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Pancreatic ductal adenocarcinoma (PDAC) is the most common exocrine tumor of

the pancreas characterized by late diagnosis, adverse overall 5-year survival, a higher

propensity for metastatic disease, and lack of efficacy of systemic therapy options.

These adverse outcomes can be partly attributed to complex tumor

microenvironment (TME). Over the past decade, immunotherapy has revolutionized

the management of certain cancers; thus far, the immunologically ‘non-inflamed’

tumor microenvironment in PDACs has proven to be challenging. Indolamine 2,3-

dioxygenase 1 (IDO1) is the rate-limiting enzyme in the catabolic pathway of L-

Tryptophan, an essential amino acid, that gives rise to the immunosuppressive

metabolite Kynurenine. IDO1, Indolamine 2,3-dioxygenase 2 (IDO2), and

Tryptophan 2,3-dioxygenase (TDO) are the key enzymes in the tryptophan catabolic

pathway but we focus on the role of the predominant enzyme form IDO1 in this

review. Nicotinamide phosphoribosyl transferase (iNAMPT) regulates the intracellular

concentration of NAD and is upregulated in the tumor. In light of the potential role of

IDO1 as a driver of hostile TME in PDAC and NAD+ as a key coenzyme in anti-tumor

immune response, this review urges focus on extensive research and initiation of

clinical trials using IDO1 and NAMPT inhibitors in pancreatic cancer in the future.
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Introduction

Pancreatic tumors, specifically pancreatic ductal adenocarcinoma (PDAC) composing 90%

of the exocrine tumors of the pancreas are largely known for diagnosis at later stages, poor overall

5-year survival, a higher propensity for metastatic disease, and poor response to immunotherapy.

Amultitude of factors is responsible for the grim profile of the disease. As research is underway to

uncover the molecular blueprint of PDAC and its unique tumor microenvironment (TME), we

intend to review the significant, yet underappreciated intracellular metabolic contribution of

tumor cells and TME in rendering PDAC an immune-privileged malignancy (1).
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The immune microenvironment of
Pancreatic cancer

The tumor microenvironment (TME) influences the malignant

process of pancreatic ductal adenocarcinoma (PDAC) more than any

other cancer type. Pancreatic TME (2) constitutes a complex

interaction between tumor cells, stromal cells such as cancer-

associated fibroblasts (CAFs), endothelial cells, perivascular cells,

immune cells such as tumor-infiltrating lymphocytes (TILs), tumor-

associated macrophages (TAMs), and extracellular matrix elements

such as collagen (3, 4), hyaluronic acid (5, 6), fibronectin (7–9), laminin

(10–14), and sulfated glycosaminoglycans (15) in an acidic pH (16),

resulting in a heavy stromal desmoplastic reaction. In terms of multi-

omic approaches, genomic and transcriptomic advances have

unearthed the molecular biology of pancreatic cancer to an extent.

However, the role of immunotherapy is yet a challenging subject in

PDAC. To help uncover newer biomarkers and address the unmet

need to comprehend the immunologically ‘non-inflamed’ tumor

microenvironment, we require a better understanding of the tumor

proteome and metabolome, and the crosstalk between T cells and

intermediary molecules that are crucial in signaling pathways and gene

regulation (17). The metabolome is the unexcavated effector that

executes immune-mediated signals within a malignant cell. From

that perspective, a unique ketone Kynurenine has stood out owing to

its novel immunoregulatory properties. Indolamine 2,3-dioxygenase 1

(IDO1) is a rate-limiting enzyme in the catabolic pathway of L-

tryptophan, an essential amino acid, that gives rise to the

immunosuppressive metabolite L-kynurenine. IDO1, Indolamine 2,3-

dioxygenase 2 (IDO2), and Tryptophan 2,3-dioxygenase (TDO) are the

key enzymes in the pathway, but we focus on the predominant enzyme

form IDO1 in this review. The role of Kynurenine in immune privilege

and its blood levels in cancer has been studied in cancers of the colon,

stomach, breast, and prostate (18). However, its role in the immune

microenvironment of Pancreatic cancer is yet to be investigated in-

depth. Here we intend to focus solely on the function and duality of

immune cells within the pancreatic ‘cold’ TME from the perspective of

tumor-metabolomic crosstalk.
The lymphoid and myeloid
compartments hold the recipe for an
indifferent TME

