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Objectives: The present study aims at establishing a noninvasive and reliable

model for the preoperative prediction of glypican 3 (GPC3)-positive

hepatocellular carcinoma (HCC) based on multiparametric magnetic

resonance imaging (MRI) and clinical indicators.

Methods: As a retrospective study, the subjects included 158 patients from two

institutions with surgically-confirmed single HCC who underwent preoperative

MRI between 2020 and 2022. The patients, 102 from institution I and 56 from

institution II, were assigned to the training and the validation sets, respectively.

The association of the clinic-radiological variables with the GPC3 expression was

investigated through performing univariable and multivariable logistic regression

(LR) analyses. The synthetic minority over-sampling technique (SMOTE) was used

to balance the minority group (GPC3-negative HCCs) in the training set, and

diagnostic performance was assessed by the area under the curve (AUC) and

accuracy. Next, a prediction nomogramwas developed and validated for patients

with GPC3-positive HCC. The performance of the nomogram was evaluated

through examining its calibration and clinical utility.

Results: Based on the results obtained from multivariable analyses, alpha-

fetoprotein levels > 20 ng/mL, 75th percentile ADC value < 1.48 ×103 mm2/s

and R2* value ≥ 38.6 sec-1 were found to be the significant independent

predictors of GPC3-positive HCC. The SMOTE-LR model based on three

features achieved the best predictive performance in the training (AUC, 0.909;

accuracy, 83.7%) and validation sets (AUC, 0.829; accuracy, 82.1%) with a good

calibration performance and clinical usefulness.

Conclusions: The nomogram combining multiparametric MRI and clinical

indicators is found to have satisfactory predictive efficacy for preoperative

prediction of GPC3-positive HCC. Accordingly, the proposed method can

promote individualized risk stratification and further treatment decisions of

HCC patients.
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1 Introduction

Although the prognosis of HCC has improved with advances in

imaging and surgical techniques, the long-term survival outcome

remains unsatisfactory due to the high rates of tumor recurrence

and metastasis (1, 2). Therefore, specific biomarkers and molecular

targets have important clinical significance for early diagnosis and

targeted therapies of HCCs. Glypican-3 (GPC3) is an oncofetal

glycoprotein expressed in the fetal liver; however, this protein

expression is negative in healthy adult livers (3). In contrast,

GPC3 is overexpressed in HCCs, which is associated with the

occurrence and poor prognosis of HCC (3). It is reported to be

involved in cellular growth, migration, differentiation and invasion,

indicating its involvement in HCC recurrence and metastasis (4). In

addition, GPC3 plays a vital role as an immunotherapeutic target in

monoclonal antibody-based HCC therapies (5, 6). Therefore, early

identification of GPC3-positive HCC provides excellent clinical

value for therapeutic options and prognosis assessment of HCC.

Both Wnt and hepatocyte growth factor (HGF) signaling have been

reported to promote hepatocarcinogenesis and dissemination of

HCC (6). Moreover, as a co-receptor in Wnt and HGF, GPC3 is

found to promote the progression of tumor and to be associated

with a poor prognosis in HCC (7–9). More specifically, binding to

the cell membrane, GPC3 participates in organ morphogenesis by

regulating cell proliferation through modulation of Wnt signaling.

In addition, it is also involved in migration and motility of HCC

cells through heparan sulfate chain-mediated cooperation with the

HGF/Met pathway (10). In recent years, it has also received a lot of

attention as a new target molecule in immunotherapies. For

example, considering the treatment of patients with advanced

HCC, Shi D et al. (11) published the first phase I trial of chimeric

antigen receptor (CAR)-GPC3 T cells, the results of which

confirmed the initial safety and early signs of anti-tumor activity

of the cells. In another study, as a GPC3-specific antibody, a novel

human monoclonal antibody (32A9) was reported by Liu et al. (10);

the antibody was observed to effectively clear GPC3-positive HCC

cells in vitro and induce HCC xenograft tumor regressions in vivo.

So, compared with conventional therapies, immunotherapies based

on tumor an t i g en - t a r g e t i ng an t i bod i e s a s we l l a s

immunomodulatory antibodies are considered as emerging

approaches in the treatment of HCC (12). Therefore, GPC3 is

potentially considered as an effective biomarker for the selection of

patients in the immunotherapy of HCC. However, the gold

standard of GPC3 evaluation relies on biopsy or surgical

resection, which suffers from being invasive and having

complications, sampling errors, and time lags. Hence, the

development of an accurate non-invasive prediction of GPC3

status is essential and clinically has significant potentials.

Currently, preoperative pathological puncture biopsy can detect

the GPC3 expression status of HCC, but it is invasive and may be

subject to sampling errors (11); the detection rate of serum GPC3 is

limited and lacks satisfactory sensitivity and specificity (6, 11).

Therefore, there is an urgent need to develop an accurate and

non-invasive method for predicting GPC3 expression. Magnetic

resonance imaging (MRI) can be utilized in visualizing a specific
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target or drug delivery carrier accumulation in tumors (13, 14).

