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Glutamine, the most abundant non-essential amino acid in human blood, is

crucial for cancer cell growth and cancer progression. Glutamine mainly

functions as a carbon and nitrogen source for biosynthesis, energy

metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated

glutamine metabolism is a notable metabolic characteristic of cancer cells. Some

carcinogen-driven cancers exhibit a marked dependence on glutamine, also

known as glutamine addiction, which has rendered the glutamine metabolic

pathway a breakpoint in cancer therapeutics. However, some cancer cells can

adapt to the glutamine unavailability by reprogramming metabolism, thus

limiting the success of this therapeutic approach. Given the complexity of

metabolic networks and the limited impact of inhibiting glutamine metabolism

alone, the combination of glutamine metabolism inhibition and other

therapeutic methods may outperform corresponding monotherapies in the

treatment of cancers. This review summarizes the uptake, transport, and

metabolic characteristics of glutamine, as well as the regulation of glutamine

dependence by some important oncogenes in various cancers to emphasize the

therapeutic potential of targeting glutamine metabolism. Furthermore, we

discuss a glutamine metabolic pathway, the glutaminase II pathway, that has

been substantially overlooked. Finally, we discuss the applicability of

polytherapeutic strategies targeting glutamine metabolism to provide a new

perspective on cancer therapeutics.
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1 Introduction

Metabolic reprogramming is a hallmark of cancer that

manifests in several ways. Cancer cells exhibit substantially

enhanced glucose uptake and full utilization of the glycolysis/

tricarboxylic acid (TCA) cycle to generate a large amount of ATP

(Warburg effect) (1). Additionally, cancer cells may exhibit

accelerated uptake, transport and metabolism of glutamine, which

is the most abundant non-essential amino acid in the human body.

Adaptation to rapid metabolism is achieved by regulating genes that

encode metabolic drivers to increase the expression of favorable

transporters and metabolic enzymes. Furthermore, metabolism-

regulating interactions occur between cancer cells and the tumor

microenvironment (TME) (2). Since Hans Krebs first studied

glutamine metabolism in animals, the biological roles of

glutamine in cellular growth and cancer cell biology have

gradually been recognized (3). In 1955, Eagle discovered a high

dependence of cancer cells on glutamine, also known as glutamine

addiction (4). Specifically, cancer cells consume 10–100-fold more

glutamine than they do any other amino acids. Glutamine is the

most abundant non-essential amino acid in the bloodstream. High

levels of glutamine can promote cancer cell proliferation by serving

as nitrogen and carbon sources for the biosynthesis of nucleotides,

fatty acids, and non-essential amino acids. In addition to its primary

roles in macromolecular biosynthesis, glutamine is also involved in

the cellular uptake of essential amino acids, the maintenance of the

mitochondrial membrane potential, and the production of

glutathione and nicotinamide adenine dinucleotide phosphate

(NADPH), which are required to maintain redox homeostasis (5–

7). Altered glutamine metabolism is a significant outcome of

changes in energy metabolism in cancer cells. Abnormal

expression of regulatory genes associated with glutamine

metabolism is more frequently observed in cancer cells than in

healthy cells. Most abnormally expressed regulatory genes,

including B-Raf proto-oncogene (BRAF), epidermal growth factor

receptor (EGFR), isocitrate dehydrogenase 1 (IDH1), Kirsten rat

sarcoma viral oncogene homolog (KRAS), and phosphatidylinositol

3-kinase p110 alpha (PIK3CA), are either oncogenes or tumor

suppressor genes involved in the onset and development of

cancer (8). Mutations in some of these oncogenes render

cancer cells highly dependent on glutamine. Given the critical

biologica roles of glutamine in cancer cells, an in-depth

understanding of glutamine metabolism is essential to develop

new cancer treatments.

Therefore, this review summarizes the uptake, transport, and

metabolic characteristics of glutamine, as well as the regulatory

effects of some important oncogenes on glutamine addiction in

cancer to emphasize the therapeutic potential of targeting glutamine

metabolism. In particular, we discuss the significance of the

glutaminase II pathway, which is a historically understudied

glutamine metabolic pathway in the context of cancer.

Furthermore, we also discuss the potential applications of

polytherapy that targets glutamine metabolism to provide novel

strategies for treating cancer.
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2 Glutamine metabolism in cancer

Metabolism, a fundamental process for all cellular functions, is

also related to cancer cell proliferation. Unlike normal differentiated

cells, cancer cells can modify many metabolic pathways—including

glycolysis, glutaminolysis, the TCA cycle, the electron transport

chain, and the pentose phosphate pathway—to fulfill their energy

requirements (2). Following the discovery of the Warburg effect,

numerous studies have confirmed the crucial role of cancer cell

metabolism in tumor survival and growth. However, recent studies

have demonstrated that glutamine plays a more significant role in

cancer metabolism than was previously thought. The glutamine

demand is usually higher in cancer cells than in normal cells owing

to accelerated glutamine metabolism. Despite being a non-essential

amino acid and the most abundant amino acid in humans,

glutamine is considered to be conditionally essential in some

instances due to its involvement in multiple cellular processes (9).

Below, we summarized the uptake, transport, and functions of

glutamine, and its relevant metabolic enzymes (Figure 1).
2.1 Glutamine uptake and transport in
cancer cells

Glutamine uptake by cancer cells is mediated by transporters

(10). Alanine-Serine-Cysteine Transporter 2 (ASCT2), a sodium

(Na+)-dependent transmembrane transporter encoded by the solute

carrier family 1 member 5 (SLC1A5) gene, mediates the cellular

uptake of glutamine and other neutral amino acids and is

considered to be a primary glutamine transporter in cancer cells

(11, 12). L-type amino acid transporter 1 (LAT1), which is encoded

by the SLC7A5 gene, preferentially transports large branched and

aromatic neutral amino acids, and its expression is upregulated in

various types of cancer cells (13, 14). Intracellular glutamine can

serve as an exchange substrate to import extracellular amino acids,

including leucine, isoleucine, valine, phenylalanine and tyrosine via

LAT1 with high affinity (15). In addition, intracellular glutamine

can be metabolized into glutamate, which serves as an exchange

substrate for cystine uptake mediated by the cystine/glutamate

transporter xCT (SLC7A11). The imported cystine can then be

converted to cysteine for the biosynthesis of glutathione and the

maintenance of cellular redox homeostasis (16). ASCT2, LAT1, and

xCT are antiporters that balance cytosolic amino acid composition

by proportionally exchanging intracellular amino acids with

extracellular amino acids. Hence, these antiporters do not mediate

affect intracellular glutamine levels unless other amino acids are

available for exchange.

Since the net movement of amino acids into cells can only be

mediated by uniporters and symporters (17–19), their expression

may also be crucial for cellular growth. Neutral amino acid

transporters belong to the SLC38 gene family of sodium-coupled

neutral amino acid transporters (SNATs), among which SNAT1

(SLC38A1) and SNAT2 (SLC38A2) are uniporters (19). Both

SNAT1 and SNAT2 play important roles in the net uptake of
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glutamine in epithelial cervical cancer cells, osteosarcoma cells,

human melanoma cells, and six breast cancer cell lines (19–21).