Pancreatic TME houses a heterogeneous population of immune

cells skewed to immune-suppressive functionality than with tumor-

inhibiting characteristics. This is initially driven by the unique

genomic alterations observed in PDAC.
The interplay of immune cell regulation,
TME behavior, and cellular energetics

A harsh TME studded with immunosuppressive or pro-tumor

myeloid-derived suppressor cells (MDSCs) and tumor-associated
Frontiers in Oncology 02
macrophages (TAMs) drives the PDAC cells into extensive

metabolic rewiring (19) involving central carbon metabolism,

glucose, and glutamine utilization, but generating lesser ATP. This

rewiring is predominantly driven by oncogenic KRAS variants.

Eventually, the tumor cells and T-cells in the TME compete for

glucose as activation of T-cells requires upregulation of GLUT-1

glucose transporter via TCR and Akt activation. As the supply of

glucose is diminished along with glutamine and arginine, the T-cells

lose functional capacity (20). With an active IDO-1 enzyme breaking

down tryptophan to release immunosuppressive metabolites, the

immune cells face an added disadvantage. Furthermore, the IDO1-

Kynurenine pathway is a de novo source of nicotinamide dinucleotide

(NAD) which is metabolized to adenosine which in turn binds to T

cell adenosine receptor A2R that inhibits effector T cells and

stimulates Tregs. Hypoxic TMEs are under higher influence of this

adenosinergic axis activation and immunosuppression. The

immunosuppressive-hypoxic environment is further stiffened by

intracellular nicotinamide phosphoribosyl transferase (iNAMPT), a

crucial enzyme in NAD biosynthesis, via the NAD/SIRT1/HIF-1a
axis acts on the mobilization of MDSCs by inhibiting CXCR4

transcription (21). The energetics within the cells define tumor

immune escape, the potential for invasiveness, and metastasis.

Increased levels of kynurenine prevent the proliferation of NK cells

and T cells by interactions with the aryl hydrocarbon (AhR) receptor.

The general control non-deprepressible-2 (GCN2) and mammalian

target of rapamycin (mTOR) kinases are also believed to be involved in

this effect. Kynurenine via the AhR and FoxP3 transcription factor also

urges the differentiation of naïve CD4+ T-cells to T- regulatory cells

that are immunosuppressive by nature (22). Tryptophan metabolism

birthing kynurenine is a pathway that is a proven generator of one-

carbon units for the pancreatic stellate cells (PSCs), a precursor of CAFs

to helpmaintain tumor growth by purine nucleotide synthesis (23). It is

unknown if the primary aim of the pathway is providing immune

privilege to tissues or generating one-carbon units and maintaining

redox balance in the tissue.

There is a notable differential regulation of TH1/TH2 by IDO.

Stimulation of IDO activity by positive signals or lack of inhibitory

molecules such as DNAX-activation protein 12 (DAP12) appears to

decrease TH1 cellular responses. Further, 3-hydroxyanthranilic (3-

HAA) and quinolinic acid metabolites of kynurenine have been

found to induce selective apoptosis of murine TH1 cells but not of

TH2 cells. It could be a specific negative feedback mechanism for

TH1 cells (24). Yet, induction of apoptosis of macrophages required

>10-fold concentrations of 3-HAA in a study by Fallarino F et al. In

addition, this apoptosis is surprisingly not mediated by Fas/Fas

ligand and cytochrome c (25). TH17 cells (CD4
+IL-17+) are effector

T cells found in the pancreatic TME. Along with IL-17A, they are

involved in immune regulation. However, He S et al. remarks “the

mechanism for regulating the balance of TH17/Treg cells in the

tumor microenvironment needs to be further elucidated” (26). We

now recognize that anthranilic acid (AA) and 3-hydroxyanthranilic

acid (3-HAA) can abolish the function of TH17 cells in a dose-

dependent manner (27). The anti-tumor function of TFH cells

(Follicular helper T cells) in PDAC is gridlocked by the PD-L1/

PD-1 signaling pathway (28). B cells have been implicated in

immune tolerance, but the exact mechanism is still under
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investigation. Regulatory B cells (iBregs) have been found to

suppress immune responses via IL-10 which is the cytokine

responsible for converting naïve CD4+ T cells to CD4+ CD25+

Foxp3+ Tregs that produced TGF-b. Bregs have also been found to

cause T cell apoptosis by cell-to-cell physical contact. Moreover, a

CTLA-4 dependent TGFb/IDO axis in B cells can induce IDO1 and

convert them to induced iBregs that could create Tregs, Type 1 T-

regulatory cell (Tr1), and TH3 cells which in turn suppress TH1 cell

induction (29, 30).