Similarly, noninvasive imaging techniques can be used for assessing

GPC3 expression as well. Based on previous studies (15), the GPC3

status of HCC can be predicted through applying imaging features

(i.e., non-peripheral washout, infiltrative appearance, marked

diffusion restriction and iron sparing in solid mass); however,

such qualitative features are prone to be contaminated by

subjectivity and inter-observer bias. Moreover, compared with

qualitative imaging evaluation, radiomics is considered to be a

more reliable and accurate assessment of GPC3 status (16–18).

Nevertheless, due to the complexity of the process, its poor

generalization, and interpretability of the model, its application

still faces multiple challenges (19, 20) in clinical practice, which

necessitates the urgent development of a feasible and quantitative

method capable of predicting the GPC3 status in HCC.

Multiparametric MRI techniques has made the non-invasive

evaluation a reality due to the high soft-tissue resolution,

nonionizing radiation, and a large number of functional imaging

approaches. To date, only a few studies have been carried out on the

relationship between quantitative MRI features and GPC3 status in

HCC. Zhao JT et al. (21), for example, found that lower 75th

percentile apparent diffusion coefficient (ADC) value was an

independent risk factor associated with GPC3-positive HCC;

however, the sensitivity and specificity were unsatisfactory (less

than 70%). Moreover, R2* map has been used to measure the

content of iron in such liver diseases as fibrosis and iron overload

(22, 23). Due to overexpression of transferrin receptor in GPC3-

positive HCC patients, the iron content of the tumor increases (24,

25), making the R2* map potentially an excellent way for evaluating

GPC3 status in HCC. In another study by Chen R et al. (26), R2*

values were observed to be capable of well identifying the status of

GPC3 in HCC, with a sensitivity and specificity of about 85%.

However, to the best of our knowledge, previous studies have

focused merely on MRI techniques, which leaves the question of

whether the combination of multiparametric MRI and clinical

indicators can improve the diagnostic efficacy of predicting GPC3

status in HCC unanswered. Hence, the present study aims at

developing a combined model based on preoperative

multiparametric MRI and clinical indicators for predicting GPC3-

positive HCC.
2 Materials and methods

2.1 Study patients

The present study was approved by the institutional ethics

review board. Moreover, due to the retrospective nature of the

study, the requirement for informed consent was approved for a

waiver. The data were collected from patients at the first people’s

hospital of Zhaoqing (Institution I) and central people’s hospital of

Zhanjiang (Institution II) between 2020 and 2022. The flow chart of

the study is illustrated in Figure 1. The inclusion criteria were as

follows: (1) age ≥ 18 years; (2) single HCC confirmed pathologically;

(3) underwent gadoxetic acid-enhanced MRI within two weeks
frontiersin.org
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before surgery, including diffusion weighted imaging (DWI) and

R2* map; and (4) complete clinical and pathologic data. The

exclusion criteria were as follows: (1) patients receiving alternative

treatments, such as radiofrequency ablation or transcatheter arterial

chemoembolization (TACE) instead of resection surgery (n = 26);

(2) having more than one tumor or satellite nodules (n = 13); (3)

occurrence of macrovascular invasion or extrahepatic spreading

(n = 7); and (4) inadequate image quality for interpretation (n = 2).

Finally, to predict GPC3-positive HCC, 102 patients from

institution I served as the training set for the development of the

models. The predictive performances of the models were evaluated

using a validation set of 56 HCCs from Institution II.
2.2 Clinicopathological analyses

Baseline clinical information, including the patients’

demographics, hepatitis B virus infection, and laboratory

indicators comprised alpha-fetoprotein (AFP), aspartate

aminotransferase , a lanine aminotransferase , glutamyl

transpeptidase, alkaline phosphatase, albumin, total bilirubin,

direct bilirubin, serum creatinine, prothrombin time, neutrophils

to lymphocyte ratio, and platelet to lymphocyte ratio.

The histopathological and immunohistochemical analyses were

carried out by a liver pathologist with ten years of experience who

was not informed of the imaging or clinical outcomes of the study.

Information on GPC-3 expression, as documented by another

radiologist without knowing the patient’s imaging and clinical

data, was retrieved from routine pathological reports as the

reference standard in this study. To accurately evaluate the
Frontiers in Oncology 03
expression of GPC3, we adopted the scoring scale proposed by

