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Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer including

tumors originating in the liver, pancreas, gallbladder and biliary ducts. It is limited by

two-dimensional (2D) cell culture models for studying its complicated tumor

microenvironment including diverse contents and dynamic nature. Recently

developed three-dimensional (3D) bioprinting is a state-of-the-art technology

for fabrication of biological constructs through layer-by-layer deposition of

bioinks in a spatially defined manner, which is computer-aided and designed to

generate viable 3D constructs. 3D bioprinting has the potential to more closely

recapitulate the tumor microenvironment, dynamic and complex cell-cell and

cell-matrix interactions compared to the current methods, which benefits from its

precise definition of positioning of various cell types and perfusing network in a

high-throughput manner. In this review, we introduce and comparemultiple types

of 3D bioprinting methodologies for HPB cancer and other digestive tumors. We

discuss the progress and application of 3D bioprinting in HPB and gastrointestinal

cancers, focusing on tumor model manufacturing. We also highlight the current

challenges regarding clinical translation of 3D bioprinting and bioinks in the field of

digestive tumor research. Finally, we suggest valuable perspectives for this

advanced technology, including combination of 3D bioprinting with

microfluidics and application of 3D bioprinting in the field of tumor immunology.

KEYWORDS

3D bioprinting, bioink, pancreatic cancer, colorectal cancer, hepatocellular carcinoma,
cholangiocarcinoma, tumor immune microenvironment, tumor model
1 Introduction

Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer developing in

digestive system, including liver, pancreas, intra- and extra-hepatic biliary ducts (1). HPB

cancer is often diagnosed at the advanced stage and associated with aggressive progression

and extremely poor prognosis (2, 3). Specially, primary liver cancer is the sixth most
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frequently diagnosed cancer (4.7% of total cancer cases) and the third

leading cause of cancer death (8.3% of total cancer deaths) globally in

2020, with approximately 906,000 newly diagnosed cases and

830,000 deaths (3). The incidence of pancreatic cancer has doubled

over the past three decades, increasing from 196,000 newly diagnosed

patients in 1990 to 495,773 in 2020 (3, 4). Moreover, pancreatic

cancer is the seventh leading cause of cancer death, accounting for

almost as many annual deaths (466,003) as new cases (495,773) (3).

Gallbladder carcinoma (GBC), ranks as the sixth most frequently

diagnosed gastrointestinal malignancy also with poor prognosis (5,

6). Unfortunately, only a small population of GBC patients (10%-

30%) is eligible for surgical resection which is the current effective

treatment (7). HPB cancer is complicated, and its diagnosis and

treatment are diverse and interdisciplinary (8). Although remarkable

progress has been made in fundamental research on HPB cancer,

with respect to tumor microenvironment, immunotherapy, organ

transplantation, and so on (9–13), it is still not completely clear in

mechanisms of cancer development and there is a lack of curative

treatments. Therefore, it poses an urgent need for better

understanding of tumorigenesis in HPB cancer and for improved

therapeutic strategies.

In oncology research, conventional two dimensional (2D)

monolayer cell culture and animal models have been widely used to

mimic the in vivo milieu and predict pathophysiological and

toxicological responses to drugs, but evidence has shown that they

cannot accurately predict clinical response or reflect cellular

microenvironment, which might lead to false-positive or false-

negative drug selection, inefficient prediction of drug response and

economic loss (14). Currently, it is urgent to develop experimental

system with an inherent ability to recapitulate the complex tumor

biology. Therefore, novel three dimensional (3D) culturing

technologies, including spheroid and organoid cultures, are

developed to contribute to reproducing intercellular communication,

intricate architecture of the tumor microenvironment and contact

with the extracellular matrix (ECM) (14). It has been proved that the

biological and predictive superiority of 3D systems is over

conventional 2D culture methods (15, 16). The next level for

developing more accurate and dynamic tumor models for oncology

research and personalized medicine is advancing to new biological

technologies like 3D bioprinting.

3D bioprinting is a reproducible bio-fabrication technology

capable of generating biological constructs similar to their native

counterparts with high spatial precision and controllability (17–20).

It precisely positions biologics including heterogeneous cells,

biological materials, biochemicals and other biological entities by

an automated dispensing system (20, 21). The quality of the

bioprinted scaffold can be influenced by the extracellular

microenvironment, cellular response, biocompatibility and

biodegradability (22). By virtue of its potential in tissue and organ

regenerative engineering, drug screening, patient-specific therapies,

organ-on-a-chip and high-throughput screening, 3D bioprinting

has gained increasing attention.

The process of 3D bioprinting refers to printing and patterning

bio-functional materials in a manner of layer-by-layer on substrates

or culture dishes containing cell culture medium to maintain cellular

adhesion and sustained growth (18, 20, 22). Bio-functional materials
Frontiers in Oncology 02
include living cells, basic structure materials and other essential

components, which are defined as bioinks (23, 24). To reproduce

the complex and heterogeneous architecture of organs and tissue,

gaining a comprehensive and sufficient understanding of

composition and organization of their components is essential. For

this purpose, medical imaging technology, as an indispensable tool,

can provide the information on 3D structure and function at cellular,

tissue, organ and organism levels. These technologies include

common and noninvasive imaging modalities like magnetic

resonance imaging (MRI) and computed tomography (CT) (20).