The first member of the SLC38 family to be cloned was SNAT3

(SLC38A3) (22). Unlike SNAT1 and SNAT2, SNAT3 preferentially

imports glutamine, asparagine, and histidine (23). SNAT3 is

overexpressed in malignant glioma and non-small cell lung

cancer (NSCLC) (24, 25). The amino acid transporter B0,+ (ATB0,

+), a symporter encoded by the SLC6A14 gene, can transport all

neutral (including glutamine) and basic amino acids. ATB0,+ is

overexpressed in various types of cancer, including colorectal

(CRC), breast, and pancreatic cancers (26). Additional

information on glutamine transporters is provided in Table 1.
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2.2 Glutamine metabolism in cancer cells

2.2.1 Epigenetics and the dysregulation of the
tricarboxylic acid cycle

Here, we address the dysregulated TCA cycle in cancer cells

before summarizing glutamine metabolism in cancer cells. The

TCA cycle is an intracellular central metabolic hub and a

common catabolic pathway for various types of sugar, amino

acids, and fatty acids (78). TCA cycle dysregulation can directly

alter the metabolism of cancer cells. Alpha-ketoglutarate (a-KG),
which is derived from glutamine catabolism, is an important

anaplerotic substrate of the TCA cycle.

Mutations in genes involved in the TCA cycle are associated

with familial cancers (79). Mutations in the genes encoding

fumarate hydratase (FH), isocitrate dehydrogenase (IDH), and

succinate dehydrogenase (SDH) cause TCA cycle dysfunction and

mitochondrial metabolic defects in various types of cancers (80).

Mutations occur throughout the FH gene, and heterozygous

mutations in this gene are related to dominantly inherited uterine

fibroids, hereditary leiomyomatosis, and renal cell carcinoma (81,

82). FH acts as a tumor suppressor, and downregulation of its

expression results in the accumulation of hypoxia-inducible factor-

1a (HIF-1a) and fumarate (83). Fumarate is an oncometabolite and

a potent inhibitor of prolyl 4-hydroxylase (P4H), which is a negative

regulator of HIF-1a. Inhibition of P4H leads to HIF-1a activation

under normoxic conditions, resulting in pseudohypoxia that

promotes the proliferation of cancer cells (79). IDH has three

isoforms: IDH1, IDH2, and IDH3. Genomic analyses have

revealed IDH1 or IDH2 mutations in samples from most patients

with glioblastoma multiforme and grade II-III gliomas (84).

Furthermore, mutations in IDH1 at arginine 132 (R132) and in

IDH2 at arginine 172 (R172) have also been identified in patients

with acute myeloid leukemia (85). Virtually almost all IDH1 and

IDH2 mutations are missense mutations located at R132 and R172,

respectively; both isotypes are therefore promising biomarkers for

cancer diagnosis and gene therapy. Mutations in IDH cause the loss

of its enzymatic activity of converting isocitrate to a-KG while

conferring a neo-enzymatic activity of reducing a-KG to the

oncometabolite D-2-hydroxyglutarate, an excess of which favors

the formation of malignant tumors (86). Similar to FH mutations,

heterozygous mutations in the SDH gene are associated with

hereditary paraganglioma and pheochromocytoma (87). In

addition, mutations in genes encoding SDH subunits are found in

other types of tumors, such as gastrointestinal stromal tumor (88),

testicular seminoma (89), neuroblastoma (90), renal cell carcinoma

(91), and thyroid cancer (92).

2.2.2 Functions of glutamine
2.2.2.1 Glutamine as a nitrogen donor

Glutamine is first converted by the glutaminase I (GLS/GLS2)

system to glutamate, which is then converted to a-KG through two

pathways. One pathway is mediated by the enzymatic activity of

glutamate dehydrogenases (GDH). The other pathway is mediated

by glutamate-oxaloacetate transaminase (GOT), glutamate-pyruvate

transaminase (GPT), and phosphoserine aminotransferase (PSAT),
FIGURE 1

Glutamine uptake, transport, and metabolism. Glutamine uptake and
transport in cancer cells is mediated by transporters (ASCT2/ATB0,

+/SNAT1,2,3). Intracellular glutamine can be converted into a-KG
through the glutaminase I (GLS+GDH/transaminase) or II (GTK/GTL/
KAT2+w-amidase) pathway. Aspartate, alanine, and serine are mainly
produced via transaminases, such as GOT, GPT, and PSAT. GOT
transforms glutamate into aspartate, which is essential for purine,
pyrimidine, and protein synthesis. Aspartate is further converted to
asparagine via ASNS. GPT catalyzes the reversible conversion of
glutamate to pyruvate for a-KG and alanine generation. This GPT-
catalyzed reaction plays a vital role in the glucose–alanine cycle,
which is essential to support liver gluconeogenesis. PSAT transforms
glutamate into serine, which is involved in nucleotide and protein
synthesis. a-KG is an important anaplerotic substrate of the TCA
cycle, in which FH, IDH, and SDH mutations are the main causes of
cycle dysfunction and mitochondrial metabolic defects in various
types of cancers. Glutamine can be synthesized from glutamate via
GS. Glutamine can also be converted to ornithine and proline, which
regulate apoptosis/autophagy. The byproduct of glutaminolysis,
ammonia, can modulate autophagy under specific circumstances.
The reductive carboxylation of a-KG into citrate can support
adipogenesis, which is crucial for cancer cell survival. The GDH
pathway is also linked to cellular ROS homeostasis, and further
modulates autophagy, which can also be regulated by AAs through
the mTOR pathway. Glutamate is exchanged for cystine via xCT,
which is rapidly reduced to cysteine by CR. Then, glutamate,
cysteine, and glycine react together for de novo synthesis of
glutathione via GCL and GSS. The interconversion of oxidized
glutathione and glutathione is catalyzed by GSR, and glutathione
can directly control redox homeostasis. AAs, amino acids; ASNS,
asparagine synthetase; a-KG, alpha-ketoglutarate; CR, cystine
reductase; GCL, glutamylcysteine ligase; GSS, glutathione
synthetase; GSR, glutathione reductase; GLS, glutaminase; GDH,
glutamate dehydrogenase; GS, glutamine synthase; GTK/GTL,
glutamine transaminases K/L; KAT2, kynurenine aminotransferase 2;
GOT, glutamate-oxaloacetate transaminase; GPT, glutamate-
pyruvate transaminase; PSAT, phosphoserine aminotransferase; FH,
fumarate hydratase; IDH, isocitrate dehydrogenase; SDH, succinate
dehydrogenase; ROS, reactive oxygen species.
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which catalyze the conversion of glutamine to a-KG without

producing ammonia. Additionally, glutamine can also be converted

into a-KG through the glutaminase II pathway, which is described in

detail below. Transaminases catalyze the biosynthesis of amino acids

such as aspartate, alanine, and serine using the amino group of

glutamine. GOT, also known as aspartate transaminase, has

cytoplasmic (GOT1) and mitochondrial (GOT) isoforms. GOT

catalyzes the conversion of glutamate to aspartate, which is required

for biosynthesizing purines, pyrimidines, and proteins, as well as

maintaining redox homeostasis by the malate–aspartate shuttle (93).

