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Introduction: Hepatocellular carcinoma (HCC) has very poor prognosis due to

its immunosuppressive properties. An effective measure to regulate tumor

immunity is brachytherapy, which uses 125I seeds planted into tumor. T cell

immune receptors with immunoglobulin and ITIM domains (TIGIT) is highly

expressed in HCC. The TIGIT-targeted probe is expected to be an effective

tool for indicating immunomodulation of 125I seed brachytherapy in HCC. In this

study, We constructed a novel peptide targeting TIGIT to evaluate the immune

regulation of 125I seed brachytherapy for HCC by near-infrared fluorescence

(NIRF).

Methods: Expression of TIGIT by immunofluorescence (IF) and flow cytometry

(FCM) in different part and different differentiated human liver cancer tissues was

verified. An optical fluorescence probe (Po-12) containing a NIRF dye and TIGIT

peptide was synthesized for evaluating the modulatory effect of 125I seed

brachytherapy. Lymphocytes uptake by Po-12 were detected by FCM and

confocal microscopy. The distribution and accumulation of Po-12 in vivo were

explored by NIRF imaging in subcutaneous and orthotopic tumors. IHC and IF

staining were used to verify the expression of TIGIT in the tumors.

Results: TIGIT was highly expressed in HCC and increased with tumor

differentiation. The dye-labeled peptide (Po-12) retained a stable binding

affinity for the TIGIT protein in vitro. Accumulation of fluorescence intensity

(FI) increased with time extended in subcutaneous H22 tumors, and the optimal

point is 1 h. TIGIT was highly expressed on lymphocytes infiltrated in tumors and

could be suppressed by 125I seed brachytherapy. Accumulation of Po-12-Cy5

was increased in tumor-bearing groups while declined in 125I radiation group.
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1 Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

cancer and the second leading cause of cancer-related death

worldwide (1). The treatment of advanced HCC has been a

dilemma because of its self-immune tolerance (2). Local

radiotherapy (RT) is an effective immunomodulatory measure for

tumors (3). 125I seed implantation brachytherapy is a new type of

RT that has been widely used in the treatment of a variety of tumors,

including liver cancer (4–8). 125I seed is a kind of single miniature

radioactive source with low dose rate. The core of this seed is

palladium wire of 125I radioactive nuclide, encased in cylindrical

sealed titanium alloy tube, with half-life of 59.43 days, average

energy of 27 ~ 35 keV and radiation distance of 1.7 ~ 2.0 cm.125I

seed brachytherapy has a good safety profile for the treatment of

HCC (9). Increasing evidence has confirmed that 125I seed

brachytherapy inhibits tumor growth and activates antitumor

immunity (10–13). However, RT alone is not enough to prevent

tumor recurrence and metastasis. Combined RT can further

promote this immunodulatory effect, in which the combination of

nano-materials such as photothermal therapy (PTT) and

photodynamics therapy (PDT) have a significant effect (14–16).

More important, RT can also result in immunosuppression with

the.accumulation of radiation dose (17). Nevertheless, there is

currently no accurate method for evaluating immune molecule

changes in the tumor microenvironment (TME) for clinical

treatment. Therefore, real-time and dynamic monitoring of these

molecules is needed to detect changes in immune translation and

provide guidance for immunotherapy.

T cell immune receptor with immunoglobulin and ITIMdomains

(TIGIT) is a receptor of the Ig superfamily. It plays a key role in

limiting adaptive and innate immunity and is involved in tumor

immune surveillance, mainly expressed on T cells, natural killer cells

(NK), and other antigen-presenting cells (APCs), which can reduce

cytokine production and show strong immunosuppressive effects

(18). Considering that NK cells account for a large proportion in

liver, and TIGIT is expressed on both NK and T cells, TIGIT has been

reported to be an important inhibitory immune checkpoint (ICP) in

HCC (19). RT regulates the expression of TIGIT in tumors. RT

combined with anti-TIGIT is a good anti-tumor strategy (20, 21).