Computer-aided design and computer-aided manufacturing (CAD-

CAM) tools, mathematical modeling and machine learning are also

used to collect and digitize the complex tomographic and

architectural information for tissue (24–26).

In this review, we will introduce and compare multiple types of

3D bioprinting methodologies and commonly used biomaterials for

HPB cancer and other digestive tumors. We will then discuss the

advances and applications of 3D bioprinting in HPB cancer

research and other gastrointestinal cancers, focusing on tumor

model manufacturing. We will also highlight the current

challenges regarding clinical translation of 3D bioprinting and

bioinks in the field of digestive tumor research and suggest

valuable perspectives for this advanced technology.
2 3D bioprinting methodologies
for HPB cancer and other
digestive tumors

The success of 3D culturing model or tissue engineering chiefly

depends on the capability to formulate complicated cell-laden 3D

structures that mimic native tissue or organs. Therefore,

methodologies used for designing and creating the architecture

are an important aspect of 3D bioprinting. In the field of HPB and

other digestive tumor research, there are different bioprinting

methodologies depending on fundamental working principles

(27), including extrusion-based bioprinting, laser-assisted

bioprinting, inkjet-based bioprinting, magnetic bioprinting,

coaxial bioprinting and acoustic bioprinting (Table 1).
2.1 Extrusion-based bioprinting

Extrusion-based bioprinting is one of the most popular and

versatile 3D bioprinting methodologies and convenient to dispense

various bioinks like hydrogels. In extrusion-based bioprinting, the

bioink is extruded through a nozzle and dispensed onto substrates

pneumatically or mechanically. The bioink (the cell and biomaterial

mixture) is drawn into a sterilized syringe with a needle and then the

3D tissue or organ model is fabricated by extrusion in a layer-by-layer

manner under control of an automated three-axis robotic system

(Figure 1A) (21, 27, 28, 50). Materials with various viscosities are

compatible with extrusion-based bioprinting because of its pneumatic

driven system (51, 52). Even the complex biological tissue can also be

achieved by extrusion-based bioprinting using multiple bioinks and

setting up multiple printing headings (50, 53). In virtue of the
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advantages of extrusion-based bioprinting in economy, efficiency, and

uniform cell diameter, it has been applied to fabricate various HPB and

other digestive tissue and organs, including 3D bioprinted model

derived from HepG2 cells (3DP-HepG2), 3D patient-derived

bioprinted model for hepatocellular carcinoma (3DP-HCC), 3D

bioprinted model with microfluidic chip (3DPF), 3D bioprinted

colorectal cancer (CRC) model, etc. (14, 28–30).
2.2 Laser-assisted bioprinting

Laser-assisted bioprinting was developed from the initial

research of the U.S. Naval Research Laboratory (54). It is an

orifice-free, non-contact methodology that can rapidly deposits

bioinks onto substrates with spatial accuracy of >5mm (54). This

technique is based on the laser-induced forward transfer effect

(LIFT). It consists of three main components: 1) an energized

pulsed laser; 2) a target or ribbon (including a transparent glass

slide coated with a layer of laser-absorbing gold or titanium, onto

which bioink is spread), which is the donor film of biological

material; and 3) a receiving substrate which collects the printed
Frontiers in Oncology 03
material (55). It usually allows a laser beam which is in the infrared

spectrum to precisely focus on the ribbon, and then the bioink is

deposited over the substrate (Figure 1B). The main advantages of

this technique are that it can deposit bioink with relatively high

resolution, viscosity and cell viability (56, 57). Because of its nozzle-

free process, it allows for an excellent performance on the cell

viability compared with other bioprinting methods, which has been

proved to relate to the energy of laser pulse, the substrate thickness

of ECM, and the viscosity of bioinks (57). For its ultimate printing

precision, it provides with an ultimate control over cell organization

and deposition (55). Until now, a group of researches has used this

technology to create tissue and organs to mimic their counterparts,

such as rat exocrine pancreatic cell network (55), glioblastoma

tumor model (34), epithelium-mimicking structure (35), and

voluminous bone tissue (36).
2.3 Inkjet-based bioprinting

Inkjet-based bioprinting is the most widely known bioprinting

technology originally from the 2D desktop inkjet printers. It is a
TABLE 1 Features and applications of different strategies of 3D bioprinting.

3D
bioprinting
strategy

Advantages Disadvantages Resolution Cell
density

Clogging
possibility

Applications

Extrusion-
based
bioprinting

-Applicability of multi-material
bioprinting
-Suitable for bioinks with various
viscosities
-Printability of high cell density
-Simple bioprinting process

-Low printing
speed
-Relatively low
resolution
-Relatively low cell
viability

Low to medium
dependent on setup of
bioprinter

High Yes -Hepatocellular carcinoma
model (28–30)
-Colorectal cancer model
(14)
-Hepatocellular carcinoma
model with microfluidic chip
(30)
-Blood vessels (31, 32)

Laser-assisted
bioprinting

-High cell viability
-Suitable for bioinks with various
viscosities

-Relatively low cell
density
-Complex setup
and system
-High cost

High (<500 nm) Low No -Pancreatic cell network (33)
-Glioblastoma tumor model
(34)
-Epithelium-mimicking
structures (35)
-Voluminous bone tissue
(36)

Inkjet-based
bioprinting

-Low cost
-High cell viability
-High resolution
-Simple bioprinting process

-Limited by the
viscosity of bioink
-Low cell density
-Frequent clogging
of nozzles
-Unequal sized
drops

