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Three-dimensional cell culture technology (3DCC) sits between two-

dimensional cell culture (2DCC) and animal models and is widely used in

oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-

dimensional space, better simulating the in vivo growth environment of tumors,

including hypoxia, nutrient concentration gradients, micro angiogenesis

mimicism, and the interaction between tumor cells and the tumor

microenvironment matrix. 3DCC has unparalleled advantages when compared

to animal models, being more controllable, operable, and convenient. This

review summarizes the comparison between 2DCC and 3DCC, as well as

recent advances in different methods to obtain 3D models and their respective

advantages and disadvantages.
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tumor microenvironment, tumor cells, the three dimensional, cell culture, the
two dimensional
1 Introduction

Despite significant advances in human research on tumor staging, diagnosis and

treatment, tumors remain one of the leading causes of death (1). Cancer cells can grow and

metastasize rapidly, which is largely attributed to the ability of cancer cells to create a tumor

microenvironment (TME) for themselves and progressively modulate it from an anti-

tumor response to a tumor-friendly one (2).

Therefore, establishing an experimental model system that accurately mimics the

complexity of the TME is essential. Traditional in vitro two-dimensional cell culture

systems (2DCC) (on planar scaffold) and animal models have been widely used for cancer

research. However, 2DCC systems do not mimic natural TME due to a lack of cell-cell
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communication and interactions of cell-cell and cell-matrix (3),

while in vivo animal models are expensive, ethically problematic,

and challenging to set up as they show difficulties in tracking tumor

growth and drug screening (4). To address these limitations, the

three-dimensional cell culture system (3DCC) is increasingly

developed in research and is now crucial for oncology studies due

to its ability to accurately maintain TME without any additional

manipulation. In this review, we summarize the comparison

between 2DCC and 3DCC, as well as recent advances in different

methods to obtain 3D models and their advantages

and disadvantages.
2 Introduction of the tumor
microenvironment

TME refers to the cellular environment in which tumor or

cancer stem cells reside which has its own unique characteristics

compared to the microenvironment of the normal one. These

characteristics are important for the tumor immune escape,

growth, survival, and metastasis which include hypoxia, acidic

environment, inflammatory microenvironment, specific

vascularization (Figure 1). TME consists of the extracellular

matrix (ECM) and various tumor-associated cells such as cancer-

associated fibroblasts (CAFs), endothelial cells, adipocytes, and

immune cells (5, 6). These cells are located around tumor cells

and are energized by the vascular network (7). CAFs can be simply

defined as fibroblasts (non-epithelial, non-cancerous, non-

endothelial, and non-immune cells) located within or adjacent to

a tumor and are the major producer of ECM and various other

cytokines in the TME. CAFs have functions of immunosuppression,

promoting angiogenesis, producing enzymes that degrade ECM
Frontiers in Oncology 02
(such as matrix metalloproteinases), and promoting tumor growth

and metastasis. However, some CAFs have been shown to inhibit

tumor activity (8). Immune cells (T cells, neutrophils, macrophages,

etc) play an important role in tumor growth, migration, and

immune escape. The pro-tumor inflammation feature within the

TME promotes tumor growth by blocking anti-tumor immunity

and influent the composition of immune cells within it. Result to the

activation of transcription factors in tumor cells, leading to

increased inflammation and the production of inflammatory

microenvironments adapted to tumor cell growth. Tumor-

associated macrophages (TAM) usually divided into M1 type,

which mediates antibody-dependent cytotoxic effects (ADCC) to

kill tumor cells, and M2 type, which promotes tumor growth,

invasion, metastasis and drug resistance. These two cell types can

be interconverted (9). Angiogenesis is essential for tumors.

Neovascularization provides oxygen and nutrients to the tumor

and promotes tumor metastasis. Tumor vascular endothelial cells

(TEC) are involved in the metastasis of cancer cells to the

neovascular lumen, help generate CAFs, and mediate tumor

invasion and metastasis (10). Tumor cells and cancer stem cells

(CSCs) secrete molecules that induce a tumor-promoting

phenotype, polarizing macrophages to M2 subtype, fibroblasts to

CAF, and ECs to TEC (11). ECM is generally defined as the non-

cellular component of a tissue that provides metabolic and

structural support to its cellular components. Its main

components are collagen, proteoglycan, laminin and fibronectin.