Takai et al. (27) which took into account positive cell rate and

staining intensity. Based on this scoring scale, the positive cell rate

was graded from 0 to 3+ as 0 (<5% tumor cells positive), 1+ (5–10%

tumor cells positive), 2+ (10–50% tumor cells positive), and 3+

(>50% tumor cells positive). The staining intensity was classified as

weak, moderate, and strong staining. In the current study, grade 0

positive cell rate with any staining intensity or grade 1+ positive cell

rate with weak staining were regarded as GPC3 negative. Other

histopathologic features, including Edmonson-Steiner grade and

Ki-67 labeling index, were recorded.
2.3 MRI protocol

MRI was performed using a 3.0 T system (SIGNA Premier, GE

Healthcare, Waukesha, WI, USA) equipped with a 32-channel

abdominal coil (GE Healthcare). The protocol was as follows: an

axial breath-hold IDEAL IQ sequence with effective echo time (TE)

of 1.0 ms, repetition time (TR) of 6.5 ms, flip angle of 3°, field of

view (FOV) of 400×400 mm2, bandwidth of 1322 Hz, and slice

thickness of 5mm; an axial breathhold T1-weighted 3D fat

suppressed spoiled gradient-echo sequence with liver acquisition

and volume acceleration and TR of 4.0 ms, TE of 1.5 ms, flip angle

of 12°, FOV of 380×380 mm2, bandwidth of 762 Hz, and slice

thickness of 5 mm; axial T2-weighted fast spin-echo (FSE) sequence

with TR of 4255 ms, TE of 72.5 ms, flip angle of 120°, FOV of

360×360 mm2, bandwidth of 320 Hz, and slice thickness of 5 mm.

Finally, Gadoxetic acid (Primovist; Bayer Schering Pharma, Berlin,

Germany) was injected into the cubital vein at a flow rate of 1.0 ml/s
FIGURE 1

Study flowchart. ADC, apparent diffusion coefficient. R2*, R2-star weighted image.
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and a dose of 0.025 mmol/kg. The T1-weighted 3D fat suppressed

spoiled gradient-echo sequence was repeated after the injection of

intravenous contrast agent.
2.4 Imaging analysis

The qualitative and quantitative MRI features were evaluated by

two abdominal radiologists independently (both having 8 years of

experience in liver imaging) who were blinded to the patients’

clinical information. Discrepancies were resolved by consensus after

re-evaluating the images.

We evaluated the morphological features based on LI-RADS

ver.2018 diagnostic algorithm on the Picture Archiving and

Communication System (PACS), including a) tumor size; b)

tumor margin; c) hemorrhage; d) fat component; e) target

appearance; f) mosaic architecture; g) washout; h) rim arterial

phase hyperenhancement (APHE); i) peritumoral enhancement; j)

intratumoral arteries; k) enhancing capsule; l) peritumoral

hypointensity on hepatobiliary phase (HBP).

R2* value was measured on a GE advantage workstation using

volume viewer software. In order to avoid necrosis, hemorrhage, fat, and

artifacts, the region of interest (ROI) was placed as far as possible in an

area with the obvious enhancement of the lesions. The area of ROI was

about 1.0~1.5 cm2; the lesion was measured three times with the same

ROI, the average amounts of which were subsequently calculated.

Apparent diffusion coefficient (ADC) histogram analyses were

carried out using the LIFEx software (http://www.lifexsoft.org).

Tumor segmentation was performed on the DWI images at 800

s/mm2. The image pre-processing stage included the slice selection

and gray-level normalization. First, ROI was manually drawn by a

radiologist (with 10 years of experience in abdominal imaging) over

the whole lesion contour on all slices. Contours were manually

drawn for the whole lesion on multiple slices of the axial and

multiplanar reconstruction images, with manual adjustments where

the initial segmentation was not satisfactory. Accordingly, the final

3D-segmentated volumes were obtained. Second, gray-level

normalization, which is known to minimize the effects of

brightness and contrast variations on the outcome of histogram

analyses, was conducted by scaling the gray-level values to a

designated range. Finally, the voxel-based histogram data of ADC

were generated for the whole lesion, and the following parameters

were calculated: mean, median, skewness, kurtosis, and the

percentiles of 25th and 75th.

To test the reproducibility of R2* map and ADC histogram

parameters, another reader repeated the measurement of R2* values

and the whole-tumor histogram analysis in a randomly selected

subgroup of 30 study participants.
2.5 Data balancing and construction of
prediction models

The ratio of GPC3-negative HCCs to GPC3-positive HCCs was

1:4.37 (19 GPC3-negative HCCs and 83 GPC3-positive HCCs) in

the training set, revealing a sample imbalance. The synthetic
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to balance the minority class in the training set (28), so that the two

classes of HCCs were 1:1 (83 GPC3-negative HCCs and 83 GPC3-

positive HCCs) in the SMOTE-training set. We developed two

prediction models, including logistic regression (LR) in the training

set and SMOTE-LR model in the SMOTE-training set.