Kynurenine pathway gene expression and immune cell

inhibitory checkpoints (T cell signatures) are inversely correlated.

Higher Kynurenine and kynurenic acid levels were also found to

cause anergy phenotype and CD4+ T-cell exhaustion (Figures 1A,

B). Fundamentally, kynurenine has an unmistakable role in cancer

immune escape, making IDO1 a potential candidate to assist

immunotherapy (31).
A quest beyond cellular elements to
the realm of the metabolome

Tumor cell machinery utilizing Kynurenine
for Immune suppression in the pancreas

In the normal state, mature dendritic cells in lymphoid organs,

the vagina, and placental and lung endothelial cells express the

enzyme IDO (32). The cellular localization of the enzyme is cytosol

(33). Evolutionarily, induction of IDO and generation of

kynurenine metabolites have been proposed to be for two

reasons: a genome-immune protective mechanism during the

phagocyte-induced respiratory burst that generates reactive

oxygen species (ROS) including superoxide anion. This event

induces the production of IDO enzyme that uses the superoxide

anion to break the pyrrole ring of tryptophan, but few anions escape

to enter the nucleus. To thwart pathogen invasion, ROS generation

inadvertently causes DNA strand damage, thus inducing PARP
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molecules that are necessary for DNA damage repair (DDR). This

process drains the NAD+ pool which is in turn replenished by the

IDO-Kynurenine-NAD+ pathway (34). The second evolutionary

advantage is that Kynurenine and its metabolites play a significant

role in immune privilege. IDO bridges the innate and adaptive

immune systems. The adenosine/purinergic pathway, cytotoxic T

lymphocyte antigen-4 (CTLA-4) and programmed cell death-1

(PD-L1) aid Kynurenine and metabolites to induce immune

privilege in certain sites. This is attained by a) tryptophan

exhaustion via induction of GCN2 and suppression of mTOR1

pathways that lead to T cell inhibition, b) induction of TH17 cells

and transdifferentiation by dendritic cells and macrophages which

are induced by the effect of Kynurenine on aryl hydrocarbon

receptor (AhR), c) using PTEN protein to aid in the

differentiation of CD4 T cells into Treg cells, d) inhibition of IL-2

that impeded CD4 T cell survival (35). However, the intended

metabolic effect is sabotaged when the scenario changes from a

healthy state to cancer.

In KPCmice bearing PDAC, restriction of serine has been found to

be of no effect. This is postulated to be due to a) increased synthesis of

serine de novo, or b) due to tryptophan catabolism offering one-carbon

units. The latter is supported by the finding that interstitial fluid

analysis shows severe tryptophan depletion (36, 37). Immune cells (T

cells and macrophages) are sources of the cytokine IFN-g (38) which is
the sole inducer of the IDO enzyme. As immune cell infiltration in

PDAC increases (39), it also increases tryptophan metabolism. In the

catabolic pathway, L-tryptophan is initially converted to N-formyl-l-

kynurenine by the rate-limiting enzymes. This metabolite is further

converted to L-kynurenine which undergoes further downstream

catabolism to form xanthurenate, glutaryl-CoA, and picolinate apart

from generation of NAD+. Immunomodulation of the TME is however

brought about by the intermediary metabolites and compounds

formed during Tryptophan catabolism, as elaborated early in the

review (Figure 2) (40). Whether the immunosuppressive milieu that

follows this pathway activation is the intended effect or the bystander

effect, is a crucial and intriguing argument that we are yet to unravel.
A

B

FIGURE 1

The Tumor microenvironment metabolome is key in PDAC immune modulation. (A) Cellular components of the Tumor Microenvironment (TME)
that primarily influence and contribute to ‘non-inflamed’ tumor architecture. (B) Role of Tryptophan and IDO1 enzyme in immune inhibition of PDAC
targeting Immune cell repertoire.
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Hypoxia and Kynurenine-dependent
immune modulation conundrum in PDAC