In the process of tumor progression, a large number of enzymes

such as MMP are produced, leading to active remodeling of the

extracellular matrix, and changes in collagen degradation or

deposition result in loss of ECM homeostasis, which ultimately

interferes with cell-cell adhesion, cell polarity and increases growth

factor signaling to promote tumor metastasis (12, 13).
FIGURE 1

The major components and characteristics related to tumor progression within the tumor microenvironment. ECM, extracellular matrix; CAF,
cancer-associated fibroblast; DC, dendritic cells; PFN, perforin; GzmB, granzyme B; IFNg, interferon g; TNFa, tumor necrosis factor a; TGF-b,
transforming growth factor-b;MDSC, myeloid-derived suppressor cell; IDO, Indoleamine 2,3-dioxygenase; VEGF, vascular endothelial growth factor;
Arg1, arginase 1; Gln, glutamine; Treg, regulatory T cell.
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3 2D vs 3D: Introduction of 3DCC
model and its advantages

Whether the in vitro culture model can effectively mimic TME

has become an important basis to investigate its practical value. As a

traditional in vitro cell culture system, 2DCC has long been used in

cancer research. However, 2DCC does not mimic the complexity of

3D tissues in vivo, nor does it mimic the interaction between tumor

cells and TME. Gradients of nutrient and oxygen concentrations are

common in TME (14), but cannot be reproduced in 2DCC (15, 16).

To address these limitations, 3D cell culture (3DCC) was developed.

The 3D tumor sphere model can narrow the gap between 2DCC

and in vivo tumor model, making the model closer to the real tumor

tissue (17) (Figure 2 and Table 1). At present, 3D sphere models can

be divided into four types: multicellular tumor sphere (MCTS),

neoplastic sphere, tissue-derived tumor sphere (TDTS), and

organotypic multicellular sphere (OMS) (20). The cultural

methods and biological characteristics of the different types of

models are different. MCTS were produced in single-cell
Frontiers in Oncology 03
suspension cultures in conventional FBS supplemented media

without the supply of exogenous ECM. But not all cell lines are

capable of producing compact MCTS (20). Tumor spheres were

established as amplification models of CSCs in a serum-free

medium supplemented with growth factors. It was used to enrich

CSCs and cells with stem cell-related characteristics (21). TDTS and

OMS were obtained from the tumor tissue department. TDTS were

observed in an in vitro study of colon cancer cell lines (22). The

histological features of OMS are very similar to those of tumors in

vivo, and capillaries can be maintained for up to 6 weeks (23).

MCTS is one of the most commonly used models because it is

relatively easy to assemble, possesses reproducibility and ability to

mimic tumor cell heterogeneity (24). For the study of tumor

initiation, smaller, well-oxygenated spheres (optimal diameter of

about 200mm) can be used. In contrast, for studies related to

tumor expansion, larger spheres are preferred to mimic the

hypoxic and necrotic regions observed in hypovascularized

tumors (14). The following is a detailed description of how 3DCC

is constructed.
FIGURE 2

Summary of the 3DCC technique.
TABLE 1 Comparison of 2DCC and 3DCC (3, 6, 16–19).

2DCC 3DCC

Morphology Loss of shape changes and polarization Actual shape form

Gene expression
To be altered or modified by planar culture or

genes
Better representation of tumor gene expression in vivo

TME None Mimics TME in tumor tissue

Oxygen, nutrients, signaling molecular gradients in
TME

None
Controlled by sphere size and molecular osmotic migration

rate

Heterogeneity of tumor Base
Better approximated by various molecular gradients in the

TME

Angiogenesis Only observational Functional angiogenesis

Cost Low High

Multicellular explore Suitable for immune response studies Suitable for cell co-culture
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4 3DCC and tumor initiating cells

Tumor initiating cells play a huge role in tumor malignancy and

chemotherapy resistance. The niche of cancer stem cells in vitro

differs significantly from that in vivo. One important aspect of the

niche is to maintain stem cells in a quiescent state while

simultaneously driving a sufficient number of stem cells into

proliferation and differentiation pathways to maintain organs’

function (25). Many signaling pathways that mediate the

interaction of normal stem cells with their niche are also involved

in the interaction between cancer stem cells and their niches and

can promote tumorigenesis and cancer proliferation. Cancer stem

cells tend to be quiescent in the body’s milieu interieur, but they

exhibit greater proliferative activity in vitro than non-cancer stem

cells (26).

Currently, the most reliable model for studying cancer stem

cells is a 3D assay using an ECM-rich Matrigel, which maintains the

growth of heterogeneous layered cancer stem cell cultures. The

addition of ECM group stratified adhesins to serum-free medium

increases tumor cell growth, self-renewal, and tumorigenic

characteristics of glioma cancer stem cells (27). Therefore, the use

of 3DCC to study its biological behavior and role in tumors is also a

hot topic today. Now some new models are built using 3DCC to

study the self-renewing cancer population in depth. For instance,

Hubert et al. (28) established CSC cultures derived from the

hyperoxia, vegetatively high regions and mixed regions of chronic

hypoxia and necrosis regions derived from human glioblastoma. Li

et al. (27) constructed a three-dimensional spheroid model of non-

small cell lung cancer and used A549 and SK-MES-1 to assess cell

growth, migration, drug resistance and other phenomena. In the

three-dimensional spheroid model, the commonly used drug

tadalafil showed a more pronounced inhibitory effect. Fibrin

deposition in the matrix of CRCs proved to be the cause of tumor

development. Zhang M et al. (29) used salmon fibrin gel to provide

3D ECM for colon cancer cells and found that 90 Pascal (Pa) fibrin

gel was the most effective in isolating and enriching tumor colonies

compared to rigid 420 Pa and 1,050 Pa gels. The size and number of

colony formations are inversely correlated with gel hardness.
5 3D model construction methods for
cancer research and its recent
progress