Consequently, TIGIT can be used as an indicator of tumor

immunoactivity. Hence, we used TIGIT as a marker to reflect the

immunoregulation of 125I seed brachytherapy in HCC.

The development of molecular imaging technology provides the

possibility for the dynamic assessment of tumor immune

microenvironment (TIME) changes in real time. It is reasonable

to measure immunoactivities by molecular imaging of predictive

biomarkers in tumors. Near-infrared fluorescence (NIRF) emitters

have been widely used in the real-time imaging of tumors because of

their excellent tissue penetration and target-background contrast

(22, 23). Therapeutic targeted molecules and immune checkpoints

(ICPs) labeled with NIRF dye have been tested in the evaluation of

cancer therapy, demonstrating ideal safety and high accuracy in

identifying the TME (24–26).

NIR imaging probes are usually composed of NIR dyes and

targeting groups (including antibodies and their fragments,
Frontiers in Oncology 02
peptides, small molecules, etc.), which can bind to specific

molecules in the process of tumorigenesis and development to

achieve dynamic tracing of the TME (27–29). Among these,

peptides stand out among many targeting groups because of their

low immunogenicity, strong tissue penetration, fast blood clearance,

and relatively simple production process (30, 31). Phage display

technology combines the antigen recognition ability of recombinant

proteins and is an efficient screening system to generate peptides

against specific molecules or tumor structures. Therefore, it has

great prospects in the development of tumor-specific peptides (32).

As TIGIT is highly expressed in HCC, and is a new

immunotherapeutic target that may be regulated by RT (33), we

introduced 125I seed implantation into the tumor for brachytherapy

and regulated the expression of TIGIT. We also designed a 12-

amino acid peptide targeting TIGIT to bind to lymphocytes in

HCC. This peptide was combined with Cy5 to further evaluate the

targeting efficacy of the probe in HCC before and after radiotherapy

under NIRF, which can indicate the degree of immune regulation of

HCC by 125I seed brachytherapy (Figure 1).
2 Methods

2.1 Expression and purification of
recombinant TIGIT antigen

In order to obtain the recombinant TIGIT protein, the TIGIT

gene (available in PubMed) was cloned into the BamHI and EcoRI

sites of PET28-A vector (+) and transformed into BL21(DE3)

competent Escherichia coli cells, which were cultured in Luria

broth at 37 °C, containing ampicillin (OD values of 0.6-0.8).

Subsequently, 1mM isopropyl-b-D-thio-galactoside (IPTG) was

added to the culture to induce protein expression. Bacterial

cultures were harvested and centrifuged at 5000 rpm for 10 min,

after which the precipitate was resuspended in lysis buffer

containing 8 M urea and 50 mM Tris (pH 7.4). After complete

decomposition at high pressure, lysed bacteria were centrifuged at

15000 rpm for 30 min and loaded onto a nickel resin-bound

(column affinity chromatography) column. The recombinant

TIGIT protein was eluted with a highly stringent buffer

containing 300 mM imidazole and verified by 10% SDS-PAGE

and Coomassie Brilliant Blue staining to obtain purified

recombinant TIGIT protein.
2.2 Screening of TIGIT targeted peptides

The resulting purified TIGIT protein was coated onto a 96-well plate

and used for subsequent peptide screening. Phage display technology

was used for the screening. Fifty microliters of phage supernatant were

added to a 96-well plate coated with TIGIT protein for screening. 0.2 M

Gly-HCl PH2.2 was used for elution and 1M Tris-HCl PH9.1 was used

for neutralization. The neutralization solution (containing

bacteriophages) was diluted 1000 or 10000 times and then added to E.

coli for amplification. After three rounds of screening, the desired affinity

clone target was obtained. The cloned target was sequenced using DNA
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and the target amino acid sequence was obtained by reverse sequencing.