Hypoxia as an independent factor of tumor aggressiveness is

pronounced in Pancreatic cancer when compared to other tumor

types. An elevated hypoxia-inducible factor-1 (HIF-1) is an

ominous marker for poor prognosis and metastatic events due to

the activation of epithelial to mesenchymal transition (EMT). The

extensive desmoplastic reaction seen in pancreatic tumor tissue is

also directly related to hypoxia (41). Bao B et al. (42) have studied

pancreatic tumor cells to uncover molecular mechanisms of

hypoxia and discovered that hypoxia-induced increased levels of

VEGF, IL-6, and gene expression of cancer stem cell signature genes

Nanog, Oct4, and EZH2 that are implicated in tumor invasiveness

and aggressive biology. In addition, the pancreatospheres showed

increased expression of miR-21 and miR-210. Vieira NF et al. (43)

have shown that tissue expression of the two micro-RNAs

combined with CA 19-9 had a diagnostic accuracy of 100% in

PDAC. The introduction of an inhibitory molecule, a curcumin-

derived novel analogue (CDF) revealed a reversal of the hypoxia-

induced molecular signature in the tumor cells (42). Intracellular

and tumoral hypoxia instinctively shifts the cellular metabolism

from oxidative phosphorylation (OXPHOS) yielding high ATP to

anaerobic glycolysis with the formation of lactate, bypass of the

tricarboxylic acid cycle, and loss of ATP. Genomic factors such as

KRAS mutations (KRAS/MEK/ERK signaling pathway), AMPK

signaling pathway, Wnt-b catenin pathway, NFAT5, PDK1,

LDHA, and P4HA1 alongside the epigenomic regulators UHRF1/

SIRT4 axis, LSD1, and miR-124 are implicated in shifting the

metabolic balance to an anaerobic glycolytic cellular phenotype

that helps in improved malignant potential. The actions of the

above factors are mediated by the sustenance of HIF-a under a

hypoxic environment leading to the transcription of genes involved

in enhancing tumor invasiveness and spread (44).

Hypoxia (1% O2) in dendritic cells (DC) further leads to the

induction of indolamine 2,3-dioxygenase dependent on the
Frontiers in Oncology 04
adenosine A3 receptor as shown by Xiang Song et al. (45)

Although a stabilized HIF-a inhibits IDO enzyme of the

tryptophan metabolic pathway (46) in glioblastoma cells (47), the

immunosuppressive Kynurenine, and its metabolites have an

independent mechanistic role in the TME of tissues such as

PDAC. This has been proven by a study conducted by Witkiewicz

AK et al. (48) in 36 patients with PDAC and five pancreatic cancer

cell lines. All samples revealed an increased expression of the IDO

enzyme. Functionally active variants of the IDO2 gene were also

detected in patients. This corroborates the significant role of

Kynurenine and its metabolites in immune modulation in the

biology of pancreatic cancer. The kynurenine pathway and

mitochondrial metabolism are related via superoxide generation

and mitochondrial entry of one-carbon units into the TCA cycle via

a-ketoadipate. Though hypoxia and superoxide ions were not

found to induce IDO1 expression, when cell cultures were

transferred from a monolayer to an AI 3D culture, it was found

that the IDO1-dependent kynurenine pathway was dramatically

switched on. Predictably, kynurenine efflux increased and the same

could be abolished by an IDO1 inhibitor and a JAK1 inhibitor (23).

Overall, the contribution of the IDO-Kynurenine-NAD+ pathway

in immune modulation, cell proliferation, and metastatic

promotion is likely undermined in cancer of the pancreas.
Genomic and transcriptomic
influences of IDO-Kyn pathway
in PDAC

Pancreatic cancer, specifically PDAC has variants in key genes

that aid in malignant transformation and metastasis. The most

common genes carrying pathogenic mutations or variations are

KRAS, TP53, SMAD4, and CDKN2A. Even though consistent across

50-90% of samples, we are yet to defeat the outcome using targeted

therapy, except for renewed optimism with KRAS G12C inhibitors.
FIGURE 2

Pathway of Tryptophan catabolism in Humans. Catabolism of L-tryptophan by the human IDO1 enzyme produces L-kynurenine and immunosuppressive
metabolites such as 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid metabolites.
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Lesser common pathogenic variants within the DNA Damage

Repair (DDR) pathway or in the BRCA1 or BRCA2 genes

however respond to platinum-based chemotherapy and Poly

(ADP-ribose) polymerase inhibitors (PARPi) as evidenced by the

POLO trial (19). The extensive effect of KRAS mutations on the

metabolome of PDAC has been discussed earlier (44). Furthermore,

intact p53 was found to mitigate IDO1 expression in lung cancer

thereby preventing metastasis (49) hence loss of function of TP53 is

likely to induce IDO1 expression. Overall, every omic variation

inadvertently affects the tumor metabolome.