The performance of prediction model was evaluated by

accuracy, sensitivity, specificity, negative-predictive value (NPV),

and positive-predictive value (PPV). The area under the receiver

operator characteristic curve (AUROC) was employed to evaluate

the performance of the GPC3 prediction. The GPC3 predictive

performance of the models was further evaluated using the F1 score

and the area under the precision-recall curve (AUPRC). Calibration

curves were plotted to investigate the model calibration by the

Hosmer-Lemeshow test. Decision curve analysis (DCA) was also

performed to evaluate the clinical utility of nomogram by

quantifying the net benefit under different threshold probabilities.
2.6 Statistical analysis

Statistical analysis was conducted with SPSS 23.0 (SPSS,

Armonk, NY, USA) and R statistical software (version 3.6.1 R,

https://www.r-project.org/). A Student t-test (mean ± standard

deviation) or Wilcoxon rank-sum test (median, P25 ~ P75) was

performed for the continuous variables. The categorical variables

were compared using c2 test. Next, the interclass correlation

coefficient (ICC) of the quantitative data between the two

observers was calculated. To identify the independent predictors

of GPC3 expression, multivariable logistic regression analyses were

performed. All tests were 2-tailed, and P value<0.05 was regarded as

statistically significant.
3 Results

3.1 Clinicopathological features of the
training and validation sets

The subjects included 102 patients from institution I, of whom

83 were diagnosed with GPC3-positive HCCs and 19 negative

HCCs. In addition, 56 of patients were from institution II, 46 and

10 of whom were diagnosed with GPC3-positive and GPC3-

negative, respectively. No significant difference was observed in

the distribution of clinicopathologic characteristics for the training

and the validation sets (Table 1). Based on the results obtained from

the univariable analyses in the training cohort, serum AFP levels >

20 ng/mL was observed to be more frequent in GPC3-positive

HCCs (P = 0.002).
3.2 MRI features of HCCs related to GPC3
in the training set

The univariable analyses of MRI features in the training set

revealed the peritumoral enhancement (c2 = 4.643, P = 0.031) to be
frontiersin.org
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more frequent in GPC3-positive HCCs. Moreover, as can be seen in

Table 2; Figure 2, the R2* value (t = -3.672, P < 0.001), the median (t

= 2.148, P =0.034), and the 75th percentile (t = 3.585, P < 0.001)

ADC values in GPC3-positive HCCs were significantly different

from those of GPC3-negative HCCs. Furthermore, the optimal cut-

off values for the prediction of GPC3-positive HCCs were 38.6 sec-1,

1.20 ×103 mm2/s, and 1.48 ×103 mm2/s for R2*, median and 75th

percentile ADC values, respectively. The inter-observer agreements

were also found to be excellent for all statistically significant MRI
Frontiers in Oncology 05
parameters (ICC = 0.869, 95% CI: 0.700 ~ 0.946 for peritumoral

enhancement, ICC = 0.878, 95% CI: 0.717 ~ 0.950 for median ADC

values, ICC = 0.882, 95% CI: 0.726 ~ 0.952 for 75th percentile ADC

values, and ICC = 0.858, 95% CI: 0.731 ~ 0.916 for R2* values).

With regards to the multivariable analyses, serum AFP levels of

> 20 ng/mL (OR = 14.686 [95% CI: 1.829 ~ 117.906], P = 0.011),

R2* value ≥ 38.6 sec-1 (OR = 13.337 [95% CI: 2.665 ~ 66.751], P =

0.002) and 75th percentile ADC value < 1.48 ×103 mm2/s (OR =

4.900 [95% CI: 1.114 ~ 21.544], P = 0.035) were found to be
TABLE 1 Baseline clinical characteristics of the training and validation sets.

Characteristics

Training set (n = 102)
Validation set (n =

56)
pInterTotal (n = 102) GPC3-negative (n =

19)
GPC3-positive (n =

83)
pIntra

Age (years) 55 (50 ~ 66) 56 (50 ~ 66) 58 (51 ~ 68) 0.747 52 (45 ~ 63) 0.285

Sex (male) 93 (91.2) 18 (94.7) 75 (90.4) 0.544 53 (94.6) 0.619

HBsAg 0.814 0.096

Negative 18 (17.6) 3 (15.8) 15 (18.1) 11 (19.6)

Positive 84 (82.4) 16 (84.2) 68 (81.9) 45 (80.4)

ALT (U/L) 34.00 (25.50 ~ 55.25) 41.60 (27.50 ~ 60.00) 34.50 (20.25 ~ 62.00) 0.486 31.50 (20.00 ~ 54.00) 0.693

AST (U/L) 42.00 (26.00 ~ 48.25) 41.50 (31.25 ~ 49.00) 41.00 (24.00 ~ 48.00) 0.522 41.50 (23.00 ~ 55.25) 0.936

GGT (U/L) 53.00 (37.50 ~
109.75)

85.00 (47.00 ~ 151.50) 54.00 (39.00 ~ 139.50) 0.249 53.50 (36.75 ~ 120.25) 0.853

ALP (U/L) 83.00 (68.00 ~
104.00)

87.00 (63.00 ~ 99.50) 83.00 (69.00 ~ 113.00) 0.747 87.00 (69.50 ~ 108.25) 0.457

ALB (g/L) 39.80 (36.58 ~ 42.75) 38.70 (36.70 ~ 41.80) 40.00 (36.50 ~ 43.20) 0.283 38.50 (35.70 ~ 40.70) 0.102