A sequence with a high affinity and the highest occurrence times was

selected for chemical synthesis. To better link the Cy5 fluorophore, the

Cy5 fluorophore was first added to the synthesized amino acid sequence

and then the Cy5 fluorophore was added to theN-terminus of the amino

acid sequence. All peptides were chemically synthesized using the solid-

phase Fmoc method and purified by high-performance liquid

chromatography (HPLC) and electrospray ionization mass

spectrometry to a minimum purity of 95%.
2.3 Cell culture and animal models

H22 cells (Chinese National Collection of Authenticated Cell

Cultures) were cultured in Roswell Park Memorial Institute 1640

medium (RPMI 1640, Gibco, USA), containing 10% fetal bovine

serum (FBS, Gibco, USA) and 10% penicillin/streptomycin (P/S,

Gibco, USA) at 37° in a humidified atmosphere containing 5% CO2.

All animal experiments were approved by the Animal Ethics

Committee of Southeast University and conducted in compliance

with the Regulations for the Administration of Affairs Concerning

Experimental Animals of China. Six-week-old male BALB/c mice

(Vital River Laboratory Animal Technology, China) were housed at

the Animal Center of the Southeast University laboratory. 1×106

H22 cells were used to induce subcutaneous tumors by an injection

into the back of each mouse and tumor tissue was used to generate

orthotopic hepatic tumors by implantation into the liver. The mice

were anesthetized with an intraperitoneal injection of 60 mg/kg

sodium pentobarbital. 125I seeds (activity of 0.8 mCi) were

implanted into the tumor for radiation.
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2.4 Cell sorting of T lymphocytes

The tumor tissues of each group were minced into small

fragments and digested with tissue digestive enzymes(Miltenyi

Biotec, Germany)at 37 °C for 40 min. Single cells were collected

by filtration through a 70 mm colander (BD Biosciences, USA). T

lymphocytes were sorted using magnetic beads and a CD45+

lymphocyte isolation kit (STEMCELL Technologies, Canada).
2.5 Flow cytometry

Isolated CD45+ lymphocytes were collected at 1 × 106 cells/

sample and incubated with 300 mL control Con-12 or Po-12 (10 mg/
mL) at 4 °C for 15 min. After incubation, the cells were washed with

PBS 3 times and then resuspended in 400 mL staining buffer.

Fluorescence analysis was performed using a flow cytometer (BD

Biosciences) with a count of 1×106 living cells per sample. The

results were analyzed by flow cytometry using Flow Jo software for 3

times (v7.6, OR, USA).
2.6 Immunofluorescence staining

Isolated CD45+ lymphocytes were seeded in a confocal chamber

at 1 × 106 cells/well for 24 h and fixed with 4% paraformaldehyde at

room temperature for 20 min. The cells were incubated with Po-12-

Cy5 or Con-12-Cy5 at 4°C overnight. After staining with 4’ 6-

diamidino-2-phenylindole (DAPI), cells were imaged using a

confocal microscope (FV3000; Olympus, Japan). The prepared
FIGURE 1

Diagram showing the general scheme for using the TIGIT probe in near-infrared fluorescence (NIRF)-guided 125I seed brachytherapy in orthotopic
HCC. 125I seed was used to implanted into orthotopic tumor for radiation. Po-12 conjugated Cy5 targeting TIGIT was administrated by tail vein.
Change of TIGIT expression was detected by NIR imaging.
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tumor sections were also subjected to immunofluorescence (IF),

and the tumor tissues were resected and frozen for IF imaging.

Slides were stained with DAPI and analyzed using a confocal

microscope (FV3000, Olympus, Japan).
2.7 Western blotting

Isolated CD45+ lymphocytes were lysed to concentrate proteins

using RIPA lysis buffer (Beyotime Biotechnology, China). Cell extracts

were clarified by centrifugation, and protein concentrations were

determined using the BCA assay. Protein extracts were separated by

SDS-PAGE, transferred to microporous polyvinylidene difluoride

membranes (Roche, USA), and blocked using 5% BSA. Then

the membranes were incubated with anti-TIGIT polyclonal

antibody (Abbexa, UK) or GAPDH monoclonal antibody

(Cell Signaling Technology, MA, USA) at 4°C overnight. After

washing, the membranes were incubated with HRP-conjugated

secondary antibodies (Cell Signaling Technology, USA) at room

temperature for 1 h. Protein bands were detected with enhanced

chemiluminescence (ECL) and imaged using a chemiluminescence

system (Bio-Rad, USA). The above experimental procedures were

repeated 3 times.
2.8 Near-infrared fluorescence imaging

Six H22 tumor-bearing mice were randomly divided into two

groups and intravenously injected with 20 mg Po-12-Cy5-peptide or
Con-12-Cy5-peptide. After anesthesia with isoflurane in oxygen, in