The novel genes altered in PDAC have specific functions to

execute in the immunological milieu of the TME. Further, Cullis J

et al. describe the immunologistics of KRAS variations in pancreatic

cancer cell lines. Oncogenic KRAS signaling leads to activation of a

plethora of downstream molecules such as TGF-b, GM-CSF, IL-10,

IL-6, and the ELR+ CXC chemokines CXCL1, CXCL2, CXCL5, and

CXCL8. These independently influence immunomodulation of the

TME by not only influencing recruitment and differentiation of

immune cells but also by inducing immune suppression and

promoting tumor growth (50). KRAS mutations were also found to

downregulate MHC Class I and inhibit immunostimulatory IL-18 to

evade immune cell attacks in cancer cell lines (51). Wild-type TP53

has been shown to increase T cell infiltration in PDAC whereas

mutant TP53 eliminates suppression on IL-6 and induces NF-kB and

TNF-a signaling promoting metastasis. TP53 knockout mice also

showed T cell differentiation into TH17 cells that play a role in

immune privilege as described earlier in this review. Further, p53

influences the PDAC microenvironment through a vast network of

microRNAs, namely miR-34a, miR-21, miR-203, miR-128, miR-192,

miR-200a, miR-200c, miR- miR-29.MDM2 that suppresses action of

TP53 is in turn regulated by miR-29, miR-125a, miR-143, miR-145,

and miR-365. miR-145 andmiR-135 are specifically influence cellular

glycolysis and TCA cycle to promote metastasis and growth of PDAC

cells. Interestingly, gain of function (GOF) mutations in TP53 inhibit

p73 preventing binding of nuclear factor-Y transcription factor (NF-

Y) which increases gene expression of PDGFR-b that is required for

development of the fibrotic PDAC TME (52). SMAD4 is a target of

TGF-b and its loss is observed in more than half of PDAC cases.

Principe DR et al. show that samples with a loss of SMAD4 had lower

T cell infiltrates irrespective of addition of neoadjuvant chemotherapy

and cell culture from human pancreatic cancer cell lines showed a

reduction in IFN-g. SMAD4 loss also impaired function of members

of the CCL/CXCL chemokine family and Interleukin cytokine family.

The role of SMAD4 in modulating the immunogenicity of PDAC and

pivoting the efficacy of immunotherapy is indisputable (53).
Therapeutic potential of metabolome
and clinical trials

Tryptophan and IDO-mediated immunosuppression within

tumor cells and draining lymph nodes place IDO as a potential

target to reverse suppression and augment immune-mediated anti-
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tumor interventions (54–56). Clinical trials have been investigating

IDO1 inhibitors with positive and negative associations as results.

Garber et al. (57) describe the enzyme and its activities in cancer as a

“black box”. It is imperative that we have a better understanding of

enzymology, molecular biology, and TME characteristics to employ

successful IDO1 inhibitors in the clinic. The keyword ‘IDO1’

returns 47 clinical trial results from https://clinicaltrials.gov/.The

list of active, recruiting, enrolling by invitation, and completed trials

(n=25) are listed in Table 1.

Epacadostat is the most investigated IDO1 inhibitor in cancer.

However, there is only one study on metastatic pancreatic cancer

[Epacadostat, Pembrolizumab, and CRS-207, With or Without CY/

GVAX Pancreas in Patients With Metastatic Pancreas Cancer

(NCT03006302)]. As described in this review, IDO inhibitors

may also have to be combined with serine and glycine restriction

to block one-carbon unit generation and reversal of immune

suppression. Inclusion of the molecular profile of tumor cells and

variables influencing TME for example Immunoscore may help

with a better-targeted selection of patients for Randomised

Controlled Trials (RCTs) that are more likely to give results.