In general, 3DCC construction methods can be divided into

scaffold-based and scaffold-free models, each with its own set of

advantages and disadvantages (30). The following sections will

discuss these two methods individually, and provide an overview

of the latest advancements in each.
5.1 Scaffold-based 3DCC model

3D scaffolds can influence tumor cell-cell and cell-TME

interactions by affecting mechanical and biochemical signaling
Frontiers in Oncology 04
and mimicking the conditions of hypoxia and nutrient

deprivation in TME (17). Various forms of materials have been

used to construct scaffolds for 3DCC. Depending on the materials,

scaffold-based 3DCC can be further classified into hydrogel

scaffolds, paper-based scaffolds, and fiber-based scaffolds (15).

The support method is simple to operate and easy to disassemble

and assemble. However, the disadvantage is that some of the

scaffold materials are expensive.

5.1.1 Hydrogel scaffold
Hydrogels consist of one or more different hydrophilic

polymers, their unique polymerization mode allows for the free

movement of cells and molecules through their pores (31). In the

human body, most mammalian cells rely on the extracellular matrix

(ECM) for support to carry out life activities. Hydrogels are special

because they allow cytokines and growth factors to cross tissue-like

gels. Although they contain 95% water, they do provide the solid-

liquid level required for cell culture (32). Hydrogels can better

replicate the ECM in vivo, as they are usually composed of hydrated

proteins. They exhibit good biocompatibility and low

immunogenicity, but have poor mechanical resistance and

crosslinking reactions (17). Hydrogels can be created using

natural materials such as collagen, fibrin, hyaluronic acid, and

alginate, or synthetic materials like polyethylene glycol (33). The

properties of hydrogels, including hydration, porosity, and stiffness,

can be fine-tuned by adjusting the components of the material.

However, some collagen hydrogels are expensive and have poor

renewability (16). Alginate-based hydrogels, like alginate gel beads

(ALG beads), are popular 3D substrates for medical applications

due to their mild gelation process, biocompatibility, and structural

similarity to native tissues (34). Alginate can be cross-linked in the

presence of calcium ions and can also be used to degrade scaffolds

with sodium citrate to recover cells (35). However, alginate itself

does not possess cell adhesion properties due to the lack of

interaction with integrins. It also lacks matrix receptors similar to

those found in native times, which are important for cell adhesion

(34). The pores formed by alginate in the presence of calcium ions

are dense and difficult to control accurately, weakening the

migration of cells and other biomolecules. Therefore, many

improvements have been made to alginate saline gels. Synthetic

peptide hydrogels are also a hot research topic. The

physicochemical properties of gels can be easily modified by

adding or subtracting amino acids or modifying the side chains of

amino acid residues (36). There are also many new developments in

hydrogel scaffolds of other materials. Table 2 provides an overview

of the latest progress of hydrogel scaffolds.

5.1.2 Paper base scaffold
Paper is produced by pressing wet cellulose fibers together.

Paper-based scaffolds are rigid and can withstand high

temperatures, yet they possess some deformability and can be

folded into complex geometries, providing pores for cell growth

(15, 53). These scaffolds are also hydrophilic with capillary

adsorption capacity (54), making them a convenient and cost-

effective option for mass production and utilization (53). A

convenient 3D culture environment can be created by combining
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paper-based scaffolds with hydrogel-simulated ECM (55). The

gradient of hypoxia and biomolecules in TME can be imitated by

stacking paper-based scaffolds. Disassembling the paper-based

scaffold facilitates cell harvesting and analysis of the structure and

function of cells in the paper-based scaffold without histological

sections. The paper platform is used to culture primary cells, tumor

cells, patient biopsies, stem cells, fibroblasts, osteoblasts, immune

cells, bacteria, fungi, and plant cells. These platforms are compatible

with standard analytical assays commonly used to monitor cell

behavior. Due to its thickness and porosity, there is no mass transfer

limitation to and from cells in the paper scaffold (56). However,

paper-based scaffolds have some limitations, such as limited fiber

malleability and the need for physical and chemical modification

before use in cell culture (54). Furthermore, the diameter of the
Frontiers in Oncology 05
scaffold fiber is much larger than that of body fibrils (about 500nm),

with a minimum diameter of 1mm (15).

5.1.3 Fiber base scaffold
Man-made fiber structures date back thousands of years, and

they are used as clothing and decoration in the form of textiles (57).