vivo fluorescence imaging was performed using an IVIS-Spectrum

system (Perkin Elmer, Santa Clara, CA, USA) at several time points

(0.5, 0.75, 1, 2, 4, and 8 h). The excitation and emission wavelengths

of the probe were 620 and 670 nm, respectively. The mice were

sacrificed after injection of the peptide; their tumors and major

organs were dissected for ex vivo NIR imaging.
2.9 Statistical analysis

All data are presented as mean ± standard deviation (SD).

Statistical significance between groups was determined using two-

tailed Student’s t-test or one-way analysis of variance (ANOVA).

The threshold of statistical significance was set at P < 0.05 (*P <

0.05, **P < 0.01). Statistical analyses were performed using the

GraphPad Prism software (V9.0, CA, USA).
3 Results

3.1 TIGIT expression in human
HCC samples

In experiments examining the expression of TIGIT protein in

human HCC, different parts of the tissue (normal, paracancer, and
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tumor tissue) and differentiated tumor tissues (well, moderate, and

poorly differentiated tumors) were collected. H&E and IF staining

was used to assess TIGIT expression in each group. The probe

distribution assay of IF showed extensive accumulation of

fluorescence in tumor tissue compared to paracancerous tissue but

was negligible in normal tissue (Figure 2A). Furthermore,

fluorescence intensity (FI) increased with the degree of malignancy,

which revealed a stronger accumulation in poorly differentiated

tumors than in moderately differentiated tumors, while the well-

differentiated tumor displayed the least FI (Figure 2C). To further

verify the expression of TIGIT, we detected the expression of TIGIT

on the surface of lymphocytes in each tissue using flow cytometry

(FCM), and the results showed a consistent trend (Figures 2B–D, P <

0.01). These results indicate that TIGIT was highly expressed in HCC

and increased with tumor differentiation.
3.2 Identification and synthesis of
TIGIT-targeted peptides

TIGIT protein was successfully purified. Three rounds of

incubation and screening of expressed proteins were performed

(Figure 3A). Significant enrichment of recovered phages was

observed (Figure 3B). A consistently predicted molecular weight

of approximately 29 kDa was determined by Coomassie Brilliant

Blue staining (Figure 3C). After the last round of screening, 19

clones were randomly selected, verified by enzyme-linked

immunosorbent assay (ELISA), and sequenced by high-

throughput sequencing. The absorbance of the two highly

repetitive peptide sequences at 450 nm was significantly higher

than that of the control sample (Figure 3D). The high frequency of

the peptide sequences indicated efficient enrichment during the

screening process. The peptide sequence GAQYPHISRALH

(named Po-12), with an OD equal to 10 times that of the control,

was selected as the best candidate peptide for subsequent studies,

and the peptide with sequence shuffling (named Con-12) was used

as the control peptide (Figure 2D). The molecular structure of Po-

12-Cy5 is presented in Figure S1A. Cy5 fluorophore was added to

(red marker) the N-terminus of the naked peptide (Figure S1A).

The mass to charge ratio (M/Z) of Po-12-Cy5 by mass spectrometry

was determined at 2231.58(Figure S1B), and the retention time of

peptide purification by HPLC was 11.023 min (Figure S1C).
3.3 Binding of TIGIT-targeted peptide
to lymphocytes

The in vitro specificity of Po-12 to the TIGIT protein was

evaluated using FCM. The results revealed that lymphocytes in the

Po-12 group showed a stronger absorption of fluorescence intensity

than those in the Con-12 group and isotype group (Figure 4A, P <

0.01). Confocal microscopy imaging was used to evaluate the

cellular binding of the probes. Strong membranous binding was

observed in lymphocytes treated with Po-12-Cy5, whereas almost

no fluorescence was found in Con-12-Cy5-treated one (Figure 4B).
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These data indicated that the dye-labeled peptide retained a stable

binding affinity for the TIGIT protein in vitro.
3.4 NIRF imaging of tumors models