TBIL (µmol/L) 14.82 (11.34 ~ 18.56) 12.59 (9.30 ~ 18.59) 14.84 (11.45 ~ 18.55) 0.437 14.30 (10.60 ~ 17.78) 0.685

DBIL (µmol/L) 4.56 (2.81 ~ 6.41) 5.00 (2.50 ~ 7.28) 4.50 (2.87 ~ 6.57) 0.949 3.35 (2.40 ~ 5.08) 0.057

SCr (U/L) 75.00 (67.00 ~ 86.85) 75.00 (69.00 ~ 87.00) 74.50 (66.70 ~ 80.10) 0.539 76.00 (68.28 ~ 87.30) 0.648

PT (s) 11.80 (11.50 ~ 12.60) 12.30 (11.70 ~ 12.60) 11.80 (11.30 ~ 12.30) 0.106 11.95 (11.40 ~ 12.58) 0.956

NLR 2.47 (1.86 ~ 3.42) 1.85 (1.15 ~ 2.70) 2.05 (1.57 ~ 3.24) 0.197 2.02 (1.59 ~ 3.62) 0.603

PLR 109.94 (71.15 ~
149.87)

109.15 (62.37 ~ 153.08) 110.73 (72.91 ~ 149.61) 0.901 105.87 (73.30 ~ 166.82) 0.965

AFP (ng/mL) 0.002* 0.583

≤20 48 (47.1) 16 (84.2) 32 (38.6) 47 (83.9)

>20 54 (52.9) 3 (15.8) 51 (61.4) 9 (16.1)

Edmondson-Steiner
grade

0.920 0.394

I-II 60 (58.8) 11 (57.9) 49 (59.0) 29 (51.8)

III-IV 42 (41.2) 8 (42.1) 34 (41.0) 27 (48.2)

Ki-67 labeling index 0.312 0.182

≤15% 38 (37.3) 9 (47.4) 29 (34.9) 15 (26.8)

>15% 64 (62.7) 10 (52.6) 54 (65.1) 41 (73.2)
frontie
Continuous variables are presented as median (inter-quartile range, IQR). The categorical variables are presented as numbers (percentages). Using univariable association analyses, PIntra is the
result of univariate analyses between GPC3-negative and GPC3-positive groups. It also represents whether a significant difference exists between the training and validation datasets.
GPC3, glypican-3; HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; ALP, alkaline phosphatase; ALB, albumin;
TBIL, total bilirubin; DBIL, direct bilirubin; SCr, serum creatinine; PT, prothrombin time; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; AFP, alpha-fetoprotein.
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independent significant variables associated with GPC3-positive

HCCs (Table 3; Figure 3). Furthermore, the significance level of

Hosmer-Lemeshow test was obtained to be 0.117, suggesting an

acceptable goodness-of-fit for the model.
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3.3 Performance of the prediction models

Due to the high proportion of GPC3-positive HCCs, we

observed high sensitivity (0.831) and PPV (0.932) but obviously
TABLE 2 Comparison of MRI features between GPC3-negative and GPC3-positive HCCs in training set.

Features GPC3-negative (n = 19) GPC3-positive (n = 83) p value

Tumor size 3.6 ± 1.5 4.4 ± 2.1 0.120

Non-smooth tumor margin 12 (63.2) 61 (73.5) 0.368

Hemorrhage 5 (26.3) 25 (30.1) 0.743

Fat component 6 (31.6) 17 (20.5) 0.296

Target appearance 5 (26.3) 22 (26.5) 0.986

Mosaic architecture 4 (21.0) 23 (27.7) 0.622

Non-peripheral washout 13 (68.4) 61 (73.5) 0.655

Rim APHE 7 (36.8) 45 (54.2) 0.172

Peritumoral enhancement 4 (21.1) 40 (48.2) 0.031*

Intratumoral arteries 10 (52.6) 48 (57.8) 0.680

Enhancing capsule 17 (89.5) 59 (71.7) 0.097

Peritumoral hypointensity on HBP 4 (21.1) 36 (43.4) 0.072

R2* (sec-1) 34.48 ± 11.20 46.29 ± 12.94 <0.001*

ADC, mean (×103 mm2/s) 1.19 ± 0.24 1.23 ± 0.19 0.438

ADC, median (×103 mm2/s) 1.32 ± 0.18 1.22 ± 0.19 0.034*

ADC, skewness (×103 mm2/s) 0.37 (-0.02 ~ 0.51) 0.28 (0.02 ~ 0.56) 0.935

ADC, kurtosis (×103 mm2/s) 1.22 (0.45 ~ 2.34) 1.35 (0.34 ~ 2.73) 0.689

ADC, 25th percentile (×103 mm2/s) 1.01 ± 0.22 1.02 ± 0.23 0.898

ADC, 75th percentile (×103 mm2/s) 1.52 ± 0.26 1.33 ± 0.20 <0.001*
fro
*p<0.05. Except where indicated, data are numbers of patients, with percentages in parentheses.
HCC, hepatocellular carcinoma; GPC3, glypican-3; APHE, arterial phase hyperenhancement; HBP, hepatobiliary phase; ADC, apparent diffusion coefficient.
B CA

FIGURE 2

The box-and-whisker plots show the comparison of R2* value (A), median (B) and 75th percentile ADC (C) values between GPC3-negative and
GPC3-positive groups. ADC, apparent diffusion coefficient; GPC3, glypican-3.
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low specificity (0.737) and NPV (0.500) of the LR model in training

set. In contrast, although the sensitivity (0.807) and PPV (0.905) of

SMOTE-LR model in training set declined, the specificity (0.915)

and NPV (0.826) improved greatly (Table 4).