Fiber products are also widely used in filtration, cell culture,

composite materials and other processes. Fiber-based scaffolds

can be constructed using either natural fibers such as collagen,

chitosan, and hyaluronic acid, or synthetic fibers such as polylactic

acid, polyglycolic acid, and other degradable polyester polymers.

Under the premise of ensuring the porosity of hydrogel and the

normal growth of cultured cells, the use of fiber materials to build a

platform can act as a scaffold to compensate for the lack of
TABLE 2 New progress of hydrogel scaffolds.

Research purpose Innovation Results Ref.

Model with fibrous matrix
and blood vessels

The embedded gel was prepared by combining type I collagen and
fibrin

The model can be used to study tumor-matrix interactions
in HCC

(37)

Multicellular heterogeneous
spheres

Hanging drop method, co-culture of HCC matrix and fibroblasts,
encapsulation of collagen gel,

The model is much closer to ECM (38)

Novel hydrogel scaffolds
HA3P50 scaffold based on hyaluronic acid and poly

(methylethylene ether-Alt-maleic acid)
HepG2 cells were protected from the damaging response

on 2D medium
(39)

New tumor microsphere
model

Biosynthesis of PEG-fibrinogen gels Similar in size and shape to tumors in vivo (40)

New 3D culture platform
Gelatin and alginate complement each other, PEGDA

incorporation controls cross-linking density
A 3D alginate culture platform whose pore size can be

changed artificially was made
(35)

Alginate gel microarray
Alginate gel micropores were prepared by electrodeposition of

alginate gel on ITO electrodes.
HepG2 spheres were successfully prepared (41)

Porous alginate beads
Dual aqueous emulsion, controllable pore size, good

biocompatibility, can directly encapsulate cells
The activity, proliferation of investigated cells were

increased
(42)

Peptide hydrogel
Max8b was used as hydrogel to form nanofibrils through

hydrophobic collapse and hydrogen bonding
Custom hydrogels for porosity, permeability and

mechanical stability
(43)

Soluble gelatin based cell
carrier

Temperature sensitive gelatin microspheres were mixed with
alginate saline gel as cell carriers.

A new platform was developed for drug testing and
oncology

(44)

New gel sphere
Halo-linked 3D microgels of HA-MA and GelMA in air were

prepared on superhydrophobic surfaces.
The shape, size and cell number of the microtumor can be

easily controlled.
(45)

New gel matrix
The basement membrane extract was gelatinized with Matrigel to

form a new matrix
Better mimic a single tumor in the body (46)

New alginate hybrid gel
beads

Acellular liver matrix and alginate constitute new hybrid gel beads
HCCLM3 cells showed higher cell viability and metastatic

potential
(34)

Hydrogel microarray
Application of optical crosslinking technology in micro machining

and micro forming.
Produce custom size tumor microspheres (47)

New Liquid Marble Culture
Platform

It forms integrates hydrogel components, replaces liquid with
hydrogel and removes hydrophobic shell

The liver specific function and DNA content of HM
globules increased after long-term culture

(48)

New hydrogel
Magnetic hydrogels were prepared by combining the assembly of

magnetic nanoparticles
Enhances cell-cell interactions and promotes spontaneous

formation of multicellular spheres
(49)

New hydrogel
The copolymer reversibly gelatinized in aqueous and redissolved

without degrading the synthetic scaffolds
A temperature responsive hydrogel was developed (50)

3D culture and drug
resistance system

The resistance of HepG2 cells to Bio-Pa NPs was detected in 2D
and 3D cultures, respectively

HepG2 cells in 3D hydrogels were more resistant to Bio-Pa
NPs treatment

(51)

New hydrogel
Low temperature CMCH hydrogel solution gelatinizes rapidly at

37°C
Hydrogels promote cell survival and proliferation, and have

good biocompatibility
(52)
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structural rigidity of hydrogels. Adding carbon nanotubes to a

hydrogel is a good try (58). Natural fiber scaffolds are known for

their good biocompatibility and ability to interact with cell-ECM

receptors, which facilitates cell growth. However, these scaffolds

have poor stability, are easily degradable, and have a limited ability

to control the size of the fiber pore (31). Some fiber production

processes, such as electrospinning, use solvents that denature

natural fibers (59). In contrast, synthetic fiber scaffolds are stable

over a wide range of temperatures and in solution (31). Synthetic

fibers are easier to control the pore size and can also be used to

mimic the porous structure of ECM (60). However, these fibers may

be less hydrophilic, and some may be toxic and antigenic, which can

damage cells. Due to these limitations, efforts are being made to

enhance their properties while preserving their respective benefits.