Prominent studies demonstrate that aspartate biosynthesis is an

essential function of mitochondrial respiration in proliferating cells

(94, 95). In view of the multiple critical roles of aspartate, aspartate

uptake and biosynthesis pathways have been are considered

therapeutic targets in cancer (93). GPT, also called alanine

transaminase, includes the cytoplasmic GPT1 and mitochondrial

GPT2 isoforms and catalyzes the reversible conversion of glutamate

to pyruvate for a-KG and alanine generation. This GPT-catalyzed

reaction plays an important role in the glucose–alanine cycle, which is

essential for supporting hepatic gluconeogenesis (96). PSAT is required

to produce serine, which plays a key role in the biosynthesis of

nucleotides and proteins and is an allosteric activator of several

enzymes. Approximately half of all a-KG that enters the TCA cycle

in breast cancer cell lines is produced via the activity of PSAT (97);

thus, serine biosynthesis may play an important role in cancer cell

metabolism. Glutamine can also be converted to ornithine and proline.

Proline dehydrogenase/proline oxidase-dependent apoptosis/

autophagy may be modulated by the interconversion of glutamate,

ornithine, and proline, amongwhich proline is the key amino acid (98).

Understanding the regulatory roles of the proline in this process could
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facilitate the development of targeted cancer therapies. Glutamine also

serves as a nitrogen donor for the biosynthesis of asparagine catalyzed

by asparagine synthase (ASNS). In addition to amino acid biosynthesis,

glutamine also provides nitrogen for the de novo synthesis of purines,

pyrimidines, and nucleobases of DNA and RNA (99).

2.2.2.2 Glutamine as a carbon donor

One of the most important metabolic pathways involving

glutamine is the biosynthesis of a-KG to provide an anaplerotic

supply for the TCA cycle. a-KG can be metabolized via oxidative

decarboxylation and reductive carboxylation. Hypoxia (100),

impaired mitochondrial respiration (101), and anchorage-

independent formation of tumor spheroids (102) can promote the

reductive carboxylation of glutamine-derived a-KG into citrate to

support adipogenesis, which is crucial to cancer cell survival. Under

such circumstances, glutamine serves as a direct carbon source for

citrate and fatty acid biosynthesis (103, 104).

2.2.2.3 Reactive oxygen species homeostasis and
autophagy regulation

Glutamine produces reactive oxygen species (ROS) in addition

to providing nitrogen and carbon for biosynthesis and energy

metabolism. However, some glutamine metabolites can directly

control ROS levels. For instance, glutathione can neutralize

peroxide free radicals, and NADPH generated via GDH-catalyzed

glutamine metabolism can regulate ROS homeostasis by directly

scavenging excess ROS (105). Glutamine also plays an important

regulatory role in autophagy suppression through various processes

affected by its metabolism. ROS promote autophagy in response to

stress. Meanwhile, glutamine modulates autophagy through the
TABLE 1 Main membrane-anchored amino acid transporters of glutamine, their properties, and the cancers in which they are overexpressed.

Solute
carrier
number

Common
name

Na+-depen-
dence

(Transporter
type)

Substrates Overexpression in cancers

SLC1A5 ASCT2 Yes
(antiporter)

Ala, Ser, Cys
Gln, Thr, Asn

breast (27), colorectal (28), Eesophageal (29), gastric (30), lung (31), ovarian (32), and prostate
(33) cancers; neuroblastoma (34); endometrial (35), renal cell (36), and hepatocellular (37)
carcinomas; head and neck (38), oral (39), and esophageal (40) squamous cell carcinomas

SLC7A5 LAT1 No
(antiporter)

large branched-
chain and
aromatic neutral
AAs

breast (41), biliary tract (42), colorectal (43), gastric (44), lung (45), pancreatic (46), and prostate
(47) cancers; leukemia (48); glioblastoma (49); melanoma (50); ovarian (51) and hepatocellular
(52) carcinomas; esophageal (40), oral (53), and laryngeal (54) squamous cell Carcinomas

SLC7A11 xCT No
(antiporter)

Glu, Cystine breast (55), colorectal (56), and ovarian (57) cancers; melanoma, adrenocortical, bladder, renal
cell (58), and hepatocellular (59) carcinomas; lung adenocarcinoma (60); glioblastoma multiforme
(61); head and neck squamous cell carcinoma (62)

SLC38A1 SNAT1 Yes
(uniporter)

small, neutral
AAs

breast (63), colorectal (64), gastric (65), lung (66), and ovarian (67) cancers; melanoma (20);
leukemia (68); hepatocellular carcinoma (69)

SLC38A2 SNAT2 Yes
(uniporter)

Ala, Asn, Cys,
Gln, Gly, His,
Met, Pro, Ser

breast (21), colorectal (70), gastric (71), lung (66), and prostate (72) cancers

SLC38A3 SNAT3 Yes
(uniporter)

Gln, Asn, His malignant gliomas (24); non-small cell lung cancer (25)

SLC6A14 ATB0,+ Yes
(symporter)

neutral and
basic AAs

colorectal (73), gastric (74), pancreatic (75), and estrogen receptor-positive breast (76) cancers;
cervical carcinoma (77)
AAs, amino acids; Ala, alanine; Asn, asparagine; Cys, cysteine; Gln, glutamine; Glu, glutamate; Gly, glycine; His, histidine; Met, methionine; Pro, proline, Ser, serine; Tyr, tyrosine.
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production of glutathione and NADPH, which affect ROS levels

(106). Additionally, glutamine is involved in the activation of

mammalian target of rapamycin (mTOR), which inhibits

autophagy. The latest research demonstrates that glutaminolysis is

one of two mechanisms through which glutamine metabolism

modulates the mTORC1-autophagy pathway (107). A byproduct

of glutaminolysis, ammonia, induces and inhibits autophagy at low

and high concentrations, respectively (108). Thus, ammonia

regulates autophagy in a concentration-dependent manner

without relying on inhibited mTOR or ULK1/2 activity (108,

109). The GDH-catalyzed conversion of glutamate to a-KG
generates a second molecule of ammonia in some types of cancer

cells. However, others preferentially use transaminases for this

reaction, thereby bypassing the generation of the second

ammonia molecule. Changes in this metabolic pathway could

thus indirectly affect autophagy regulation.
2.3 Enzymes involved in glutaminolysis

2.3.1 Glutaminase
Greenstein discovered the two glutaminase enzyme systems in

rats (110). The glutaminase I system, which is now known as the

glutaminase or phosphate-activated glutaminase system, comprises

kidney (GLS or KGA) and liver (GLS2 or LGA) isozymes activated

by phosphate (111), while the glutaminase II system is activated by

a-keto acids (112).

The mitochondrial glutaminase I system converts imported

glutamine to glutamate and is considered the first key enzymatic

reaction in the catalysis of glutamine in cancer cells. The ubiquitous

expression of GLS in normal tissues is upregulated in various

cancers, and it might play a key role in cancer onset and

progression (113). GLS has thus been extensively explored as a

target for drug development. In contrast, GLS2 is primarily

expressed in the liver, brain, pituitary gland, and pancreas.