After omitting the synthetic samples in the SMOTE-training

set, the AUC of the SMOTE-LR model was 0.909 (95% confidence

interval: 0.765 ~ 0.984). Moreover, the accuracy, sensitivity,

specificity, PPV and NPV were found to be 0.837, 0.807, 0.895,

0.869 and 0.615, respectively. Furthermore, the precision-recall

analyses further revealed the AUPRC of 0.963 and F1 score of

0.899 for the SMOTE-LR model. On the externally validated

dataset, these measures were 0.829 (95% CI: 0.765 ~ 0.925), 0.821,

0.848, 0.700, 0.817, 0.500, 0.916 and 0.832, respectively.

Based on SMOTE-LR model, we construct the nomogram. As

can be observed in Figure 4, the nomogram and the decision curves

confirm the substantial clinical benefits of the prediction model in

predicting GPC3-positive HCC. Moreover, the calibration curves

demonstrate a good agreement between the predicted and observed

probabilities of GPC3-positive HCC for both the training (P=0.342)

and validation (P=0.101) datasets (Figure 5).
4 Discussion

We developed and validated a noninvasive approach to predict

GPC3 expression based on serum AFP levels, R2* and 75th

percentile ADC values. With regards to the external validation

set, a good diagnostic performance and calibration of GPC3

expression was observed for the prediction model. However, the

lower NPV results in the training and validation sets may be partly

attributed to the low prevalence of the GPC3-negative HCCs.

Nevertheless, the proposed nomogram model was remarkably

effective in predicting GPC3 expression.

Previous studies have shown that GPC3 is actively involved in

the regulation of HCC tumor growth, and positive expression of

GPC3 is associated with poor clinical prognosis in HCC patients.

Currently, novel treatments of HCC targeting GPC3 are explored

and assessed in in vitro and in vivo experiments and clinical trials.

Such treatments include CAR T cell therapy (29), immunotoxin

therapy, increased antitumor activities of glypican-3-specific
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chimeric antigen receptor-modified T cells by coexpression of a

soluble PD1–CH3 fusion protein (30), and GPC3-derived peptide

vaccines (31). Therefore, preoperative, noninvasive and precise

evaluation of GPC3 expression in HCC is of high significance. In

a study by Chen R et al. (26), R2* was shown to provide excellent

differentiation between tumors with positive and those with

negative GPC3 expression. However, the study was limited from a

number of aspects including its small sample size, being single-

center, not developing a prediction model and not performing

external validation. In addition, some studies have achieved

satisfactory results in predicting GPC3 expression in HCC by

establishing models using histogram analysis (21) or radiomics

(17, 18). However, challenges such as obscure algorithms and

complex operations are its main drawbacks in clinical practice.

Besides, these single-center studies did not have independent

external validation datasets, and the generalizability of the results

has not been assessed. That is to say, external test sets are considered

essential if the clinical translation of such models is to be

guaranteed. Whereas in the present study, good robustness was

evaluated by applying the nomogram model on the external

validation dataset acquired with different MRI scanners and

imaging protocols. Chen Y et al. (15) also developed a nomogram

model based on serum AFP and five MRI features; the model was

validated in an external dataset. However, all five MRI features were

qualitative. The PPV and NPV of the model were relatively low,

0.851 and 0.524 in the training set and 0.794 and 0.400 in the

external validation set. Accordingly, the PPV and NPV of these

structural radiological features remained controversial. However,

the PPV and NPV obtained by constructing the model using multi-

parameter quantitative MRI features were 0.869 and 0.615 in the

training set and 0.817 and 0.500 in the external validation set.

Moreover, the inter-observer agreements were observed to be

excellent for the quantitative MRI parameters (ICC = 0.858, 95%

CI: 0.731 ~ 0.916 for R2* values, and ICC = 0.882, 95% CI: 0.726 ~

0.952 for 75th percentile ADC values). Therefore, the model

proposed in this study is more accurate and reliable due to its

high reproducibility.

According to the obtained results of the present study, the

serum AFP levels of > 20 ng/mL, R2* value ≥ 38.6 sec-1 and 75th

percentile ADC value < 1.48 ×103 mm2/s were significantly
TABLE 3 Univariable and multivariable logistic regression of clinical and MRI features for GPC3-positive HCCs.