High (>50 mm) Low Yes -Microvascular tissue (37)
-Mille-Feuille-like 3D
structure (38)
-Skin (39)
-Blood vessels (40)

Magnetic
bioprinting

-Print in a high-throughput way
-Low cost

-Limited by bioink
materials

High High No -Prostate tumor (41)
-Adipose tissue (42)
-Lung (43)
-Aortic valve (44)

Coaxial
bioprinting

-Printability of tissue with built-in
microchannels or heterogeneous
properties

-Low printing
speed
-Relatively low cell
viability

Low to medium
dependent on
bioprinter

High Yes -Microvascular tissue (45)
-Liver sinusoid (46)

Acoustic
bioprinting

-Printability of high-density cells or
single cell
-High resolution
-High cell viability

-Limited by bioink
materials

High (5-300 mm) (47) High No -Colorectal cancer-cancer-
associated fibroblasts model
(48)
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droplet-based bioprinting, offering an efficient and simple method

for precise deposition of multiple cells and other various bioink

components, especially under the control of drop-on-demand at a

level of picoliter (Figure 1C) (38, 58, 59). This bioprinting

technology is formed by two strategies: drop-on-demand and

continuous inkjet printing. As the name suggests, drop-on-

demand printing generates bioink drops only when required,
Frontiers in Oncology 04
while continuous inkjet printing relies on the flow tendency of

liquid stream. Unfortunately, inkjet-based bioprinting has several

limitations that hinder its application in 3D fabrication. Firstly, the

frequent clogging of nozzles and cell sedimentation inside the

printhead chamber could impair the precision control of the

droplet formation and disturb the smooth printing process (31).

Secondly, continuous inkjet printing requires conductive fluid inks,
B C

D

E F

A

FIGURE 1

Schematic figures of 3D bioprinting modalities. (A) Extrusion-based bioprinting; adapted with permission (18), copyright 2019 John Wiley and Sons.
(B) Laser-assisted bioprinting; adapted with permission (49), copyright 2018, MDPI (open access). (C) Inkjet-based bioprinting; adapted with
permission (49), copyright 2018, MDPI (open access). (D) Magnetic bioprinting; adapted with permission (21), copyright 2020 ELSEVIER. (E) Coaxial
bioprinting. (F) Acoustic bioprinting; adapted with permission (47), copyright 2021 John Wiley and Sons (open access).
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which leads to a challenge in selection of biomaterials. Thirdly,

several reports suggest that the thermal and sheer stress in the

process of bioink drop formation may affect cell viability (60, 61).

To overcome these limitations, several researches made progress in

newly designed printhead (38, 62) and cell-laden bioink circulation

(63). Takagi et al. reported that they used inkjet-based bioprinter

with newly designed printhead to construct a Mille-Feuille-like 3D

structure with living NIH/3T3 mouse fibroblast cells and normal

human dermal fibroblasts (38). Solis et al. proved that thermal

inkjet bioprinting can trigger the activation of the vascular

endothelial growth factor (VEGF) pathway in human

microvascular endothelial cells, which may offer a new strategy

for vascularization in tissue engineered structures (37).
2.4 Magnetic bioprinting

In 2013, Haisler et al. described a method for 3D culture based

on magnetic levitation, in which a magnetic nanoparticle bound to

the cells to render the cells magnetic (64). When the magnetic cells

were resuspended in medium, they could be levitated and

concentrated at the air-liquid interface by an external magnetic

field. In this process, the cells aggregated to form 3D cultures

(Figure 1D) (64). This method offered the basis for magnetic 3D

bioprinting. This technique can synthesize endogenous ECM and

provide fine spatial control without needing other artificial protein

substrates. Additionally, it can print multiple tissue-like structures

in a high-throughput pattern (43, 44). Similar technology has been

applied in tissue engineering, such as for prostate tumor (41),

adipose tissue (42), lung (43), aortic valve (44), and so forth. The

main advantage of magnetic bioprinting is its capability to fabricate

native-like tissue in a high-throughput way. Fernandez-Vega et al.

applied this method to the first large-scale screening work and

completed high-throughput screening (HTS) on over 150,000 small

molecular drugs against primary pancreatic cells (Figure 2C). They

identified four chemotypes of drugs (SR-963, SR-742, SR-667 and

SR-444) as leads in 3D pancreatic cancer models, which

demonstrates that 3D magnetic bioprinting technology is a

powerful tool for fast, affordable and automated HTS (66).
2.5 Coaxial bioprinting

Coaxial bioprinting is a relatively new bioprinting method via

using a coaxial nozzle (31). As the sheath and core channels are fed

with biomaterials with different physico-chemical characteristics,

this method is especially suitable for fabrication of tissue with built-

in microchannels or vertical structures with heterogeneous

properties (Figure 1E) (45, 67). When we adjust mechanical

properties like toughness, shear force, viscosity and compression

by selecting appropriate biomaterials, we can use coaxial

bioprinting to fabricate various tissue. Alginate and gelatin

methacryloyl (GelMA)/gelatin are appropriate materials for

bioprinting of vascularized structure (31, 68–70). Bioprinting

method based on hollow alginate filaments for vascularized

structure al lows concurrent print ing of scaffold and
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microchannels. Alginate flow and calcium chloride flow fade