Whether GLS2 promotes or suppresses tumorigenesis remains

uncertain, and it has rarely been targeted in drug discovery (111,

114). However, GLS significantly promotes cancer cell growth. The

expression of GLS is abnormally elevated in multiple cancer types,

including breast (115), colorectal (116), and prostate (117) cancers,

especially when compared with adjacent tissues. Knocking down or

inhibiting GLS can restrict the growth of various types of cancer

cells and suppress cancer progression (113, 115, 118). The GLS

inhibitor CB-839 is currently entering phase I and II clinical trials as

monotherapy and as polytherapy when combined with

chemotherapy and/or immunotherapy.

Glutaminase II is an enzymatic complex comprising glutamine

transaminase and omega (w)-amidase (119, 120). The main

glutamine transaminases in humans and rodents are glutamine

transaminases K (GTK) and L (GTL) (121, 122). Kynurenine

aminotransferase 2 (KAT2), also exerts some enzymatic action on

glutamine (123). In the presence of various a-keto acids, glutamine

transaminases catalyze the conversion of glutamine into alpha-

ketoglutaramate (a-KGM), which is then deamidated by w-amidase

into a-KG. To date, cancer cell glutamine addiction is still widely

and naturally thought to involve the glutaminase I pathway, by
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which glutamine is first converted to glutamate via a GLS-catalyzed

reaction and before being converted into a-KG through GDH or

transaminases (GOT/GPT/PSAT). However, the glutaminase II

pathway can also realize the conversion of glutamine into a-KG.
This pathway’s functions in cancer cells have been substantially

overlooked, with only a few relevant studies having been reported.

For instance, it has been newly confirmed that the glutaminase II

pathway exists in human pancreatic cancers, and genetic

suppression of GTK completely inhibits pancreatic tumorigenesis

in vivo (124). Almost concurrently, the glutaminase II pathway was

identified in prostate cancer cells, and expression of the GTK andw-
amidase genes in this pathway has been shown to be more

upregulated with increased cancer cell invasiveness (125). The

glutaminase II pathway also plays important roles in providing

anaplerotic carbon to the TCA cycle, supplying citrate carbon in

prostate cancers, and closing the methionine salvage pathway (125).

These findings suggest that glutamine transaminase (GTK) and w-
amidase could be novel metabolic targets for cancer treatment.

However, the broad substrate specificity of glutamine transaminase

towards a-keto acids and amino acids should be considered.

Inhibiting glutamine transaminase might interfere with other

biological properties. Additionally, glutamine metabolism through

the glutaminase I pathway is notably catalyzed by GLS+GDH

requires an aerobic environment due to the involvement of

nicotinamide adenine dinucleotide (NAD+). In contrast, a-KG
production through the glutaminase II pathway does not involve

net oxidation, indicating that it can function in hypoxic regions of

tumors. In summary, the glutaminase II pathway in cancers has

provided a new perspective for studying cancer cell glutamine

addiction and for developing corresponding therapeutic strategies.

2.3.2 Glutamate dehydrogenase
Glutamate dehydrogenase (GDH) catalyzes the second step in

glutamine metabolism, which is the oxidative deamination of

glutamate into a-KG. The GDH1 isozyme is expressed

ubiquitously across tissues and cells, whereas GDH2 is specifically

expressed in brain, testis, and embryonic tissues (126). Aside from

producing anaplerotic a-KG for the TCA cycle, the GDH pathway

is also associated with various cellular processes, including acid–

base balance, ammonia metabolism, lactate production, redox

homeostasis, and lipid biosynthesis (127). Specifically, recent

research indicates that GDH is crucial for metabolic ammonia

recycling in breast cancer cells, especially estrogen-receptor-

positive cells, to support their growth and proliferation (128).

Additionally, GDH1 plays a vital role in maintaining redox

homeostasis in breast and lung cancer (129). GDH1 expression is

significantly upregulated in tumor samples from patients with

advanced breast or lung cancer, resulting in the accumulation of

fumarate. Fumarate can bind to and activate the ROS-scavenging

enzyme glutathione peroxidase 1 (GPx1), conferring metabolic

advantages for cancer cell growth and proliferation. The small-

molecule inhibitor R162, which targets GDH1, can reduce the

proliferative capacity of cancer cells by causing redox homeostasis

imbalance (129). The survival of glioblastoma cells with glucose

metabolism disorders due to glucose deprivation, glycolytic

inhibition, or Ak strain transforming (Akt) signaling inhibition
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requires GDH (130). Overexpressed GDH promotes the

proliferation, migration, and invasion of CRC cells, and might

serve as a novel independent prognostic biomarker for CRC

progression and metastasis (131). Glutamine enhances the

proliferative capacity of ovarian cancer cells in a dose-dependent

manner and increases the activities of GLS and GDH by modulating

the mTOR/ribosomal S6 kinase (S6) and mitogen-activated protein

kinase 1 (MAPK) pathways (132). GDH expression is upregulated

in extrahepatic cholangiocarcinoma tissues, whereas silencing it

significantly reduces the proliferative, migratory, and invasive

capacity of cancer cells. Hence, GDH is considered an important

prognostic marker and therapeutic target in extrahepatic

cholangiocarcinoma (133).

The roles of GDH2 in cancer growth and metabolism have not

been fully investigated. However, GDH2 plays an important role in

eliminating the growth-inhibiting effect of IDH1 (R132H) mutant

gliomas (134). This suggests that targeting GDH2 could be a

beneficial strategy for treating patients with IDH1 mutant gliomas.

2.3.3 Transaminase
GOT1/GOT2, GPT1/GPT2, and PSAT are important enzymes

in glutamine metabolism and amino acid biosynthesis, and have

crucial functions in various types of cancers (135). GOT1-mediated

pathways play vital roles in maintaining redox homeostasis in

pancreatic cancer, and increased enzymatic activity of GOT1

favors the growth of cancer cells (136). A recent study

demonstrates that inhibiting GOT1 activity hinders the growth of

several pancreatic ductal adenocarcinoma cell lines, primary tumor

models, and tumor xenografts (137). GOT2 acetylation is essential

for regulating the mitochondrial NADH/NAD+ ratio and

stimulating the production of NADPH to maintain the redox

state of pancreatic cancer cells (138). Acetylation of GOT2 at the

K404 lysine residue promotes the proliferation of pancreatic cancer

cells and tumor growth in vivo, and GOT2 acetylation at the lysine

residue K159 is increased in human pancreatic tumors. Triple-

negative breast cancer (TNBC) cell lines also overexpress GOT1,

which controls intracellular ROS levels by producing NADPH, in

turn promoting tumor growth. The shRNA-mediated inhibition of

GOT1 expression enhances cancer cell sensitivity to doxorubicin by

causing doxorubicin-induced ROS generation (139). The

transaminase inhibitor aminooxyacetate (AOA) can inhibit the

proliferation of breast cancer cells (140).

The enzymatic activity of GPT2 is pivotal to the anchorage-

independent growth of KRAS-transformed colon cancer cells (141).

PIK3CA mutations can trigger glutamine metabolism

reprogramming in CRC cells by upregulating GPT2 expression

(142). GPT2 overexpression enhances the tumorigenicity and

stemness of breast cancer cells by activating the sonic hedgehog

signaling pathway, suggesting its potential as a therapeutic

target (143).