Owing to unimpressive Phase III trials of IDO1 inhibitors as

single agents, Shao J et al. described a novel method wherein the

inhibitor was loaded onto hyaluronic acid-modified nanomaterial

graphene oxide (HA-GO) in conjunction with ongoing CAR-T cell

therapy. The authors found that by inhibiting IDO so, CAR-T cells

were more efficacious in vivo and in vitro (58). The safety and

toxicity profile of combinatorial therapies are still being

investigated, but the future is promising.

NAD+ being a crucial coenzyme cofactor generated by the

kynurenine pathway, it is only right to investigate potential

inhibitors. NAMPT regulates intracellular NAD concentration

hence NAMPT inhibitors FK866/APO866, CHS-828, KPT-9274,

and OT-82 are undergoing Phase I/II clinical trials (59–61).
Conclusion

Pancreatic cancer is a poster child for unsuccessful targeted or

immune checkpoint inhibitor therapeutic strategies. Javadrashid D

et al. (62) highlight the challenges and have compiled the myriad

factors influencing pancreatic cancer and the immune

microenvironment. Efforts are to be made to improve survival

outcomes by exploring novel treatment molecules and protocols,

apart from standard of care. This review explores a novel avenue by

highlighting the power of metabolomic influence, specifically the

tryptophan metabolic cascade over the tumor immune

microenvironment of PDAC. The immunosuppression offered by

the downstream actions of IDO1 is credited to the activation of

GCN2, inhibition of mTOR pathways which consequently steer

tryptophan degradation, and Kynurenine pathway metabolites

induced AhR activation (30). It is evident that the effector T

cell repertoire is significantly restrained and incapacitated

by Kynurenine and allied metabolites leading to immune

suppression of the TME. IDO1 and NAMPT inhibitors
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TABLE 1 List of Clinical Trials investigating IDO inhibitors and NAMPT inhibitors.

DRUG CLINICAL
TRIAL ID

PHASE STATUS INDICATION STUDY COHORT AND LOCATION

Epacadostat NCT03516708 Phase I Recruiting Locally
advanced rectal
cancer

39 Participants, Washington University Patients only
Location: United States

NCT03322540 Phase II Completed Lung cancer 154 Participants
Locations: Australia, Canada, Denmark, Estonia, Ireland, Israel, Italy, Japan,
Korea, Republic of, Malaysia, Poland, Russian Federation, Spain,
Switzerland, Turkey, Ukraine, United Kingdom, United States

Epacadostat+
Pembrolizumab

NCT03374488 Phase
III

Completed Urothelial
cancer (UC)

84 Participants
Location: Australia, Canada, Denmark, France, Germany, Hungary, Ireland,
Israel, Italy, Japan, Korea, Republic of, Netherlands, Russian Federation,
Spain, Taiwan, Turkey, United Kingdom, United States

NCT02862457 Phase I Completed Advanced solid
tumors

34 participants
Location not Provided

NCT03322566 Phase II Completed Lung cancer 233 Participants
Location: Australia, Canada, Hungary, Ireland, Israel, Italy, Korea, Republic
of, Mexico, Russian Federation, Spain, Taiwan, Turkey, United Kingdom,
United States

NCT03532295 Phase II Recruiting Recurrent
gliomas

48 Participants
Location: United States

NCT03493945 Phase I/
II

Recruiting Solid tumor 113 Participants
Location: United States

Epacadostat+
Pembrolizumab/
chemotherapy

NCT03328026 Phase I/
II

Recruiting Metastatic or
locally recurrent
breast cancer
patients

36 Participants
Locations: United States

NCT03322384 Phase I/
II

Completed Advanced solid
tumors
lymphoma

20 Participants
Locations: United States

Epacadostat+
Rapamycin

NCT03372239 Phase I Completed Drug safety trial 48 Participants
Locations: Canada

Epacadostat+
INCMGA00012 +
RT + bevacizumab

NCT03852446 Early
phase I

Completed Drug safety trial 56 Participants
Locations: United States

Epacadostat
+M7824 + BN-
Brachyury + ALT-
803 + Epacadostat
(Immunotherapy)