NIRF imaging was performed in tumor-bearing BALB/c mice

by intravenous injection of Cy5-peptides. Accumulation of FI

increased in subcutaneous H22 tumors from 0.5 h until 1 h, after
Frontiers in Oncology 05
which the FI began declining. Quantitative analysis showed that the

mean fluorescence intensity (MFI) of Po-12-Cy5 was significantly

higher than that of Con-12-Cy5 (Figures 5A, B, P < 0.01). Ex vivo

optical imaging of the tumors and main organs was performed 1 h

post-injection. The quantification of FI corroborated the

visualization of in vivo optical imaging. Biodistribution analysis

indicated that Po-12-Cy5 showed prominent renal clearance. The

enrichment of Po-12-Cy5 in H22 tumors was the highest in all

organs except the heart (Figures 5C, D).
A B

DC

FIGURE 2

TIGIT expression in human HCC. (A) Representative IF staining of TIGIT in different parts of tissue. (B) Flow cytometric analysis of TIGIT expression
on lymphocytes in different parts of tissue (n=3). (C) Representative IF staining of TIGIT in various differentiated tumor tissue. (D) Flow cytometric
analysis of TIGIT expression on lymphocytes in different differentiated tumor tissue (n=3). (Scale bar: Up, 50 mm; Down, 20 mm). ****P < 0.01.
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3.5 TIGIT expression and cellular uptake of
probes in lymphocytes after brachytherapy

To detect the effect of brachytherapy on the expression of

TIGIT in HCC, we established mouse subcutaneous tumor

models under 125I seed radiation. Lymphocytes from each group

were isolated from tumor tissue using magnetic beads and

incubated with Po12-Cy5. Confocal microscopy imaging was also

used to evaluate the cellular uptake of the TIGIT-targeted probe in

lymphocytes after radiation. The results showed that the expression

of TIGIT in the tumor control group was significantly increased

compared with that in the normal control group and decreased in

the 125I seed radiation group (Figure 6A). Consistent with confocal

microscopy images, TIGIT protein expression in each group

extracted from isolated lymphocytes assessed by western blotting

also exhibited a similar tendency (Figures 6B, C, P < 0.01). These

results demonstrated that TIGIT was highly expressed on

lymphocytes infiltrated in tumors and could be suppressed by 125I

seed brachytherapy, which suggested that this probe may not only

visualize the expression changes of TIGIT in tumors but also

provide dynamic guidance for RT in TME regulation.
3.6 NIRF-guided TIGIT expression in tumor
model of HCC after brachytherapy

To verify the effect of radiation on TIGIT expression and the

targeting of the probe in HCC, subcutaneous and orthotopic HCC

tumor models were established in mice. The probe was injected into

the tail vein, and accumulation of Po-12-Cy5 was increased in both

subcutaneous and orthotopic tumors, while the normal control

group without tumor showed no change. Quantification analysis

revealed that FI in 125I radiation group declined significantly than

tumor control one (Figures 7A–G, P < 0.01). The results of tumor

growth curve were also consistent with IF, and the growth of
Frontiers in Oncology 06
subcutaneous and orthotopic tumor was inhibited observably