Recent studies show that elevated ratios of aspartate to alanine

transaminases (AST/ALT or GOT/GPT) correlate with a poor

prognosis in bladder (144), colorectal (145), hepatic (146), head

and neck (147), oral and oropharyngeal (148), prostate (149), and

pancreatic (150) cancers. The metabolic roles of PSAT in cancer

cells have not yet been comprehensively explored. It has been
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tumors than in normal tissues (151), but its specific mechanism

and prognostic value remain to be elucidated.

2.3.4 Glutamine synthetase
Glutamine can be synthesized de novo from glutamate via

glutamine synthase (GS). The selective, irreversible GS inhibitor

L-methionine sulfoximine (MSO) has anticancer potential due to its

ability to inhibit cancer cell proliferation in vitro (152, 153).
3 Regulation of glutamine addiction
by oncogenes in cancer

Cancer-associated genes are broadly categorized as oncogenes

and tumorsuppressor genes that promote and suppress

carcinogenesis, respectively. Interactions between these two types

of genes result in oncogenesis (154). Hence, cancers are ultimately

outcomes of dysregulated gene expression. Genes can be activated

or inactivated by mutations. Some of the prominent mutated

oncogenes in cancers include BRAF, ErbB2, JAK2, KRAS, MYC,

and PIK3CA. Mutations in these oncogenes can result in a high

reliance of cancer cells on glutamine for survival and proliferation.

Therefore, depleting glutamine and inhibiting glutamine

metabolism eventually lead to the growth arrest or even death of

these glutamine-addicted cancer cells. Below we summarize the

regulatory effects of some important oncogenes on glutamine

addiction in cancers.
3.1 BRAF mutation

The BRAF gene is one of three rapidly accelerated fibrosarcoma

(RAF) isoforms that encodes the serine/threonine kinase of the RAS

family. The BRAF mutation rate in all cancers is about 7%, but the

rate varies, being about 66% in melanoma and 10%–25% in CRC

(155). Over 90% of mutations in the BRAF gene occur in codon 600;

the substitution of valine (V) with glutamic acid (E) (BRAF V600E)

is the most common mutation, followed by the substitution of V

with lysine (K) (BRAF V600K) (156). Therefore, the National

Comprehensive Cancer Network (NCCN) recommends that

patients with advanced CRC should be tested for BRAF mutations

before starting first-line treatment. Targeted polytherapies for

patients with mutated BRAF include the triplet regimens of

Dabrafenib (BRAF inhibitor) + Trametinib (MEK inhibitor) +

Panitumumab or Cetuximab and Encorafenib (BRAF inhibitor) +

Binimetinib (MEK inhibitor) + Panitumumab or Cetuximab.

Melanoma cells, which contain mutated BRAF and are resistant

to the BRAF inhibitor PLX4720, exhibit increased oxidative

metabolism and mitochondrial dependence for survival (157).

The increased oxidative metabolism is related to a shift from

glucose to glutamine metabolism and a greater dependence on

glutamine over glucose. Such cells are more sensitive to glutamine

metabolism inhibitors and mitochondrial poisons. Hence,

combining inhibitors of BRAF and glutamine metabolism has a

more prominent therapeutic effect. Melanoma cell lines with single
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resistance to Vemurafenib (BRAF inhibitor) and double resistance

to Vemurafenib/Selumetinib (MEK inhibitor)exhibit increased

glutamine uptake and NH4+ production without changes in

glucose uptake (158). Furthermore, glutamine deprivation induces

the apoptosis of drug-resistant cell lines. Taking advantage of

glutamine addiction, the glutaminase inhibitor BPTES and the

glutamine-mimetic antimetabolite L-DON have yielded superior

antitumor effects in vivo.
3.2 KRAS mutation

KRAS, HRAS and NRAS, which are three isoforms of the

mammalian rat sarcoma (RAS) GTPase, encode KRAS4A,

KRAS4B, HRAS, and NRAS. These four small G proteins bind to

GTP/GDP and exhibit GTP hydrolase activity. As a molecular

switch, RAS activates downstream signaling pathways, such as the

MAPK and PI3K-Akt pathways, by binding to GTP to regulate the

proliferation, differentiation, and apoptosis of cells. RAS mutations

account for one-third of all human cancers (159, 160). The analysis

of data retrieved from four cancer databases (COSMIC, cBioPortal,

ICGC, and TCGA) reveals significantly higher mutation rates for

KRAS than for HRAS and NRAS (160). A KRAS mutation is an

important driver leading to metabolic reprogramming in cancer

cells, and it is closely related to glutamine and its metabolic changes.

KRASmutations increase glutamine demand in cancer cells that

use glutamine to accelerate energy metabolism and maintain redox

homeostasis (161). The selectively upregulated expression of

ASCT2, LAT1 and SNAT2 in CRC cells containing mutated KRAS

enhances the uptake of glutamine, leucine, and other amino acids.

Knocking out KRAS downregulates the expression of the above

amino acid transporters, thereby reducing the uptake of amino acids

by CRC cells (70). Metabolomic analyses have revealed higher

concentrations of amino acids, especially glutamine, in CRC cells

containing mutated KRAS than in wild-type CRC cells (162). A

subsequent study of amino acid transporters in CRC cells with

mutated KRAS found that KRAS signaling mainly regulated the

expression of ASCT2 through the PI3-Akt-mTOR pathway.

Additionally, the prognosis of patients with mutated KRAS and

high ASCT2 expression is worse than patients with mutated KRAS

and low ASCT2 expression (28). Amonoclonal antibody antagonist,

Ab3-8, has been developed that recognizes the extracellular domain

of ASCT2, reduces cellular glutamine import and Akt/ERK

phosphorylation in SW1116 and HCT116 human CRC cell lines

containing mutated KRAS, and inhibits the growth of tumor

xenografts in mice (163). However, Ab3-8 does not inhibit the in

vivo growth of tumor xenografts of the HT29 human CRC cells with

wild-type KRAS. These findings collectively suggest that ASCT2

could be a useful target for treating cancers with mutated KRAS.

The effects of oncogenic KRAS mutations on glutamine

metabolism have been confirmed. In human breast cancer cells

with mutated KRAS, anabolic glutamine utilization is increased,

and the expression of genes associated with glutamine metabolism

is significantly upregulated, and there exists a high dependence on

glutamine for cellular growth (164). Oncogenic KRAS promotes
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glutamine metabolism reprogramming, and glutamine deprivation

can increase ROS levels and decrease reductive glutathione levels in

pancreatic cancer cells (136). The anaplerotic feeding of the

glutaminolysis metabolite a-KG into the TCA cycle is essential

for the growth of various anchorage-independent, KRAS-induced

cancer cells (141). In addition, LKB1 and KEAP1/NRF2 pathways

synergistically promote metabolic reprogramming toward

enhanced glutamine dependence in lung adenocarcinoma with

mutated KRAS, and they also enhance the sensitivity of cancer

cells to CB-839 (GLS inhibitor) in vitro and in vivo (165).