sheath and core channel respectively, and the crosslinking of

alginate and calcium ion is controlled by crosslinking sequence

time, concentration and flow rate of alginate and calcium chloride

solutions. GelMA and gelatin solutions are pumped into sheath and

core channels of the coaxial nozzle respectively, and gelatin can be

as sacrificial materials when temperature rises to obtain

microchannels. Based on these features, coaxial bioprinting is

suitable for tissue with abundant blood supply such as liver, and

liver sinusoidal models developed by coaxial bioprinting have been

reported (46). Using customized coaxial nozzle allowed researchers

to deposit bioinks with different types of cells sequentially, which

allowed formation of vertical structures composed of homogeneous

or heterogeneous properties such as intestinal villus and hair

follicle (45).
2.6 Acoustic bioprinting

Acoustic bioprinting is a novel method based on the principle of

acoustic droplet ejection. The acoustic printer adopts an open

cartridge and the focus of the ultrasonic signal is close to air-

liquid interface. The acoustic streaming effect causes a flow against

surface and the formation of a dome on the liquid surface. An

amount of liquid is ejected when the sound pressure of ultrasonic

signal and its resulting kinetic flow energy overcome the surface

tension of the liquid. The liquid droplets are collected by the

substrate (Figure 1F) (47, 48). The absence of a nozzle allows the

printer to minimize cell damage and enables to print single cell,

high-density cells and even cell spheroids flexibly. In terms of high

resolution, acoustic bioprinting has the advantage of convenient

and flexible positioning of tumor cells, normal cells, fibroblasts and

extra- cellular matrix, which leads to reproduction of the tumor

microenvironment to a large extent. The printed cells maintain high

viability (>94%) (48), which is superior to extrusion-based (40%-

80%) (58) and inkjet-based (>85%) (71) bioprinting and indicates

that acoustic bioprinting has the ability to construct long-term

tumor model for simulating dynamic drug response and

tumor invasion.
3 Selection of bioinks

The main consideration of bioink selection is based on the

printability and the impact of bioink on cell behavior. Printability is

generally associated with the rheological properties of the bioink.

The rheological properties permit extrusion during printing and

allow stabilization after deposition onto a substrate. Shear-thinning

hydrogels are usually considered as ideal bioinks as they can flow

during extrusion and can protect cells from shear stress. Rheological

additives, including gelatin and methylcellulose, can be used for

inducing shear-thinning behavior (72). The control of polymer

concentration can regulate shear-thinning behavior and higher

polymer concentrations usually possess improved rheological

properties (73). Each bioink presents different biological and

mechanical characteristics, bioink selection should also depend on
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the biological question and the specific cell type. Biological

properties such as adhesion to cells and degradation ability are

important features to consider in an experiment and may affect

encapsulated cell response. Mechanical properties, like elastic

modulus, can be translated to biochemical signals and impact

cellular responses including proliferation and differentiation (74).

However, the controversies between mechanical properties in

bioink and cellular viability during bioprinting cause limitations

on application. Mechanical and rheological properties in bioink
Frontiers in Oncology 06
generate tissue constructs with adequate mechanical strength, high

shape fidelity, and robustness. However, better printability of bioink

usually causes lower cellular viability during cell bioprinting.

Hydrogels including alginate, GelMA, collagen, fibrin, Matrigel,

gelatin and polyethylene glycol (PEG) are frequently used in 3D

bioprinted HPB tumor models. Among them, alginate is a

polysaccharide molecule, consisting of alternating a-l-guluronate
and b-d-mannuronate units (75). Alginate undergoes ionic

crosslinking via the negatively charged carboxylate (COO−) group
B

C

D

A

FIGURE 2

Representative figures of 3D bioprinted hepato-pancreato-biliary (HPB) cancer models. (A) The design of a 3D bioprinted hepatocellular carcinoma
(HCC) model combined with microfluidic technology; adapted with permission (30), copyright 2019 IOP Publishing. (B) A 3D bioprinted model with
cholangiocarcinoma (CCA) cells and stromal cells; adapted with permission (65), copyright 2022 Frontiers. (C) A 3D bioprinted pancreatic cancer
model for high-throughput screening (HTS); adapted with permission (66), copyright 2022 ELSEVIER (open access). (D) A 3D bioprinted colorectal
cancer model derived from patient; adapted with permission (14), copyright 2021 Frontiers.
frontiersin.org
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existing in polymeric backbone. When the COO− group contacts with

positively charged ions like divalent calcium cations, a crosslinked

hydrogel network is developed (58, 76). This crosslinking mechanism

of alginate with CaCl2 is exploited to fabricate heterogeneous tissue

constructs such as 3D bioprinted hepatocellular carcinoma (HCC) cell

model (28) and liver sinusoid models (46). GelMA is a denatured

collagen protein, in which methacrylate groups are conjugated to

amine side groups (77). GelMA has been increasingly used for 3D

bioprinting benefiting from its controllable mechanical characteristics

and appealing biocompatibility. Compared with polymers derived

from natural sources, GelMA forms an enzymatically degradable

hydrogel with higher mechanical strength when photocrosslinked

with ultraviolet light (78). Collagen is a thermosensitive hydrogel

and a major component of ECM in HPB tissue. In virtue of its

biocompatibility and cell adhesive properties, it has been extensively

exploited in 3D bioprinting for HPB and other tissue (79), including

hepatic lobule-like structure (52). Fibrin is a hydrogel formed via the

reaction of fibrinogen with thrombin, supporting cell growth and

proliferation (61).