(Figures 7C–H, P < 0.01). In addition, the tumors were excised

for IHC and IF staining. Results revealed that TIGIT protein

expression in IHC was negligible in the normal control group,

while it was highly expressed in the tumor-bearing group and

downregulated in the 125I radiation group (Figures 7D–I). In

agreement with IHC, extensive accumulation of Po-12-Cy5 was

observed in tumor-bearing groups compared to that in the normal

control group, and also declined in the 125I radiation group

(Figures 7E–J). These results reveal that Po-12-Cy5 has excellent

TIGIT-positive tumor-targeting potential and can be used as a

significant indicator of radiation immune regulation.
4 Discussion

Evaluation of the immune response has always been a challenge

in tumor therapy because of the potential reversion or

pseudoprogression (34). However, there is still a lack of effective

non-invasive real-time dynamic evaluation measures based on

immune molecules. The advent of molecular imaging technology

provides an opportunity for noninvasive observation of abnormal

immune molecular events in vivo. In response to the expression of

TIGIT protein in cancer, a variety of therapeutic antibodies have

been developed in phase I-II clinical trials (35, 36). Probe navigation

systems for recognizing tumor molecules mainly include antibodies,

peptides, and small molecules (27–29). Among them, peptides have

been valued for their ability to bind hidden epitopes because of their

smaller molecular weight (31). With the emergence and rapid

development of phage display technology, new peptidyl molecular

probes have greatly promoted the detection of tumor molecules,

showing great potential for clinical exploration (37, 38).

To the best of our knowledge, the indication of ICP by optical

labeling of peptide targeting TIGIT under real-time NIF for RT

regulation has not been reported. In this study, the target peptide of
A B

D

C

FIGURE 3

Identification of TIGIT-targeted peptides. (A) A flow chart for screening of TIGIT-targeted peptide. (B) Amino acid sequence of TIGIT protein.
(C) Coomassie Brilliant Blue staining of TIGIT protein after purification. (D) The binding affinities of selected nine peptide. The OD values were
analyzed by phage ELISA. ****P < 0.01.
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TIGIT was identified using phage display technology. To determine

the expression of TIGIT in HCC, we first collected different parts

and differentiated human HCC tissues and detected the expression

of TIGIT by IF staining and FCM. The results showed that the

expression of TIGIT in tumor tissues was significantly higher than

that in adjacent and normal tissues, and the expression of TIGIT in

poorly differentiated liver cancer tissues was significantly higher

than that in moderately and well-differentiated tissues.

Furthermore, we isolated lymphocytes from mouse tumors and
Frontiers in Oncology 07
verified the high binding affinity of the Cy5-conjugated peptide (Po-

12-Cy5) to lymphocytes by FCM and immunofluorescence confocal

assay in vitro. In vivo optical imaging further verified the targeting

ability of Po-12-Cy5 in a subcutaneous HCC model. The results

showed that the fluorescence uptake of Po-12-Cy5 was significantly

stronger than that of Con-12-Cy5, peaking rapidly within 1 h, and

gradually declining over 7 h. In addition, the biodistribution results

showed that the fluorescence intensity in the tumor was

significantly higher than that of the hybrid peptide, which was
A

B

FIGURE 4

Binding of TIGIT-targeted peptide to lymphocytes. (A) FCM analysis of lymphocytes after incubation with Con-12-Cy5 or Po-12-Cy5 peptide (n=3).
(B) Confocal images of lymphocytes after treatment with Con-12-Cy5 or Po12-Cy5 peptide. Scale bar: 50 mm. ns, no significance; ****P < 0.01.
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consistent with in vivo observations. In addition, the uptake of Po-

12-Cy5 in the kidney was higher than that in other organs,

indicating that the kidney may be the main excretion route. This

is consistent with what has been reported in a series of other

literatures (39–41). These results indicate that Po-12-Cy5 has a

good targeting effect on TIGIT in HCC and can be used as an

important indicator of changes in the immune microenvironment

in HCC. Therefore, we planned to use it to dynamically monitor the

regulation of TIGIT by 125I seed RT in real-time.

Based on the specificity of the Po-12-Cy5 probe for TIGIT in

liver cancer, we constructed a tumor brachytherapy model using
125I seed implantation and isolated tumor-infiltrating lymphocytes

and compared the expression of TIGIT under 125I seed RT, tumor

control, and normal control groups in vitro. Immunofluorescence

confocal analysis showed that the fluorescence uptake in the tumor

group was significantly higher than that in the normal control

group, while that in the 125I seed RT group was downregulated. The

expression of the TIGIT protein in each group also demonstrated

this trend. To further demonstrate the indication of the Po-12-Cy5

probe on TIGIT by RT, we constructed subcutaneous and

orthotopic tumor models of HCC in mice and further evaluated

the targeting of the Po-12-Cy5 probe in vivo. Quantitative analysis

showed that the FI of the 125I seed RT group was significantly lower

than that of the tumor control group in both the subcutaneous and
Frontiers in Oncology 08
orthotopic tumor models. IF and IHC staining of tumor tissues also

showed this trend. These results indicate that the Po-12-Cy5 probe

has precise targeting of TIGIT in HCC and can be used as an

indicator of RT immunoregulation, which has important clinical

significance for guiding HCC immunotherapy.