In terms of natural materials, Mahmoudzadeh et al. (61)

developed collagen-chitosan nanoscaffolds and utilized them to

culture 4T1 tumor cells, allowing for the construction of a 3D

microenvironment as the tumor cells infiltrated the scaffolds. Koh et

al. (62) presented a comprehensive protocol for studying live cell

microscopy and immunohistochemistry to quantitatively assess

physiological cell-cell contact dynamics. Decellularized natural

tissues have also emerged as a source of fibrous scaffolds for

cancer research (63), such as decellularized lung scaffolds, which

retain the ECM arrangement of the original tissue and allow for

better simulation of cell-ECM interactions (64). Tissue engineering

can also be employed to construct tumors in vitro, as demonstrated

by Lu et al. (65), who utilized Tris-trypsin-Triton to treat tumor

tissues in multiple steps, creating 3D scaffolds with the ideal spatial

arrangement, biomechanical properties, and biocompatibility - a

promising approach for modeling the TME.

In terms of synthetic materials, Girard (66) et al. developed the

“3P” scaffold, which is produced by electrospinning the block

copolymers of poly (lactate-coglycolic acid) (PLGA), polylactic

acid (PLA) and mono-methoxy polyethylene glycol (mPEG).

Fischbach (67) et al. used polylactide to fabricate fiber scaffolds.

Both types of scaffolds are non-toxic to tumor cells and can be

produced on a large scale. Additionally, tumor cells grown on these

scaffolds exhibit invasion and metastasis characteristics that better

replicate the in vivo tumor microenvironment. Mazzini (68) et al.

and Murakami (69) et al. have both developed 3D tissue culture

systems using silicon as a raw material. Mazzini’s team utilized

silicon microprocessing technology to produce 3D microarrays for

the study of tumor cell invasion. Meanwhile, Murakami’s “Cellbed”

culture system is composed of a fibrous polymer made of ultra-fine

silica fibers, mimicking the loose connective tissue structure of

living organisms. Cancer cells can easily migrate and form 3D

structures in this system.

All of the above-mentioned scaffolds are based on natural or

artificial materials and are further developed to have more

applications as fiber scaffolds.
5.2 Scaffold-free 3DCC model

3DCC without scaffolds mainly uses various methods to prevent

cell adherent growth and aggregate tumor pellets in culture medium
Frontiers in Oncology 06
(24). These methods include magnetic force, agitation and rotation,

hanging drops, low-adhesion culture plates, and advanced

technologies such as microfluidic chips and 3D printing. While

scaffold-free 3DCC is suitable for only a limited number of cell types

and is initially expensive, it allows spontaneously aggregated cells to

form their own ECM (24). Scaffold-free 3DCC does not involve

vasculogenesis and can restore the heterogeneity of tumors in vivo,

thus more closely resembling solid tumors in vivo. It is not affected

by the shear force of scaffold assembly, nor is it limited by the pore

size of scaffold fibers, and can produce controllable size tumor

microspheres (70). T Below, we introduce the main methods and

recent advances in scaffold-free 3DCC formation.
5.2.1 Hanging drop method
The hanging drop method is a relatively simple technique.

Initially, cells are cultured in two dimensions and allowed to

adhere to the wall before being digested into monolayer cells. The

resulting digested cell culture liquid is then dropped onto the lid of a

Petri dish, which is subsequently inverted. The liquid was drooped

to form hanging drops through the action of surface tension, and

the desired tumor pellets could be formed in the hanging drops. It

usually forms in spheres or sheets within 24 hours but may take

longer. The length of time required depends on the type of cells

(71). This method is well-established, requiring no specialized

equipment and is easy to master. The resulting tumor spheres are

easy to control in terms of size, with only one sphere formed per

drop. Mesenchymal stem cells cultured by the hanging drop system

can secrete a large number of potent anti-inflammatory and

antitumor factors (72). However, it is difficult to change the

culture medium of the traditional hanging drop method, and the

culture time of the cells should not be too long. Large tumor spheres

cannot be cultivated due to nutrient supply effects (73). Ratnayaka

(74) et al. invented a PDMS platform combining the hanging drop

method and polydimethylsiloxane (PDMS) scaffold. By using this

method, HepG2 cells could be grown to the level of millimeter,

which was much higher than the volume of tumor microspheres

obtained by the ordinary hanging drop method. Although the

pendant method does not mimic tumor angiogenesis and makes

it difficult to grow tumors to the size of advanced tumors in vivo, it

is still possible to obtain larger tumor microspheres with this

method, which provides convenience for tumor research.
5.2.2 Forced suspension method
The forced suspension method is to prevent tumor cells from

sticking to the culture plate and forming tumor microspheres by

forced suspension. The commonly used method is the liquid

covering method, which precoats the surface of the culture plate

with low adhesion material in advance to form an ultra-low

adhesion culture plate. Tumor cells cannot adhere to the culture

plate, so they spontaneously suspend to form tumor microspheres

(70). The most commonly used ultra-low adhesion culture plate is a

96-well polystyrene culture plate (70). This method is simple and

convenient, and most tumor cells can form tumor microspheres by

this method. However, this method cannot control the size and

homogeneity of the tumor microspheres formed. Napolitano et al.
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(75) used microformed non-viscous hydrogels to conduct forced

suspension cell culture, and cells spontaneously self-assembled and

reached A structural balance controlled by cell-cell interactions.