Combining CB-839 with Selumetinib (MEK inhibitor) takes

advantage of the increased glutamine utilization in NSCLC cells

with mutated KRAS to improve therapeutic efficacy (166).
3.3 MYC activation

The myelocytomatosis (MYC) proto-oncogenes include c-MYC,

n-MYC, l-MYC, and r-MYC, among which c-MYC is the most

commonly activated proto-oncogene. As a transcription factor,

MYC protein strictly responds to and integrates mitogenic and

developmental signals into broad changes in gene expression to

support cell growth and proliferation (167). In fact, most cancers

harbor altered MYC genes. For instance, MYC is amplified in up to

78% of osteosarcomas, 65% of ovarian serous cystadenocarcinomas,

48% of breast cancers, 45% of esophageal cancers and 37% of lung

squamous cell carcinomas (167). TCGA data show that MYC

amplification accounts for 21% of all tumor samples (167).

Furthermore, MYC signaling in cancer cells enables abnormal

TME regulation and evasion of the host immune response. The

inactivation of MYC in preclinical models might lead to sustained

tumor regression due to oncogene addiction (168). Hence, MYC

activation elicits numerous hallmarks required for autonomous

tumor growth. Yuneva et al. first discovered that MYC-driven

proliferating cells exhibit glutamine addiction (169). The

expression of genes associated with glutamine metabolism can be

positively stimulated by MYC. Sensitivity to glutamine deprivation

is c-MYC-dependent in glioma cells and can be suppressed by

targeting MYC expression (170). Furthermore, various cell lines

derived from cancers such as P493-6 B-cell lymphoma, PC3

prostate cancer (171), osteosarcoma (172), Ramos and Raji B-cell

lymphoma (173), renal cell carcinoma (174), HCT116 CRC (175),

and U-1906 small cell lung carcinoma (176) cells rely on glutamine

for cellular survival and growth under MYC activation.

Interestingly, glutamine itself can also regulate c-MYC protein

expression in HCT116 CRC (175), U266 and INA-6 multiple

myeloma (177), and SK-N-AS and SH-SY5Y neuroblastoma (178)

cells. Glutamine addiction extends from the context of MYC, and

mutations in KRAS—a key gene related to the stability and activity

of c-MYC protein— in cancer cells similarly cause dependence on

exogenous glutamine for cellular growth and proliferation, as does

MYC amplification (162, 179, 180). Therefore, combining therapy

targeting the MYC pathway with intervention in glutamine

metabolism should be key to reversing MYC-driven tumor

growth and restoring the antitumor immune response.
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3.4 mTORC1 activation

The mammalian target of rapamycin complex 1 (mTORC1) is a

highly conserved protein kinase complex that regulates cellular

growth, metabolism, and autophagy in response to exogenous

signals from nutrients and growth factors (181). As a key

downstream effector of many oncogenic pathways, mTORC1 is

associated with cancer progression (182). Mutations in mTORC1

are often hyperactivating in cancer (183, 184), and mTOR

inhibitors Rapalogs (rapamycin and its analogs) have been

clinically approved by FDA for treating some cancers (185).

Amino acids are likely required to activate mTORC1, which in

turn can regulate amino acid metabolism (186, 187). With further

research, activation of the mTORC1 pathway has been shown to be

related to glutamine addiction in cancer cells (188). mTORC1

promotes glutamine anaplerosis by activating GDH in human

epithelial cancer cell lines such as DLD1 colon cancer, as well as

the prostate cancer cell lines LNCaP and DU145 (189).

Mechanistically, mTORC1 promotes the proteasome-mediated

destabilization of CREB2 to suppress SIRT4 (a mitochondria-

localized member of the sirtuin family), which inhibits GDH,

thereby enhancing GDH enzymatic activity. Furthermore,

mTORC1 not only regulates GDH, but also promotes glutamine

uptake by cancer cells by positively regulating GLS through S6K1-

dependent c-MYC regulation (190). At the molecular level, S6K1

enhances the efficiency of MYC translation by regulating

phosphorylation of the eukaryotic initiation factor eIF4B. The

inhibitors of mTOR and GLS can significantly attenuate the

growth of BxPC3 pancreatic cancer cells.
3.5 PIK3CA mutation

Phosphatidylinositol 3-kinase p110 alpha (PIK3CA) is an

important proto-oncogene in the PI3K/Akt signaling pathway

because it participates in the modulation of numerous cellular

functions, including proliferation, differentiation, apoptosis, and

glucose transport. It was initially detected by in situ hybridization,

and is a 34-kb gene located in 3q26.3, which contains 20 exons (191).

Among mutations in the PIK3CA gene, about80% occur in the

helical and kinase domains; H1047R on exon 20 and E542K and

E545K on exon 9 are the three most prevalent mutations (192).

Mutations in PIK3CA play important roles in the onset and

development of cancer and are found to have a rate of 2–7% in

NSCLC, especially squamous cell lung carcinoma. PIK3CA

mutations occur in CRC at a rate of 20–30% and often occur

concomitantly with KRAS and BRAF mutations. Indeed, PIK3CA

is one of the most commonly mutated genes, with a rate of about

30% in breast cancer (193). NCCN guidelines (2019) recommend

PIK3CA mutation tests for patients with ER+/HER2- breast cancer.

Polytherapy with Alpelisib (PIK3CA inhibitor) and Fulvestrant

(estrogen receptor antagonist) can improve the survival rates of

patients with breast cancer contaning PIK3CA mutations.

Mutations in PIK3CA can reprogram glutamine metabolism by

upregulating GPT2 expression, thereby increasing glutamine

dependence of CRC cells. Specifically, the findings of metabolic
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flux analyses identified a higher rate of glutamine conversion to a-
KG in CRC cells with mutated PIK3CA than in wild-type CRC cells.

Mutations in the catalytic subunit p110a can upregulate GPT2

expression through the PDK1-RSK2-ATF4 signaling axis, thus

increasing CRC cell dependence on glutamine. Blocking this

signaling axis can inhibit the growth of CRC cells with mutated

PIK3CA. The GPT2 inhibitor AOA can also inhibit the growth of

CRC with mutated PIK3CA, but not in wild-type CRC xenografts

(142). The results of [13C5]-glutamine tracer studies using mice with

subcutaneous, orthotopic, and spontaneous CRC xenografts reveal

that glutamine primarily enters the TCA cycle in tumors.

Utilization rates of excess glutamine in tissue culture and

subcutaneous xenografts, are higher for CRC with mutated

PIK3CA than wild-type CRC. Levels of TCA cycle intermediates

were shown to be more enriched in an orthotopic model with

mutated PIK3CA, than in wild-type tumors (194). PIK3CA

mutations induced in the MCF10A human mammary epithelial

cell line result in a 50% increase in glutamine uptake and a

significant increase in glutamate production (195). Therefore,

PIK3CA mutations lead to glutamine addiction in tumors.

Intervention in glutamine metabolism could facilitate treatment

for cancers with mutated PIK3CA.