However, there are still some problems associated with the

clinical translation of the Po-12-Cy5 probe. First, the clinical safety

of the NIF dye-Cy5, was not confirmed. Nonetheless, NIR-II dye-

indocyanine green (ICG) has been approved for clinical use by the

Food and Drug Administration (FDA) (42, 43). IRDye800cw, as a

marker of SHRmAb antibodies, has been widely used because it has

no obvious clinical toxicity evaluated in human trials (44).

Therefore, it provides the possibility of improving the clinical

translation of the Po-12 probe. Second, although peptides show

superior performance in tumor diagnostic applications, their

binding affinity is not yet comparable to that of specific

antibodies. At present, the antibody-drug conjugate (ADC) has

been used in tumor therapy as a very promising antitumor drug

because of its high affinity and targeting (45). Therefore, using

TIGIT as a naked antibody of ADC and further conjugation of NIR-

II dye with peptide can not only further solve the limitations of this

study but also further improve the efficacy of HCC immunotherapy.

Finally, in contrast to bioluminescence imaging, which is affected by

tissue depth and imaging dimension, PET/SPE-CT technology for
A

B DC

FIGURE 5

In vivo imaging of H22 subcutaneous tumors and biodistribution of the probe. (A) In vivo imaging post-injection of probes and (B) quantification of
fluorescence intensity (n=3). (C) Ex vivo imaging of tumor and normal organs (Tumor, heart, liver, spleen, lung, kidney) and (D) quantification of
fluorescence intensity (n=3). **P < 0.01.
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small animals can achieve absolute quantification owing to the

excellent penetration ability of radionuclides, with no signal

attenuation; this provides three-dimensional information and

accurate localization (46). Therefore, we need to construct PET

imaging probes to evaluate tumor immune molecules in

future studies.
Frontiers in Oncology 09
5 Conclusion

In this study, we synthesized a TIGIT targeting NIRF probe, Po-12-

Cy5. In vitro and in vivo experiments showed that Po-12-Cy5 was

specifically absorbed by infiltrating lymphocytes inHCC. In addition, the

probe could indicate TIGIT regulation of 125I seed radiation under NIRF
A

B C

FIGURE 6

TIGIT expression and cellular uptake of probes in lymphocytes. (A) Confocal microscopic imaging of the cellular binding of probes in lymphocytes.
(B) Western blotting of TIGIT protein in lymphocytes and (C) quantification of TIGIT expression (n=3). Scale bar: 20 mm. **P < 0.01.
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guidance. As the TIGIT protein correlates with the degree of tumor

differentiation and can be downregulated by RT, we believe that this

probe can help indicate the regulation of the immunemicroenvironment

of HCC by RT. Therefore, the Po-12-Cy5 probe can be used as an

effective immunoevaluation tool with clinical translational potential.
Frontiers in Oncology 10
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FIGURE 7

Fluorescence imaging in subcutaneous and orthotopic model of HCC. (A–F) Imaging of subcutaneous and orthotopic tumor after infusion of
probes. (B–G) Quantification of FI in subcutaneous and orthotopic tumor (n=3). (D–I) IHC of TIGIT expression in subcutaneous and orthotopic
tumor. (E–J) Probe distribution evaluated via IF staining of frozen sections from subcutaneous and orthotopic tumor. (C–H) Tumor volume of
subcutaneous and orthotopic tumor after 125I seed radiation (n=4). Scale bar: 50 mm. Scale bar: 20 mm. ****P < 0.01.
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