In addition, the dECM derived from nature’s own scaffold has

become a new bioink source (80). The dECM scaffolds of 3D

bioprinted liver could stably recapitulate relevant mechanical

properties in cirrhotic liver tissue (81). The dECM of native liver

consists of a wide range of glycosaminoglycans, proteins, collagens,

and growth factors, providing a complex microenvironment to

better support functionality and viability of liver cells and

differentiation of liver progenitor compared with simple protein

matrices used in common 2D or 3D cell culture models.
4 3D bioprinting of HPB and other
digestive tissue and organs

The recent development of 3D bioprinting technology has

provided various powerful 3D tissue models for HBP and other

digestive organs, and it meets the demand for regenerative tissue

and organ, which will improve patients’ life quality. This section

reviews the recent studies on 3D bioprinted tumor models of HPB

and other digestive organs. Ex vivo tumor models can offer help to

the design of personalized treatment and to the understanding of

mechanisms that underlie tumors. Notably, recreating the

complexity of tumor microenvironment (TME) in vitro is

important. The TME includes immune interactions, stroma,

angiogenesis, cancer-associated fibroblasts (CAF) and ECM. The

TME not only physically supports tumor growth but also promotes

tumor development and metastasis (74, 82). Therefore, when we use

3D bioprinting to create HPB cancer models, we should

importantly consider the factors in the TME.
4.1 Hepatocellular carcinoma

The liver plays a crucial role in digestion, metabolism and

detoxification process, therefore severe liver disorders such as HCC

and liver cirrhosis lead to a considerable threat to human health.

HCC is the most prevalent primary liver cancer (3, 83). The majority
Frontiers in Oncology 07
of HCC tumors occur on the basis of cirrhosis or fibrosis, which are

mainly caused by hepatitis B virus and hepatitis C virus infection,

non-alcoholic fatty liver disease and alcohol-associated liver disease

(83). Liver transplantation is a therapeutic solution for HCC patients

at a certain disease stage, which is however limited by the shortage of

donors and expenses. Fabrication of an in vitro livermodel which can

recapitulate the native liver microarchitecture is crucial for exploring

hepatic metabolic functions, disease mechanisms, pathophysiology

of hepatotoxicity and its accurate prediction, and personalized

medicine. In liver tissue, hepatic lobules are the basic structures

and functional units. It is still a challenge to recapitulate the small and

complex structure and function of hepatic lobules in vitro (84). The

development of new technologies for liver bio-fabrication, especially

3D bioprinting, has attracted a great deal of attention owing to its

promising ability to arrange the cells and biomaterials into the

complex constructs similar to the native tissue (85).

HCC is an immunogenic cancer; it is capable of soliciting an

immune response by virtue of its expression of tumor-associated

antigens and neoantigens that can be recognized as ‘foreign’ entities

(86). The tumor immune microenvironment comprises different

immune cells. Both adaptive and innate cytotoxic cells can have

tumor cell-killing function. CD4+ and CD8+ effector T cells play a

key role in the anti-tumor process via different mechanisms.

Antigen-presenting cells also play a key role in maintaining

adaptive immune response in the tumor, such as intra-tumoral

dendritic cells. Immunosuppressive cell populations such as

regulatory T cells can also exist in the tumor immune

microenvironment (87). HCC is immunogenic, but effective

immune-mediated tumor control is prevented by its

immunosuppressive tumor microenvironment (86). We found

that tumor-infiltrating CD4+ and CD8+ T cells in HCC patients

were functionally compromised. CD4+ and CD8+ T cells isolated

from HCC tissue expressed certain co-inhibitory and co-

stimulatory receptors, while dendritic cells, monocytes, and B

cells in HCC tumors expressed ligands for these receptors (88, 89).

A 3Dmodel in vitrowithHCC cell lineHepG2 cells (3DP-HepG2)

was created using the extrusion-based 3D bioprinting technology and

its biological activities were evaluated. The researchers found that 3DP-

HepG2 showed notably increased expression of genes associated with

tumor, such as CD133, CD24, ALB, AFP, IL-8, EpCAM and TGF-b
genes, compared with 2D culture. The transcriptomic sequencing data

indicated that 3DP-HepG2 model showed higher expression levels of

genes related to liver functions than 2D-HepG2 model, including

protein synthesis, lipid metabolism and glycogen metabolism, which

suggests a possibility that the 3D printed microenvironment can

support further differentiation of HepG2 cells (28). Moreover, the

effects of anti-tumor drugs including cisplatin, sorafenib and

regorafenib were compared in 2DP-HepG2 and 3DP-HepG2. They

found the IC50 values obtained from the 3DP-HepG2 were closer to

the effective blood concentrations of these drugs in human body, which

may be associated with the increased expression of drug resistance and

autophagy related genes in the 3DP-HepG2, including ACBC1,MDR-

1, MRP1 and EGFR genes (28).