Shao (76) et al. constructed a novel tumor microsphere model by

co-culturing melanoma cells and cancer-associated fibroblasts

(CSF). In this model, tumor ECM is completely controlled by

CSF, which facilitates the study of the interaction between tumor

cells and TME. Beheshti (77) et al. used a combination of the

hanging drop method and the liquid covering method to form 3D

multicellular spheres to test the anticancer effect of Ipomoea

purpurea. In addition to these new materials and methods,

physical means such as magnetic force and rotation can also be

used to achieve the purpose of forced suspension. Magnetic cell

suspension is an emerging spheroid-forming technique. To

generate spheroids, cells are preloaded with magnetic

nanoparticles and then float towards the air/liquid interface

within the low-adhesion plate using an externally applied

magnetic field to promote cell-cell aggregation and spheroid

formation. Glauco R Souza et al. reported a magnetic levitation

cell culture model. By controlling the magnetic field, the geometry

of the cell can be changed (78). Okochi (79) et al. used magnetite

nanoparticles to make cells suspended and gathered in the center of

the culture pore through the effect of magnetic force, thus realizing

the suspension culture of cells. The rotating cell culture system

simulates the microgravity environment by producing laminar flow

(80), minimizing the mechanical stress of cell aggregation, making

cells grow in suspension and preventing them from sticking to the

wall and forming cell spheres. Human mesenchymal stem cells

cultured in simulated microgravity have osteogenesis and enhanced

adipoiesis (81). This method has been recommended by NASA as

an effective tool for modeling microgravity (82). Numerous studies

have illustrated the impact of short- and long-term exposure to real

and simulated µg on various processes, including differentiation,

growth behavior, migration, proliferation, survival, apoptosis, and

adhesion, all of which are pertinent to cancer research (83). Thus,

the µg-environment facilitates the creation of in vitro 3D tumor

models, such as multicellular spheroids and organoids, that offer

significant potential for preclinical drug targeting, cancer drug

development, and the study of cancer progression and metastasis
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on a molecular level. In conclusion, as depicted in Figure 3, the

forced suspension method is a widely utilized and well-

established technique.

5.2.3 Organ on chip technologies
FDA has recently agreed to assess organ on a chip technology,

which has the potential to replace animal models altogether. Cancer

on-chip technology typically offers the following solutions (84): (1)

2D chips. Single or multi-chamber chips with controlled substance

concentration gradients to study the impact of concentration

gradients on cancer metastasis; (2) Lumen chips. Lumen

consisting of a patterned 3D matrix, suitable for vascular studies

of tumors; (3) Partition chip. Chips are divided into several cells

with a separator, capable of culturing different types of cells, making

them versatile; (4) Y-type chip. Similar to partition chips but with

parallel-matrix compartments operating in co-flow mode; (5)

Membrane chip. Capable of creating numerous microchannels

with porous membranes, facilitating solute gradients at channel

interfaces, cell culture, and transfer observation. Summary of the

major organ on chip technologies is now illustrated in Table 3. The

use of microfluidic chips is an essential component of this

technology (Figure 4). Being selected as one of the World

Economic Forum’s Top 10 Emerging Technologies, Microfluidics

integrates sample preparation, reaction, separation, detection, and

basic operational units such as cell culture, sorting, and cell

lysis (97).

Microfluidics is the science of precisely manipulating fluids and

particles in sizes ranging from microns to submicrons (98, 99). The

use of Polydimethylsiloxane (PDMS) as a basic material for

microfluidic chips is popular due to its low cost, good

biocompatibility, high oxygen permeability, light transmittance,

and convenience (99, 100). Glass and silicon, which are

comparatively expensive and difficult to work with, have been

gradually replaced by PDMS. Moreover, hydrogels and paper can

also be employed to produce microfluidic chips (101). By

integrating cell culture, cell separation, cell detection, and other

procedures into a small chip, microfluidic technology offers the

benefits of miniaturization, high precision, and high integration.

Compared with traditional laboratory techniques in the past, the
FIGURE 3

Schematic representation of the forced suspension method.
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microfluidic platform has the advantages of requiring fewer

samples, high sensitivity, rapid control and so on (102).

The microfluidic chip is the main platform of microfluidic

technology. It takes a micropipe network as its main structural

feature and microfluidics technology to control the flow of liquid
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in the micropipe as its working principle. Microtubules are filled

with living cells, and in this way organs or tissues in vitro are

constructed to study their physiology and pathophysiology

mechanisms (103). Due to the structure of the micron scale, the

fluid exhibits and produces special properties in it that are
TABLE 3 Summary of the major organ on chip technologies.

Organs Research type Results and featured advantages Ref.