Given that CRC cells with mutated PIK3CA are more

dependent on glutamine, CB-839 (GLS inhibitor) combined with

5-fluorouracil (5-FU) can significantly induce CRC cell apoptosis

when compared with the corresponding monotherapies (196). The

most recent results of an ongoing phase I clinical trial

(NCT02861300) on CB-839 with Capecitabine (a 5-FU prodrug)

for advanced CRC and other solid tumors yielded a better

therapeutic outcome for patients with mutated PIK3CA than

those with non-mutated cancers.
3.6 Other oncogenes

The activated proto-oncogene ErbB2 (also termed neu or

HER2) is a leading cause of breast cancer. More GLS mRNA and

protein are expressed in ErbB2-transformed MCF10A than in

MCF-10A cells, whereas ErbB2 knockdown downregulates GLS

expression. Further research has shown that activated ErbB2

stimulates GLS expression in breast cancer cells through the

PI3K/Akt-independent NF-kB pathway (197). If these findings

are validated in models in vivo, this could facilitate the

identification of novel targets for cancer prevention and treatment.

A V617F mutation in the JAK2 gene mutation is found in most

patients with myeloproliferative neoplasms (MPNs). Among the

peripheral blood cluster of differentiation CD34(+) cells from

patients with MPN, more GLS is expressed in progenitor cells

with mutated JAK2 than in progenitor cells with wild-type JAK2

[198]. More vigorous glutamine metabolism and significantly

higher GLS expression are also confirmed in murine pro-

lymphoid (BaF3) cells with mutated JAK2 when compared with

that in cells with wild-type JAK2. Therefore, GLS inhibitors can

improve the therapeutic effects of the JAK2 inhibitor Ruxolitinib by

enhancing its inhibitory effect against CD34(+) and growth of cells

with mutated JAK2 in patients with MPN (198).
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4 Strategies to inhibit glutamine
metabolism in cancer

4.1 Glutamine metabolism and
anticancer immunity

Similar to cancer cells, activated T cells enhance glutamine

uptake and metabolism to support mitochondrial anaplerosis,

nucleotide synthesis, amino acid production, and redox

homeostasis (199–201). Competitive depletion of glutamine by

cancer cells in the TME triggers the starvation of activated T

lymphocytes and suppresses their proliferation and cytokine

production (202). Alternatively, glutamine deprivation impairs

the T-lymphocyte-mediated anticancer immune response by

promoting Treg cell activation and proliferation (203). Deleting

GLS in cancer cells increases interstitial glutamine concentrations to

near physiological plasma levels and enhances the overall activation

and effector capacity of T lymphocytes (199, 204), suggesting that

reducing glutamine confers immunosuppressive effects in the TME.

Therefore, the specific inhibition of glutamine metabolism in tumor

cells not only inhibits tumor growth but also improves the T cell-

mediated antitumor immune response by reversing the “glutamine

steal” scenario of tumors (204, 205). The glutamine-mimetic
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antimetabolite JHU083 disrupts metabolism in various types of

tumors and reverses hypoxic, acidic, and nutrient-deprived

conditions in the TME. Furthermore, it restores antitumor

immunity by inducing T cell activation, extending their lifespan,

and promoting memory T cell differentiation (206). These findings

have confirmed glutamine metabolism as a metabolic checkpoint in

cancer immunotherapy. Transient GLS inhibition can also improve

the function of CAR-T cells in a mouse model administered with

cellular immunotherapy (207).
4.2 Glutamine metabolism inhibitor

The main inhibitors of glutamine metabolism are glutamine

uptake, GLS, GDH, transaminase, and GS inhibitors; glutamine-

mimetic antimetabolites; and systemic glutamine-depleting drugs

(Table 2). Most metabolic inhibitors targeting cancer remain in

preclinical phases, but glutamine-depleting L-asparaginases have

already been approved as a standard component of a therapeutic

regimen for acute lymphoblastic leukemia (223). Additionally, the

GLS inhibitor CB-839 has been used to develop monotherapy and

polytherapy with chemotherapy and/or immunotherapy that have

entered phase I and II of clinical trials, respectively (Table 3).
TABLE 2 Strategies for inhibiting glutamine metabolism.

Classification Drug

Glutamine uptake inhibitors (ASCT2 inhibitors)
LAT1 inhibitors
xCT inhibitors

GPNA (208), V-9302 (209), g-FBP (210), Benzylserine and benzylcysteine (211)
JPH203 (212), KMH-233 (213)
Erastin (214), Sulfasalazine (215)

Glutaminase (GLS) inhibitors
Glutaminase (GLS2) inhibitor

968 (216), BPTES (217), CB-839 (115)
Ardisianone (218)

Glutamate dehydrogenase (GDH) inhibitors R162 (129), ECG and EGCG (219)

Aminotransferase inhibitor Amino oxyacetate (140)

Glutamine synthetase (GS) inhibitor L-methionine sulfoximine (152)

Glutamine-mimetic antimetabolites L-DON (220), Azaserine (220), Acivicin (221), JHU083 (222)

Systemic glutamine depleting drugs L-asparaginases (223), L-glutaminases (224), Phenylbutyrate (225)
TABLE 3 Clinical trials of glutaminase inhibitor CB-839 (Telaglenastat) against various types of cancers.

Trial identifier
(ClinicalTrials.gov)

Phase and
Recruitment

Status

Intervention/
treatment

Disease Outcome Ref

NCT02071927 Phase 1,
completed

CB-839 or
CB-839 +
Azacytidine

Acute myeloid leukemia and acute
lymphocytic leukemia

CB-839 was well tolerated and robustly
inhibited GLS in blood platelets and in tumors.

(226)

NCT02071888 Phase 1,
completed

CB-839 or
CB-839 +

Dexamethasone or
CB-839 +

Pomalidomide +
Dexamethasone

Non-Hodgkin’s lymphoma and
multiple myeloma, etc

CB-839 was well tolerated and robustly
inhibited GLS in blood platelets and in tumors.

(227)

(Continued)
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TABLE 3 Continued

Trial identifier
(ClinicalTrials.gov)

Phase and
Recruitment

Status

Intervention/
treatment

Disease Outcome Ref

NCT02071862 Phase 1,
completed

CB-839 or CB-839
+ Paclitaxel/
Everolimus/
Erlotinib/
Docetaxel/

Cabozantinib

Solid tumors, triple-negative breast
cancer, non-small cell lung cancer

renal cell carcinoma
mesothelioma, etc

CB-839 showed an accep
table safety profile, significant glutaminase
inhibition, and preliminary signs of clinical

activity in multiple tumor types.

(228–
231)

NCT02771626 Phase 1/2,
completed

CB-839 +
Nivolumab

Melanoma, clear cell renal cell
carcinoma and non-small cell lung

cancer

The combination of CB-839 + nivolumab was
well tolerated and disease control in MEL,
ccRCC and NSCLC was encouraging.

(232)

NCT03057600 Phase 2,
completed

CB-839 +
Paclitaxel

Triple-negative breast cancer Pac + CB-839 had clinical activity and was well
tolerated.

(233)

NCT03163667 Phase 2,
completed

CB-839 +
Everolimus
Placebo +
Everolimus

Clear cell renal cell carcinoma ENTRATA met its primary endpoint,
supporting GLS inhibition with CB-839 as a

new therapeutic approach in RCC.