Furthermore, patient-derived 3D bioprinting hepatocellular

carcinoma (3DP-HCC) models have been established. The

researchers collected HCC specimens from six HCC patients after
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surgical resection, and they used extrusion-based 3D bioprinting

technology to print 3D models with 10mm in length,10mm in with

and 1.2mm in height. They proved that these models retained the

features and tumorigenic potential of patient-derived HCC,

including typical cell mass structure and expression of biomarkers

such as AFP and Ki-67. They evaluated the efficacy of four empirical

targeted drugs in these 3DP-HCC models, and found good

agreement between sensitivities of the tested drugs and mutant

targets revealed by whole exon sequencing (WES), which indicates

that 3DP-HCC is a suitable personalized model for anti-HCC drug

screening (29).

A new idea of combining 3D bioprinting with microfluidics was

proposed, which was for pharmacodynamic test of an anti-CD147

monoclonal antibody, Metuzumab. This research provided results of

migration and proliferation of human HCC SMMC-7721 cells and

protein expression level on these cells after treatingwith the antibody,

and found thatMetuzumab could specifically bind to CD147, leading

to secretion of MMP, and eventually result in a decrease in the

invasive capacity of hepatoma cells. Especially, there was evidence

that antibody-dependent cell-mediated cytotoxicity (ADCC) showed

higher effectiveness in the microfluidic 3D bioprinting model than in

the 3D bioprinting model without microfluidics (30).

Furthermore, liver sinusoid-like model has also been developed

by coaxial 3D bioprinting (46). The model consisted of core pre-

vascular structures and a shell compartment with hepatocytes. In this

model, human endothelial cells and human fibroblasts in the core

formed the pre-vascular network, supporting the HepG2 cells

mechanically and biologically. The cellular interactions occurred in

this triple co-culture model, which supplied a part of

microenvironment to tumor development and metastasis. In

addition, a physiologically relevant human vascularized liver model

was bioprinted laden with human umbilical vein endothelial cells

(HUVEC), human adipose mesenchymal stem cell-derived

hepatocyte-like cells (HLC), and human hepatic stellate cells

(HHSC) by using the extrusion-based bioprinting method (90).

This HLC/HUVEC/HHSC-laden liver model resembled cords of

hepatocytes with the functional sinusoidal lumen-like network,

demonstrating enhanced urea synthesis, albumin production, and

cytochrome P450 activity. These results would aid researchers to

speed up the development of 3D HCC model with complicated

microenvironment. Moreover, human-induced pluripotent stem

cells (hiPSC) can be used as a promising cell source of bioink for

the generation of functional hepatocytes (91).
4.2 Biliary cancer

The most common biliary malignancy is cholangiocarcinoma

(CCA), intra-hepatic CCA is also the second most common primary

liver malignancy, accounting for 10-15% of primary liver cancers

(92). CCA has a typical feature of desmoplasia, with the presence of

abundant fibrotic stroma infiltrating the tumor and a tumor immune

microenvironment infiltrated with different immune cells (93). We

found that proportions of cytotoxic T cells and natural killer cells

were decreased, whereas regulatory T cells were increased in CCA

tumors compared with tumor-free liver tissue from the same
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patients. While regulatory T cells accumulated in tumors, the

majority of cytotoxic and helper T cells were sequestered at tumor

margins, and natural killer cells were excluded from the tumors. The

decreased numbers of cytotoxic immune cells and increased numbers

of suppressor T cells that overexpress co-inhibitory receptors suggest

that the tumor microenvironment in CCA is immunosuppressive

(86, 94). The 3D CCA organoid model simulating tumor immune

microenvironment could direct immunotherapy and predict

prognosis (95).

3D bioprinting technology is suitable for being used to mimic

CCA with complex desmoplasia, which cannot be obtained from

2D cultures or other 3D cultures. Direct mixing of stromal cells and

tumor cells in a 3D microenvironment can lead to inhibition of

contact between two types of cells during growth (96). Recently, Li

et al. successfully constructed a 3D bioprinting immune

microenvironment model of CCA by depositing cancer cells

surrounded by stromal cells (Figure 2B). They compared the

biological performance of tumor-associated endothelial cells

(TEC), tumor-associated macrophages (TAM), and tumor-

associated fibroblasts (TAF) in 3D immune microenvironment,

and the results suggest that the stromal cells can promote tumor

cell activity in 3D models. Gene expression levels of 3D bioprinted

models in drug resistance, cancer stemness and proliferation were

over 2-fold higher than those of 2D models. The enhanced cell

malignancy in 3D bioprinted microenvironment also changed the

expression of proteins associated with the epithelial-mesenchymal

transition (EMT) process, including increased expression of MMP9,

N-cadherin and vimentin and decreased expression of E-cadherin,

which indicates that 3D bioprinting can promote the migration and

invasion of tumors (65).

For intra-hepatic CCA model, markers including CK19, CK7,

CK20, CEA, CDX2, CD15, CD133, CA19-9, MUC1, MUC2, S100P,

TFF1, CD56, N-cadherin and EpCAM can be used to identify

cancer type and cancer progression (97–104). For HCC model,

markers including CK8, CK18, HepPar-1, Arg-1, AFP, HSP70,

GPC3, CEA, CD24, CD133 and EpCAM can be used to identify

cancer type and cancer progression (29, 30, 105–109). Because of

the importance of immune cells, measuring proinflammatory

cytokine levels, such as IL-1, IL-2, IL-12, IL-17, IL-18, IFN-g and

TNF-a (110, 111), is recommended for these 3D bioprinted tumor

models and may help to gain more understanding of the

immune microenvironment.
4.3 Pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC), a rapidly

