression level of immune
D
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FIGURE 5

Functional and pathway enrichment analysis. (A) GO and KEGG enrichment results of DEGs. (B) GSVA in high and low-risk groups. (C) GSEA of high
and low-risk groups. (D) Comparison of differences in immune-related functions between high and low-risk groups in TCGA and E-MTAB-1980
cohorts. “*”<0.5, "**" <0.01, and "***"<0.001.
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checkpoint genes as potential biomarkers for predicting

immunotherapeutic response (33), and that abundant CD8 T-cell

infiltration and immune checkpoint overexpression are associated

with an excellent immunotherapeutic response. High-risk

individuals also exhibited a greater abundance of immune-related

pathways and functions, and the higher levels of TMB, MSI, and

easier scores further validated our findings (22, 23). A risk model

associated with the immune landscape of ccRCC was constructed by

Zhuo et al. based on lactate metabolism-related genes, and they

obtained similar results, inhibitors of immune checkpoints are more

likely to work for patients with high-risk conditions (14). However,

Wu’s findings were opposed to ours (34). Although they found that

the high-risk group also had higher immune checkpoint expression

and CD8 T-cell infiltration, they used the Tumor Immune

Dysfunction and Exclusion (TIDE) scores to determine the

response to immunotherapy in two risk groups. Perhaps, this is

the reason for the very different results.

Subsequently, we analyzed the prognostic features and immune

correlations of three key genes determining risk scores in ccRCC

from multiple perspectives. Pan-cancer analysis revealed that

Centromere Protein A (CENPA) and Metallopeptidase Inhibitor 1

(TIMP1) were highly expressed in most cancers and significantly
Frontiers in Oncology 10
associated with a poorer prognosis, also in ccRCC. CENPA

overexpression enhanced ccRCC proliferation and metastasis by

activating the Wnt/Kip1 pathway, according to Wang et al. (25).

The protein encoded by TIMP1 is not only a natural inhibitor of

matrix metalloproteinases but is also closely associated with cell

proliferation and apoptosis in several cell types (35). Furthermore,

in vitro experiments and bioinformatics analysis conducted by

Shou’s study revealed that TIMP1 promotes RCC progression via

the epithelial-mesenchymal transition signaling pathway (26).

However, they do not elaborate on what roles CENPA and

TIMP1 play in the TME of ccRCC. A significant correlation was

found between CENPA and TIMP1 expression in tumor tissues and

immune cell infiltration, and as expression increased, most immune

cell infiltration levels increased. Moreover, ccRCC could be

classified into different immune subtypes based on the expression

of CENPA and TIMP1. This all suggests that CENPA and TIMP1 are

highly promising biomarkers and therapeutic targets. Usually,

MYCN is associated with poor prognosis because it is part of the

MYC family. In particular, it plays a key role in pediatric

neuroblastoma, where it can promote tumor cell growth and

appreciation based on metabolic reprogramming (36).

Nevertheless, our pan-cancer analysis showed that MYCN appears
D

A B C

FIGURE 6

Immunotherapy and drug prediction. (A) TMB levels in high and low-risk groups, correlation of risk scores with TMB. (B) Levels of risk scores in MSI
and MSS groups, correlation of risk scores with MSI scores. (C) Levels of easier scores in high and low-risk groups, correlation of risk scores with
easier scores. (D) Differences in sensitivity to different drugs in high and low-risk groups. “*”<0.5, "**" <0.01, and "***"<0.001
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to be a protective factor for ccRCC and is much less expressed in

renal tumor tissues. Moreover, MYCN was closely related to the

immune subtype of ccRCC and the infiltration abundance of

immune cells. However, no studies have been conducted to

analyze in depth the potential mechanisms by which MYCN

affects the prognosis of ccRCC, so we do not yet know why

MYCN plays a different role in ccRCC than in other cancers. In

other words, our study identified a novel and promising biomarker

for ccRCC, but more reliable in vitro and in vivo experiments are

needed to validate our findings.
Frontiers in Oncology 11
In conclusion, our study constructs a 12-gene risk model

based on MMR and ICD-related genes, which can accurately

distinguish patients at different risks and guide patients for

immunotherapy and targeted therapies. Furthermore, a

nomogram based on risk scores and clinical variables can also

accurately predict a patient’s OS, progress-free survival (PFS), and

disease-specific survival (DSS) for 1, 3 , and 5 years

(Supplementary documents Figure1), and have high clinical

application value. However, there are some shortcomings in our

study. At first, our study was mainly a retrospective analysis based
D
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FIGURE 7

Comprehensive analysis of key model genes. (A) Pan-cancer analysis of gene expression levels. (B) Pan-cancer survival analysis. (C) Methylation
differences between tumor and normal tissues. (D) Relationship between methylation levels and gene expression. (E) Single-cell analysis of key
model genes. “****” <0.0001.
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on public databases, and future high-quality prospective studies

are needed to enhance the credibility of the conclusions. Secondly,

we did not reveal the specific mechanism of action of key model

genes by experimental means.
Conclusion

In this study, we revealed the TME and prognostic features of

ccRCC from the perspective of mitochondrial metabolism and
Frontiers in Oncology 12
programmed cell death and established a new risk model and

nomogram to distinguish patients with different molecular and

clinical characteristics, which can be used as a reliable tool to predict

the prognosis and immunotherapeutic response of ccRCC patients.

Furthermore, the identification of the key molecule MYCN will

facilitate the development of effective targeted drugs for ccRCC

from the perspective of targeting mitochondrial metabolism. To

conclude, our study provides both new insights into the regulatory

mechanisms of MMR in ccRCC and assists clinicians in making

rational decisions.
D
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FIGURE 8

Clinical features and immunological correlates. (A) Relationship between gene expression levels and stage. (B) Relationship between gene expression
levels and grade. (C) Key model genes classify ccRCC into 6 immune subtypes. (D) The relationship between gene expression levels and the
abundance of immune cell infiltration.
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FIGURE 9

Construction of Nomogram. (A, B) Univariate and multivariate COX regression analysis. (C) Nomograms predict 1-, 3-, and 5-year survival probabilities.
(D) Calibration plots for the TCGA and E-MTAB-1980 cohorts. (E, F) ROC curves of nomograms and risk scores in the TCGA and E-MTAB-1980 cohorts.
A

B

FIGURE 10

Expression validation of MYCN. (A) Expression levels of MYCN in TCGA unpaired and paired samples. (B) Expression levels of MYCN in HK-2, ACHN,
and OSRC cell lines.
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Glossary

TMB tumor microenvironment

RCC renal cell carcinoma

ccRCC clear cell renal cell carcinoma

MMR mitochondrial metabolic reprogramming

ICD immunogenic cell death

TCGA the Cancer Genome Atlas

WGCNA weighted gene co-expression network analysis

TOM topological overlap matrix

TGs target genes

DEGs differentially expressed genes

FC fold change

K-M Kaplan-Meier

TMB tumor mutational load

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

OS overall survival

LASSO least absolute shrinkage and selector operation analysis

PCA principal component analysis

GSEA gene set enrichment analysis

GSVA gene set variation analysis

MSI microsatellite instability

ROC receiver operating characteristic

RT-qPCR real-time fluorescence quantitative polymerase chain reaction

TFH T cell follicular helper

PFS Progress-free survival

DSS Disease-specific survival
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