Characteristics
Univariable Multivariable

OR (95% CI) p value OR (95% CI) p value

AFP > 20 ng/mL 8.333 (2.247 ~ 30.901) 0.002* 14.686 (1.829 ~ 117.906) 0.011*

Enhancing capsule 0.289 (0.062 ~ 1.349) 0.114

Peritumoral enhancement 3.488 (1.068 ~ 11.398) 0.039*

Peritumoral hypointensity on HBP 2.872 (0.878 ~ 9.397) 0.081

R2* ≥ 38.6 sec-1 7.764 (2.504 ~ 24.069) <0.001* 13.337 (2.665 ~ 66.751) 0.002*

ADC, median < 1.20 ×103 mm2/s 4.031 (1.234 ~ 13.172) 0.021*

ADC, 75th percentile < 1.48 ×103 mm2/s 6.777 (2.309 ~ 19.891) <0.001* 4.900 (1.114 ~ 21.544) 0.035*
fro
*p<0.05. HCC, hepatocellular carcinoma; GPC3, glypican-3; OR, odds ratio; CI, confident interval; AFP, alpha-fetoprotein; HBP, hepatobiliary phase; ADC, apparent diffusion coefficient.
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FIGURE 3

A 49-year-old male with GPC3-positive HCC. A mass (arrow) was located in the hepatic segment V with subtly hyperintense in the R2* map (A). R2*
value of the tumor was 55.73 sec-1. The tumor was segmented on ADC map and the corresponding volume-rendering image (B). Based on the
corresponding histogram (C) of the whole-tumor ADC map, the lower ADC values were the more frequently seen ones. 75th percentile ADC value of the
tumor was 1.276×103 mm2/s. A 67-year-old male with GPC3-negative HCC. A mass (arrow) was located in the hepatic segment VII with hypointense in
the R2* map (D). R2* value of the tumor was 24.38 sec-1. The tumor was segmented on ADC map and the corresponding volume-rendering image
(E). Based on the corresponding histogram (F) of the whole-tumor ADC map, the higher ADC values were the more frequently seen ones. 75th

percentile ADC value of the tumor was 1.496×103 mm2/s. GPC3, glypican-3; HCC, hepatocellular carcinoma; ADC, apparent diffusion coefficient.
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associated with positive GPC3 expression. In one study, a GPC3-

based immunomagnetic fluorescent system (C6/MMSN-GPC3)

was proposed by Chu et al. (32). The system was capable of

showing the high-specific isolation and instant observation of

HCC circulating tumor cells. However, the proposed model is

advantageous because GPC3 expression in HCC tumor tissue is

directly assessed by MRI exams without the need for peripheral

blood and radiation caused by CT scans.

R2* value was also found to be an independent risk factor for

GPC3 expression in this study. Currently, the measurement of R2*

has been widely used to quantify iron content in patients with liver

cirrhosis (33). Chen et al. (26), for example, reported that the

significantly higher R2* values in patients with GPC3-positive HCC

than those with GPC3-negative HCC is an indication of the increase

of the iron content in association with GPC3-positive expression.

The finding is consistent with the results obtained in the present

study. This can be argued to be due to the overexpression of

transferrin receptors on the surface of HCC cells resulting in iron

deposition (7, 34). In addition, GPC3 expression was found to be

associated with angiogenesis, which tends to occur in HCC-

associated microhemorrhages (7, 35). It can in turn contain

paramagnetic substances, which can lead to the local magnetic

field inhomogeneity resulting in elevated R2*.

What is more, tumor heterogeneity is considered to be an

important malignancy feature of HCC. The histogram of the

whole tumor volume provides data on multiple parameters. Such
Frontiers in Oncology 09
data include all voxel distributions in different dimensions,

reflecting the heterogeneity of the whole tumor, and are more

reliable than the mean value (36, 37). Our study demonstrated that

the most commonly used mean ADC value was not significantly

different, while median ADC and 75th percentile ADC values were

effective predictors of GPC3-positive HCC, of which the 75th

percentile ADC value was found to be an independent predictive

factor. The 75th percentile ADC value is an ADC value below the

75% region, which indicates that 25% of the maximum value is

excluded. This may represent areas of necrosis within the tumor.

Therefore, areas of weaker tumor activity may be excluded,

resulting in the better representation of the ADC data. In

addition, elevated serum AFP levels were observed to be

positively correlated with the poor differentiation, microvascular

invasion and tumor recurrence (38, 39), which is consistent with the

biological behavior of GPC3-positive HCCs. These factors were all

considered in the present nomogram model which led to the higher

reliability and clinical feasibility in the prediction of GPC3-

positive HCC.

In addition to quantitative MRI features, the differential ability

of qualitative MRI features of GPC3-positive HCCs were also

comprehensively analyzed in the present study. Our results

showed a significant difference in peritumoral enhancement in

the GPC3-positive group compared to the GPC3-negative group,

while the enhancing capsule, and peritumoral hypointensity on

HBP were marginally significant. Peritumoral enhancement may
TABLE 4 Performance of GPC3-positive HCCs prediction models in the training set.