progressing disease, is the most frequent malignancy of pancreas

with a high mortality. Both pancreatitis and pancreatic cancer share

the same pathological pattern, in which exocrine pancreatic acinar

cells transdifferentiate to ductal cells (112). This process triggered

the application of 3D restructuration of pancreatic tissue. To define

the mechanism underlying this process, Hakobyan et al. generated a

3D pancreatic spheroid model by using laser-assisted 3D

bioprinting. The model consisted of both acinar and ductal cells

and it could replicate the initial stages of PDAC (55). Moreover, 3D
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bioprinted pancreas is a promising treatment for patients who have

insulin secretion deficiency and patients with pancreatic cancer who

have secondary insulin deficiency after pancreatectomy. Recently,

Salg et al. proposed the end-to-end concept from molecular level to

macroscopic level to provide experimental proof for evaluating

function of 3D bioprinting hybrid scaffold for secreting insulin

(33). In this study, they printed pseudoislets from the rat INS-1 832/

3 cell line as a viable and proliferative experimental model and

found that co-culture of INS-I cells with endothelial cells enhanced

insulin secretion (33).
4.4 Gastrointestinal cancers

Colorectal cancer (CRC) is the third most common malignancy

with poor prognosis, accounting for about 10% of all newly diagnosed

cancers (3). Therefore, it is an unmet need to develop more effective

therapeutic strategies for CRC. However, the probability of a new

drug passing from bench to bedside is below 0.1% (113). Sbirkov et al.

established a 3D bioprinted CRC model by using Caco-2 cells as an

economic and reproducible chemotherapeutic screening platform.

They tested three commonly used chemotherapies including 5-

fluorouracil, oxaliplatin, and irinotecan in this 3D model, and

found increased drug resistance to 5-fluoruracil and irinotecan

compared to conventional 2D culture. Of note, increased resistance

to oxaliplatin was not observed, which might be related to the mode

of action of this drug. The RNA-seq analysis provided a possible

explanation for drug resistance that genes related to cell cycle

progression were downregulated, genes related to hypoxia were

upregulated, and TNF-a (via NF-kB) signature was enriched in 3D

bioprinted model. This study also validated the proposed model with

patient-derived CRC cells (Figure 2D) (14). Acoustic bioprinting was

employed to print co-culture micro-tissue of colorectal cancer-

cancer-associated fibroblasts (CRC-CAF) for modeling 3D cancer

invasion and studying migration mechanisms (114). By observing the

invasive dynamics and analyzing related protein expression of this

CRC-CAFmodel, the invasive ability of this model was in accordance

with the corresponding clinical data reflecting invasive ability of

cancer cells, including data from pathological hematoxylin and eosin

staining, immunohistochemistry and nuclear magnetic resonance

imaging (MRI). Intestinal villus has also been bioprinted and

showed expression of functional biomarkers including ZO-1 and

villin, and such an intestinal villus model is promisingly applied to

tumor models with vertical structures (45).
5 Limitations of 3D bioprinting and
bioinks in clinical translation

Although 3D bioprinting is a state-of-the-art technology with a

lot of potential, it still has some limitations in clinical translation.

Firstly, 3D bioprinting remains limiting in producing tissue-like

and biofunctional structures due to a shortage of optimized

materials for bioinks. The suitable materials should provide

structure support and mechanical protection in the process of

printing (115). Additionally, the materials should also be
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biocompatible, bio-printable, nontoxic and degradable in the

human body (22). However, early studies usually used viscous

polymers which often lack cell compatibility and biofunction.

Several studies have used alginate-collagen hydrogel (116),

decellularized liver extracellular matrix (dLECM) hydrogel (117),

silk protein (118), and nanocomposite materials (119) as bioinks,

demonstrating better cytocompatibility, fidelity and support for

tissue growth. Secondly, to meet the demand of clinical usage, the

bioprinting process and products need to be evaluated under

standard guidelines. Thirdly, it is important to remain enough

live cells after the process of bioprinting for obtaining live tissue.

Inkjet-based and laser-based bioprinting techniques have cell

viability output over 85%, while extrusion-based bioprinting

techniques have 40%-80% cell viability (120, 121). By reason of

the complexity of cellular microenvironment, mimicking of cellular

types, ECM and distributions is critical. Although strategies like

extrusion-based bioprinting can be designed with different printing

heads and multiple cell types, it is still a challenge to achieve precise

position and distribution of the cells and biomaterials. The

improvement of bioprinting strategies may increase the cell

viability and enhance the precise control of constructing

cellular microenvironment.

Moreover, standardizing the 3D bioprinted models to make

decisions in personalized medicine-based clinical practice and drug

evaluation that are most suitable and effective for individual

patient’s specific type of cancer, as well as constructing models

with patients’ own cells are challenging. Tumors from different

patients have different biochemical components and structures, a

combination of bioprinting techniques is required to accurately

simulate individualized cancer models. For instance, in the process

of recreating the complexity of cancer microenvironment in vitro,

including stroma and tumor cell interaction, angiogenesis, and

ECM remodeling, coaxial bioprinting can be used to develop

microvasculature and extrusion-based bioprinting of dECM inks

can be used to mimic the tumor-stroma interaction. When creating

individualized cancer models for patients suffered from tumors with

high density and high fibrosis, acoustic bioprinting can be a

suitable option.
6 Future perspectives

As an innovative technology, 3D bioprinting has the potential

to achieve a clinical application in HPB cancers and other diseases.