(234)

NCT03263429 Phase 1/2,
recruiting

CB-839 +
Panitumumab +

Irinotecan
Hydrochloride
(phase I only)

Metastatic or refractory RAS wild
type colorectal cancer

Phase 1: Triplet combination was tolerable at
full doses of each drug, and preliminary

antitumor activity was observed in a majority of
patients.

Phase 2 is in progress.

(235)

NCT02861300 Phase 1/2 active,
not recruiting

CB-839 +
Capecitabine

Solid tumor, colorectal cancer, colon
cancer, rectal cancer

Patients with PIK3CA mutant CRC experienced
prolonged progression-free survival.

Phase 2 is pending.

(236)

NCT03047993 Phase 1/2 active,
not recruiting

CB-839 +
Azacitidine

(High risk) myelodysplastic
Syndrome, acute myeloid leukemia,
chronic myelomonocytic leukemia

Combination treatment is a safe and effective
regimen for patients with advanced MDS.

Response in previously-treated and genomically
high-risk patients was encouraging. The trial

continues.

(237,
238)

NCT03428217 Phase 2,
completed

CB-839 +
Cabozantinib
Placebo +

Cabozantinib

Advanced or metastatic renal cell
carcinoma

Combination treatment did not meet the
primary end point of improved progression-free

survival.

(239,
240)

NCT03965845 Phase 1/2,
completed

CB-839 +
Palbociclib

Solid tumors, non-small cell lung
cancer, colorectal cancer, KRAS

mutation

N/A N/A

NCT03528642 Phase 1, active,
not recruiting

CB-839 HCl +
Temozolomide +

Radiation

Astrocytoma, IDH-mutant, Grade 2
and 3

In progress N/A

NCT03798678 Phase 1, active,
not recruiting

CB-839 HCl +
Carfilzomib +
Dexamethasone

Recurrent or refractory plasma cell
myeloma

Triplet combination was well tolerated. Ongoing
correlative studies could provide mechanistic
insight into which patients could benefit the
most from Telaglenastat in combination with

proteasome inhibitors.

(241)

NCT03831932 Phase 1/2,
recruiting

CB-839 HCl +
Osimertinib

Advanced or metastatic lung non-
small cell carcinoma and stage IV

lung cancer AJCC v8

In progress N/A

NCT03872427 Phase 2, active,
not recruiting

CB-839 Advanced malignant solid neoplasm,
metastatic malignant solid neoplasm,

and NF1 mutation positive
malignant peripheral nerve sheath

tumor, etc

In progress N/A

NCT04250545 Phase 1,
recruiting

CB-839 HCl +
Sapanisertib

Metastatic or recurrent lung non-
small cell carcinoma, Stage IV/IVA/

IVB Lung Cancer AJCC v8

The dose finding portion of phase 1 showed the
combination treatment is safe and tolerable at
the recommended expansion dose. The trial

continues.

(242)

(Continued)
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L-asparaginases also exhibit glutaminase activity required for

durable therapeutic effects against acute lymphoblastic leukemia

(243). However, glutamine depletion could cause some adverse

effects such as acute pancreatitis, thrombotic complication, and

immunosuppression (244). The clinical hypersensitivity led to the

development of L-asparaginases with different bacterial origins (245).

Human-derived L-asparaginase may be a solution in the future

considering the problems of immunosuppression and

hypersensitivity. Reversible and asymptomatic elevations in

transaminases were the primary adverse effects when CB-839

monotherapy was used to treat hematologic malignancies and solid

tumors in clinical trials (226–228). On balance, CB-839 was well

tolerated and produced robustly inhibition of GLS in blood platelets

and in tumors. Targeted nano-delivery systems have been developed

to further improve antitumor efficacy and reduce systemic effect. CB-

839 loaded nanoparticles could preferentially accumulate in tumor

tissue through enhanced penetration and retention (EPR) effect,

known as passive targeting (246). Furthermore, ligand/antibody-

modified nanoparticles could recognize overexpressed tumor cell

receptor/antigen, which actively targets tumor glutaminemetabolism

and achieves tumor-specific accumulation of CB-839 (247).
5 Concluding remarks and
future perspectives

Many dogmas have been overturned and refined since the

discovery of oncogenic metabolic alterations and the rediscovery of

the roles played by glutamine and glucose in cancer cell proliferation.

Here, we provide an overview of the uptake, transport and
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metabolism of glutamine, as well as the regulation of glutamine

addiction by oncogenes in cancer. The oncogene-driven types of

cancer summarized herein are highly dependent on glutamine.

Hence, targeting glutamine metabolism could facilitate the

pharmacological improvement of cancer therapeutics. In contrast,

some oncogenic drivers could allow cancer cells to bypass the need

for glutamine by upregulating other metabolic pathways for their

cellular growth and proliferation. However, targeted inhibition of

some oncogenic drivers can restore cellular reliance on glutamine.

Therefore, inhibiting glutamine metabolism and these oncogenic

drivers could collectively induce synthetic lethality in cancer cells.

The potent ability of glutaminemetabolic inhibitors to enhance the

anticancer immune response may be a feasible mechanism through

which their therapeutic effectiveness can be improved. Thus, the most

favorable glutamine-blocking strategy should be considered. The latest

studies show that immune checkpoint blockades exhibit synergistic

effects with glutamine uptake inhibitors (248, 249), GLS inhibitor

(250), and glutamine-mimetic antimetabolites (206, 251).

Additionally, nanowire sensors can be used to monitor changes in

the level of cancer-associated proteins and mRNAs (252). Therefore,

real-time dynamic monitoring of intratumoral metabolic processes

may enable dynamic optimization or adjustment of therapeutic

strategies, which is an important step towards developing precision

medicine against cancers.

To date, the outcomes of clinical trials using glutamine

metabolism inhibitors to treat cancer remain unsatisfactory

because of the metabolic plasticity exhibited by cancer cells.

Nevertheless, a scientific foundation has been lain for the further

assessment of potential targeted molecules and the rational design

of polytherapies to maximize clinical efficacy.
TABLE 3 Continued

Trial identifier
(ClinicalTrials.gov)

Phase and
Recruitment

Status

Intervention/
treatment

Disease Outcome Ref

NCT04265534 Phase 2,
terminated

CB-839 +
Pembrolizumab +

Carboplatin/
pemetrexed

KEAP1/NRF2/NFE2L2 mutated
(non-squamous) non-small cell lung

cancer

Lack of clinical benefit N/A

NCT03944902 Phase 1,
terminated

CB-839 +
Niraparib

(Resistant BRCA -wild-type) ovarian
cancer

The actual enrollment was only one and the
participant is now off study.

N/A

NCT03875313 Phase 1/2,
terminated

CB-839 +
Talazoparib

Solid tumor, clear cell renal cell
carcinoma, colorectal cancer, etc

The study was terminated due to slow
enrollment.

N/A

NCT04824937 Phase 2,
not yet

recruiting

CB-839 +
Talazoparib

Metastatic prostate cancer N/A N/A

NCT05521997 Phase 2,
not yet

recruiting

CB-839 +
Radiation +
Cisplatin

Advanced cervical carcinoma N/A N/A
frontier
ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; MEL, melanoma; MDS, myelodysplastic syndrome; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma.
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