NCT04049669 Phase II Recruiting Progressive
brain tumors or
newly diagnosed
DIPG

140 Participants
Locations: United States

Epacadostat+
INCMGA00012,
Epacadostat 600 mg
BID, SV-BR-1-GM
combination

NCT02073123 Phase I/
II

Completed Advanced or
metastatic
melanoma

132 Participants
Locations: United States

Epacadostate+
Intralesional SD101,
Radiotherapy

NCT01560923 Phase II Completed Refractory
metastatic
prostate cancer

47 Participants
Locations: United States

Indoximod NCT03378310 Phase I Completed Drug safety trial 16 Participants
Locations: United States

NCT03374228 Phase I Completed Drug safety trial 7 Participants
Locations: United Kingdom

NCT03312426 Phase I Completed Drug safety trial 32 Participants
Locations: United States

(Continued)
F
rontiers in Oncology
 06
 frontiersin.org

https://doi.org/10.3389/fonc.2023.1142838
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Anu et al. 10.3389/fonc.2023.1142838
TABLE 1 Continued

DRUG CLINICAL
TRIAL ID

PHASE STATUS INDICATION STUDY COHORT AND LOCATION

Indoximod+
Pembrolizumab/
nivolumab

NCT03362411 Phase I Completed Drug safety trial 40 Participants
Locations: United States

Indoximod+
Temozolomide

NCT03247283 Phase I Completed Cancer 9 Participants
Location: United States

Linorodostat (BMS-
986205,ONO-7701)

NCT03792750 Phase I/
II

Completed Advanced
malignant solid
tumors

12 Participants
Locations: China

NCT03459222 Phase I/
II

Recruiting Advanced
malignant
tumors

225 Participants
Locations: Australia, France, Italy, Spain, Switzerland, United Kingdom,
United States

NCT03519256 Phase II Completed BCG-
unresponsive,
high-risk, non-
muscle invasive
bladder cancer

69 Participant
Locations: Argentina, Australia, Brazil, Canada, Chile, China, France, Hong
Kong, Italy, Mexico, Netherlands, Russian Federation, Spain, Turkey,
United Kingdom, United States

NCT03346837 Phase I Completed Malignancies
multiple

53 Participants
Location: United States

NCT03661320 Phase
III

Recruiting Muscle-invasive
bladder cancer

861 Participants
Locations: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile,
Colombia, Finland, France, Germany, Greece, Israel, Italy, Japan, Korea,
Republic of, Mexico, Netherlands, New Zealand, Norway, Portugal,
Romania, Russian Federation, Singapore, Spain, Taiwan, United Kingdom,
United States

Linorodostat (BMS-
986205, ONO-7701)
+Nivolumab

NCT04047706 Phase I Recruiting Glioblastoma 30 Participants
Location: United States

NCT03936374 Phase I Completed Drug safety trial 16 Participants
Location: United States

NCT02048709 Phase I Completed Recurrent
advanced solid
tumors

22 Participants
Location: United States

Linorodostat (BMS-
986205, ONO-7701)
+Nivolumab/BCG

NCT02867007 Phase I Completed Locally
advanced or
metastatic solid
tumors

36 Participants
Locations: France, United States

Linorodostat (BMS-
986205, ONO-7701)
+Itraconazole/
rifampin

NCT00435084 Phase
III

Completed B-Cell Chronic
Lymphocytic
Leukemia

10 Participants
Location: United Kingdom

Linorodostat (BMS-
986205, ONO-7701)
+Nivolumab/
chemotherapy

NCT00432107 Phase II Completed Melanoma 25 Participants
Locations: Austria, France, Germany, Switzerland

Linorodostat (BMS-
986205, ONO-7701)
+Nivolumab/
radiotherapy or
chemoradiotherapy

NCT00431912 Phase II Completed Cutaneous T-
Cell Lymphoma

25 Participants
Locations: Austria, France, Germany, Switzerland

Linorodostat (BMS-
986205, ONO-7701)
+Omeprazole

NCT04914845 Phase I Recruiting Acute Myeloid
Leukemia

40 Participants
Location: United States

Navoximod (GDC-
0919, NLG-919)

NCT04281420 Phase I Recruiting Solid Tumor 70 Participants
Locations: China,Taiwan
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ascombinatorial therapy is postulated to be lucrative in the

therapeutics of solid tumors. It is therefore clinically essential to

expand the investigation of these agents into PDAC, a classic

example of immune-transformed (63) and challenged cancer.
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