Currently, a large number of commercial bioprinters have been

developed for pharmaceutical companies and research institutes,

and most of them are extrusion-based bioprinter for the reason of

affordability and simplicity (122). It is urgent to establish

standardized quality-control methods. We can have an ambitious

idea that the living tissue can be directly printed and transplanted

into the defective site in the operating room, which requires a sterile

operating space with an incorporated bioprinter (123). Besides,

there are numerous examples in which 3D bioprinted tumor models

were used to tackle biological questions and design personalized

therapies, but there are still a lot of possibilities and opportunities to

explore. Advances of 3D bioprinting technologies in HPB cancer
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provide clinically relevant modeling capacity to create biomimetic,

integrative, and human-based models. These models potentially

recapitulate tissue-specific and species-matched features, including

dimensionality, cell–cell interactions, and cell–matrix interactions

of their biochemical and biomechanical counterparts. These models

will be capable to serve as reliable in vitro models for screening of

multiple candidate drugs for personalized treatment of patients

with HPB cancer. Future investigation should be focused on the

bioprinted models in clinical practice, which would require a

different focus on technology directed towards the transplantation

of bio-fabricated organs. Furthermore, bioprinting is moving

beyond 3D to the emergence of 4D, and the term “time” as the

fourth dimension is added. The human tissue has unique

biofunction based on the dynamic changes of tissue induced by

external stimuli. In the process of 4D bioprinting, materials can

make a response to the stimulus after finishing the manufacturing

(124). In other words, the 4D bioprinted constructs can change

their structure and conformation with time induced by external

stimuli under control of programs. The external stimuli include pH,

water, temperature, pressure, electricity, magnetic field, drug and

their combinations (18).

The merging of 3D bioprinting with other cutting-edge

technologies may lead to a technological innovation enabling the

development of increasingly intricate bio-fabrication that mimics

complex native tissue. A microfluidic platform, enabling the

generation of small liquid volume, can be utilized for generating

multicellular spheroids and various cell assays, and has several

advantages: 1) integrated components for removing waste and

supplying nutrients (125), 2) integrated generators for

concentration gradient drug delivery (126), 3) high-throughput

drug screening with low cost (127), 4) automatic manufacturing

processing instead of mass handling (128), 5) uniform spheroids.

Multicellular spheroids produced by microfluidic platform are

promising to serve as bioinks for high-cell-density 3D

bioprinting. The developmental morphogenesis is based on

coordinated cellular collective process mediated by cell-cell

contact. Many diseases like fibrosis or tumors cannot be faithfully

recapitulated with biomaterials in which single cells are dispersed

throughout gels (74). Cell spheroids have been widely used as

culture models in vitro benefiting from the high cell density and

the potential to support cell sorting and differentiation, which can

potThe control of size and uniformity of spheroids is important for

maintaining optimal biological functions. However, the conventional

methods for spheroids generation have limited control on uniformity

and are not scaled for mass production in a high-throughput manner,

which can be overcome by microfluidics. This may lead to the

development of a hybrid bioprinting technology. Moreover,

continuous dynamic perfusion of microfluidic technology can also

be considered to supply nutrients and remove waste for uniform 3D

bioprinted culture models, which can be conceived as a 3D

microfluidic model. A 3D microfluidic model can be applied to

pharmacodynamic tests and immunotherapeutic studies. Recent

work demonstrated that a 3D microfluidic hepatoma model had

been built (Figure 2A). The hepatoma cells in this model were found

to have a higher proliferation efficiency than those in common 3D
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bioprinted models. This model was applied to test a new anti-CD147

monoclonal antibody and peripheral blood mononuclear cells were

added through microfluidic channel as effector cells. The drug test

results were in line with those obtained from animal models and

clinical trials using similar anti-CD147 antibodies (30).

Different bioprinting methods allow the assembly of various

types of cells suspended within different biomaterials, constructing a

heterogeneous tissue-like model, as in the tumor microenvironment.

A 3D bioprinted glioblastoma (GBM) model was fabricated to study

the role of immune cells as a stromal component in tumor

microenvironment by developing a co-culture model of GBM cells

and GBM-associated macrophages within GelMA-based bioink

(129). The model was a long-term culture model for real-time

monitoring and able to mimic various juxtacrine, paracrine, and

autocrine signaling pathways activated between tumor and stromal

immune cells. In recent research, by embedding the 3D bioprinted

tumoroids in an immune cell-laden collagen matrix, researchers

could track the interaction between tumoroids and immune cells and

study immunotherapy subsequently (130). In addition, a coaxial

bioprinting model was developed for analysis of the interaction

between macrophages and MDA-MB 231 breast cancer cells. In

this research, breast cancer cells and macrophages were loaded into

individual cartridges of the bioprinter and coextruded in a single step

(131). In this printing process, the breast cancer cells were embedded

in alginate-based bioink and extruded through the outer channel, and

the macrophages were suspended in the CaCl2 solution and delivered

via the inner channel to cross-link the outer alginate flow. It was

found that the macrophages initially existing in the inner channel

gradually migrated out and had interaction with the surrounding

breast cancer cells. Currently, 3D co-cultures of tumor organoids and

immune cells including lymphocytes have been established (95),

using 3D bioprinting technology to simulate a more complete and

complex tumor immune microenvironment is anticipated.
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