Models ACC SEN SPE PPV NPV AUROC AUPRC F1 Score

AFP > 20 ng/mL Training 0.657 0.614 0.842 0.944 0.333 0.728 0.919 0.744

Internal test 0.679 0.696 0.600 0.889 0.300 0.648 0.887 0.781

External test 0.678 0.717 0.500 0.868 0.278 0.609 0.865 0.785

R2* > 38.6 sec-1 Training 0.794 0.807 0.737 0.931 0.467 0.772 0.889 0.864

Internal test 0.768 0.783 0.700 0.923 0.412 0.741 0.863 0.847

External test 0.678 0.696 0.600 0.889 0.300 0.648 0.846 0.781

ADC, 75th percentile < 1.48 ×103 mm2/s Training 0.745 0.735 0.790 0.938 0.405 0.762 0.922 0.824

Internal test 0.732 0.718 0.800 0.943 0.381 0.759 0.901 0.815

External test 0.720 0.701 0.760 0.921 0.389 0.730 0.883 0.796

LR Training 0.814 0.831 0.737 0.932 0.500 0.851 0.943 0.878

Internal test 0.821 0.848 0.700 0.928 0.500 0.834 0.923 0.886

External test 0.804 0.827 0.700 0.921 0.467 0.769 0.905 0.871

SMOTE-LR Training 0.861 0.807 0.915 0.905 0.826 0.911 0.973 0.853

Internal test 0.847 0.796 0.887 0.864 0.801 0.887 0.954 0.829

External test 0.832 0.765 0.851 0.832 0.787 0.843 0.925 0.797

SMOTE-LR* Training 0.837 0.817 0.895 0.869 0.615 0.909 0.963 0.842

Internal test 0.834 0.824 0.854 0.847 0.584 0.854 0.937 0.835

External test 0.821 0.848 0.700 0.817 0.500 0.829 0.916 0.832
fr
* represents the SMOTE-LR model after omitting the synthetic samples in the SMOTE-training set.
HCC, hepatocellular carcinoma; GPC3, glypican-3; AFP, alpha-fetoprotein; ADC, apparent diffusion coefficient; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value;
NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.
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represents compensatory hepatic arterial hyperperfusion

surrounding the tumor due to portal branch microthrombosis

(40). The absence of enhancing capsule and peritumoral

hypointensity on HBP suggested the possibility of breakdown of

the tumor margin barrier, which is considered to be a risk factor for

invasive and metastasis of HCC (41, 42). Previous studies have

demonstrated that the above three features correlated with

infiltrative appearance. The infiltrative appearance may represent

true infiltration of tumor cells into the liver parenchyma, which

commonly indicates malignancy with a permeative growth pattern

and is associated with macrovascular invasion (43), tumor

metastasis and a short survival time (44).
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However, it is worth noting that the present study has potential

limitations. First, as a retrospective study, only solitary HCCs were

selected, which may suggest certain bias in the selection process.

The extrapolation of the proposed prediction model to multiple

tumors is also hindered by the design of the study. Thus, future

studies are encouraged to explore the correlation between MRI

features and GPC3 expression in multiple tumors. Second, the small

sample size may affect the robustness of the model. Therefore,

future studies are suggested to further optimize the prediction

model through performing large-scale and multicenter research

works. Third, the iron content of the HCC specimens failed to be

quantitatively analyzed. Nevertheless, based on the literature, R2*
B

A

FIGURE 4

The nomogram and decision curve to predict GPC3-positive HCC. The nomogram (A) was developed based on serum AFP levels, 75th percentile
ADC value and R2* value. Predictor points are found on an uppermost point scale that corresponds to each variable. On the bottom scale, points for
all variables are added and translated into the probability of GPC3-positive HCC. Decision curve (B) analysis of the prediction model for external
validation set. The X-axis is the probability threshold. Y-axis represents the net benefit, which is calculated by gaining the true positives and deleting
the false ones. GPC3, glypican-3; HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; ADC, apparent diffusion coefficient.
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value yield from IDEAL IQ sequence in MRI was proven to be able

to accurately quantify the iron deposition in the liver diseases (22,

45, 46). Therefore, the R2* value is expected to be a reliable factor in

evaluating the iron content of the HCC in this study. Finally, three-

dimension manual ROI segmentation is time- and labor-

consuming; therefore, it is essential to develop a user-friendly tool

for automatic segmentation to encourage the use of radiomics in a

daily radiology reading room.
5 Conclusions

An easy-to-use nomogram model was developed and validated

for patients with single HCC. The proposed model is capable of

accurately predicting GPC3-positive HCC preoperatively based on

multiparametric MRI and serum AFP levels. The prediction model

is also expected to help identify potential responders to GPC3-
Frontiers in Oncology 11
targeted immunotherapies and guide personalized treatment

decision-making.
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