Heart on a
chip

Bioprinting 3D microfibrous scaffolds for
engineering endothelialized myocardium

1. Combines 3D printing technology and chip technology
2. Precise control of macroisotropic structure of microfibers
3. Improved alignment capable of spontaneous and synchronous contraction.

(85)

Heart on chip for high throughput drug
studies

1. High throughput, reproducible; submillimeter-sized soft elastomer film cantilever arms.
2. Better recapitulation of engineering tissues of in vivo physiology and quantification of multiple
relevant bioanalyses.

(86)

Heart on a chip for the neuro–cardiac
junction

1. A microfluidic device consisting of two separate cell culture chambers was used to co-culture
human neurons and human cardiomyocytes.
3. Summarizes the structural and functional properties of the neuro-cardiac connection.
2. Confirmed the presence of a special structure between the two cell types allowing
neuromodulation.

(87)

Lung on a
chip

A bovine lung-on-chip
1. Successfully generate a co-culture model of the proximal airway of bovines.
2. May replace in vivo experiments.
3. Simulate the blood flow required for systemic administration.

(88)

A murine lung-on-chip infection model

1. Higher spatiotemporal resolution than animal models by time-lapse imaging technology.
2. The kinetics of host-Mycobacterium tuberculosis interactions at the gas-liquid interface are
revealed.
3. The direct role of pulmonary surfactant in early infection is explored.

(89)

3D Lung-on-Chip Model Based on
Biomimetically Microcurved Culture
Membranes

1. Reconstruct the main spherical geometry of the cell’s native microenvironment.
2. An innovative combination of three-dimensional microfilm molding and ion tracking
technology;
3. May lay the groundwork for other microanatomically-inspired membrane-based OoCs in the
future.

(90)

Kidney on a
chip

Culture and analysis of kidney tubuloids
and perfused tubuloid cells-on-a-chip

1. Establish tubule-like cultures, simulate multi-organ interactions and reduce variability.
2. Control The microtubule microenvironment, increase model complexity.
3. Induces flow-induced shear stress.

(91)

A kidney organoid-vasculature interaction
model using a novel organ-on-chip
system

1. Supports culture of renal organoids, which exhibit nephron structure.
2. Organoids cultured on a chip show increased maturity in endothelial populations.
3. Establish the first vascularized renal organoids using microfluidic organ-on-chip under
HUVEC co-culture conditions.

(92)

A kidney on a chip model for drug
studies

1. Significant upregulation of organic cationic and organic anion transporters improved drug
uptake.
2. Perfused 3D proximal tubule model.
3. OPTEC tubules exhibit higher normalized lactate dehydrogenase release when exposed to
known nephrotoxins, which are attenuated with the addition of OCT2 and OAT1/3 transport
inhibitors.

(93)

Multi organs
on a chip
(MOC)

A heart/liver/lung-on-a- chip

1. A highly functioning, perfusion-driven, microfluidic multi-tissue organ-on-a-chip system
consisting of liver, heart, and lung organoids.
2. Three bioengineered tissue organoids are able to respond independently or synergistically to
various external stimuli.
3. When organoids are combined into a single platform, more complex synthetic responses are
observed.

(94)

A lung/liver-on-a-chip

1. Ligate normal human bronchial epithelial cells cultured at the gas-liquid interface and

HepaRG™ liver spheres in a single circuit.

2. MOC allows crosstalk between different organs to be studied to assess the safety and efficacy
of compounds better than single cultures.
3. Provide new opportunities to study the toxicity of inhaled aerosols or to demonstrate the
safety and efficacy of new drug candidates targeting human lungs.

(95)

A multi-organ chip with matured tissue
niches linked by vascular flow

1. Mature niches of heart, liver, bone and skin tissue are connected by a circulating vascular
stream.
2. Summarizes the pharmacokinetic and pharmacodynamic profile of human doxorubicin.
3. Allowing the identification of early miRNA biomarkers of cardiotoxicity.

(96)
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different from those of the macroscopic scale. Hence the

development of unique analysis of the resulting performance.

Using a microfluidic chip to culture tumor cells can rapidly

produce tumor microspheres of controllable size and can also be

used for high-throughput analysis of tumor cells at any time. It

can be used to simulate the tumor microenvironment, study the

invasion and metastasis of cancer cells, simulate tumor

angiogenesis, and conduct high-throughput tumor detection (99,

100). Microfluidic chips have the potential to surpass tumor

xenograft modeling, which can lead to a significant reduction in

animal experimentation and make tumor modeling and research

more efficient (104). Despite this, the design and production of

microfluidic chips are rather intricate, and there is still a long road

ahead before achieving fully integrated and “plug and play”

microfluidic chips without costly external auxiliary equipment

(105). Table 4 provides an overview of some of the latest

microfluidic chips developed.
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5.2.4 3D bioprinting
3D bioprinting is a manufacturing technology that accurately

distributes biological materials containing cells to construct three-

dimensional living tissues and human organs using a 3D printer.

Currently, there are four types of 3D bioprinting technology, including

inkjet, laser-assisted, extrusion, and stereo lithography, each with its

advantages and disadvantages (114) (Figure 5). To construct 3D tumor

models in vitro, tumors or tumor cells can be combined with TME as

printing materials, and bioinks are essential for building effective 3D

tumor models. Bioinks are typically biocompatible hydrogels and living

cells of interest and play an important role in providing printability of

samples (115, 116). Alginate and gelatin are the most commonly used

substrates for bioprinting due to their good biocompatibility and

mechanical properties. Bioprinting is a new research field. Compared

with other cell culture technologies, the biggest advantage of the

bioprinting method is that it can form tumor microsphere model

with controllable size and shape in a short time, which can be used for

various tumor research. However, this method is difficult to master

because of its complicated technology, high cost and tedious

programming of bioprinting. Inkjet 3D printing is limited due to

clogged nozzles, which limits the steady flow of ink, as well as reduced

cell viability (72). The mechanical pressure of extrusion printers can

also damage cultured cells. Jiang (117) et al. combined alginate and

gelatin to form a composite hydrogel similar to a natural tumor matrix.

Chen (118) et al. cocultured primary HepG2 human hepatocytes and

hepatic stellate cells (HSC) to form spherules. Then the spheres were

bioprinted into liver tissue constructs using a Regenova bioprinter to

construct a new liver cancer model. Bhattacharjee (119) et al. used

packaged granular microgels to make liquid-like solid materials. The

material is locally and temporarily fluidized under concentrated

applied stress and spontaneously solidifies after the applied stress is

removed, facilitating the transport of biomolecules and 3D printing of

multicellular structures. In summary, 3D bioprinted cancer models can

be valuable as invasion models and serve as an excellent tool to study
FIGURE 4

Structure of the microfluid chip.
TABLE 4 New progress of microfluidic chips.

Research
purpose Innovation Results Ref.

Cancer cell
migration model

3D collagen barrier is formed through polyelectrolyte
composite solidification process

Form 3D aggregates of cells similar to cancer tumors, mimicking the
migration of cancer cells in vivo

(106)

Microarray cell
culture system

1156 square microcontainers, large capacity, to ensure nutrient
supply external bioreactor

Preserve the function of rat primary hepatocytes for more than 2
weeks

(107)

New microfluidic
platform

The microfluidic platform can realize the microfluidic control
with many repetitions and long duration

High-throughput production of tumors of uniform size; Various 3D
tumor microspheres produced in the device

(108)

New cell culture
methods

Gelatin-based 384-well ready-to-use microscaffold array
It is suitable for a variety of tumor cells and can be used for drug

resistance detection and tumor cell culture
(109)

New manufacturing
of cell sphere

Construct a multicellular culture platform using acoustic fluid
This produces more than 6000 tumor spheres per operation and

shortens the tumor sphere formation time to one day.
(110)

New microfluidic
chip

Polydimethylsiloxane is made of a double casting technique
with a thermal aging step

The tumor microsphere culture time of up to 4 weeks can observe the
reaction of tumor microsphere for a long time

(111)

Novel TME model
Cancer cells in the microcapsule were encapsulated with a

hydrogel shell to form a 3D vascularized tumor
The angiogenesis in the 3D microenvironment of human tumor was

simulated
(112)

New 3D co-culture
model

Panc-1 tumor spheres were co-cultured with pancreatic stellate
cells using microarray chips and

The role of pancreatic stellate cells in tumor development and
metastasis was studied

(113)
frontier
sin.org

https://doi.org/10.3389/fonc.2023.1146477
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1146477
cancer progression and visualize EMT and metastasis in real-time.

Nonetheless, there are still several challenges and limitations that need

to be addressed. These include the development of a perfusable,

vascularized 3D bioprinted construct, achieving large organ

reconstruction in vitro, long-term in vitro culture, and other

related issues.
6 Conclusion

3DCC is increasingly important in oncology research as it better

mimics solid tumor conditions in vivo with minimal use of animal

models. Although 3DCC has obvious advantages over 2DCC,

3DCC cannot completely replace 2DCC (120) at present because

the monolayer culture equipment is easy to manufacture, the

production cost is low and the technology is easy. As summarized

in Figure 2, 3DCC models have unparalleled advantages in

simulating the tumor microenvironment. Although tumor-like 3D

cultures allow the expansion of the tumor epithelium, they often

lack non-epithelial stromal cells from tumors of origin, limiting

their usefulness in addressing therapeutic strategies targeting this

compartment (121). With the maturation and development of

3DCC technology, its application in the study of tumor metastasis

mechanism, tumor microenvironment, tumor cell-ECM interaction
Frontiers in Oncology 10
and anti-cancer drug screening will be more extensive and in-depth,

making it a promising technology for the future.
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