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Pathways that govern cellular bioenergetics are deregulated in tumor cells and

represent a hallmark of cancer. Tumor cells have the capacity to reprogram

pathways that control nutrient acquisition, anabolism and catabolism to enhance

their growth and survival. Tumorigenesis requires the autonomous

reprogramming of key metabolic pathways that obtain, generate and produce

metabolites from a nutrient-deprived tumor microenvironment to meet the

increased bioenergetic demands of cancer cells. Intra- and extracellular

factors also have a profound effect on gene expression to drive metabolic

pathway reprogramming in not only cancer cells but also surrounding cell

types that contribute to anti-tumor immunity. Despite a vast amount of

genetic and histologic heterogeneity within and between cancer types, a finite

set of pathways are commonly deregulated to support anabolism, catabolism

and redox balance. Multiple myeloma (MM) is the second most common

hematologic malignancy in adults and remains incurable in the vast majority of

patients. Genetic events and the hypoxic bone marrow milieu deregulate

glycolysis, glutaminolysis and fatty acid synthesis in MM cells to promote their

proliferation, survival , metastasis, drug resistance and evasion of

immunosurveillance. Here, we discuss mechanisms that disrupt metabolic

pathways in MM cells to support the development of therapeutic resistance

and thwart the effects of anti-myeloma immunity. A better understanding of the

events that reprogram metabolism in myeloma and immune cells may reveal

unforeseen vulnerabilities and advance the rational design of drug cocktails that

improve patient survival.
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1 Introduction

The hallmarks of cancer constitute an organizing principle to

rationalize the complexities of neoplastic disease (1–4). Six

biological capabilities - sustaining proliferative signaling, evading

growth suppressors, resisting cell death, enabling replicative

immortality, inducing angiogenesis, and activating invasion and

metastasis acquired during the multistep development of human

tumors - were initially identified as the hallmarks of human cancers

(1). Genomic instability underlies these features that promote

genetic diversity and intratumoral heterogeneity. Recently,

reprogramming of energy metabolism and evading immune

destruction have also been recognized as cancer hallmarks (2–4).

Cancer cells sustain prodigious anabolic requirements that exceed

those of neighboring somatic cells. Metabolic pathways in cancer

cells are reprogrammed to achieve the required bioenergetic,

biosynthetic and redox demands. Reprogramming of energy

metabolism is also required to support continuous cell growth

and proliferation, replacing the metabolic program that operates

in most healthy tissues and fuels physiological operations within

cancer cells (4–6). Tumorigenesis stems from the direct and indirect

consequences of oncogenic mutations to reprogram key metabolic

pathways (4, 7–12). Cancer-associated metabolic reprogramming

also alters the level of key intracellular and extracellular metabolites

(2, 11, 12).

Tumors display an added dimension of complexity since they

contain a repertoire of recruited, ostensibly normal cells that

contribute to the acquisition of hallmark traits by creating the

tumor microenvironment (TME) (7–15). The TME is comprised of

heterogeneous and interactive cell types including cancer cells and

cancer stem cells surrounded by a multitude of recruited stromal

cell and immune cell types. Cellular metabolism is reprogrammed

in cancer cells by tumor-intrinsic and extrinsic factors. Cancer cells

proliferate within the tumor permissive bone marrow (BM) and are

surrounded by a complex environment that consists of cellular and

acellular components, e.g., blood and lymph vessels, fibroblasts,

endothelial cells, numerous immune cell types, osteoblasts,

osteoclasts, pericytes, platelets, hematopoietic stem cells and other

cell types. In addition, cancer cells are also influenced by

surrounding cytokines, extracellular vesicles, cartilage, fat, bone

and the extracellular matrix these reside within the BM milieu

(10–15).

Oncometabolites are metabolites that aberrantly accumulate

from distorted metabolism and are considered novel

pathognomonic hallmarks in certain human cancers, e.g., glioma,

leukemia, neuroendocrine tumors, and renal cancer (16–19).

Oncometabolites have been shown to play a pivotal role in

neoplastic transformation, cancer metabolism, and the

development of therapeutic resistance. As a consequence of gain-

of-function mutations and loss of tumor suppressors,

oncometabolites accumulate within cancer cells and within the

TME. For example, mutations in isocitrate dehydrogenase 1 and 2

(IDH1/2) occur in a subset of acute myeloid leukemia (AML)

patients and IDH2 mutant leukemic cells produce elevated levels

of the oncometabolite D-2-hydroxyglutarate (D2-HG) (17, 18). D2-
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HG is a structural homolog and antagonist of the Krebs cycle

intermediate a-ketoglutarate (a-KG) that disrupts the Krebs cycle
leading to metabolic and epigenetic derangements. D2-HG changes

the catalytic activity of a-ketoglutarate–dependent dioxygenases

leading to genome-wide histone and DNA methylation alterations

(16–19).
2 Linking altered cellular metabolism
to multiple myeloma

Multiple myeloma (MM) is a cancer of terminally-differentiated

plasma cells (PCs) that accumulate and proliferate predominantly

within the tumor permissive BM microenvironment (20–25). PCs

are primary effectors of humoral immunity and function as

antibody-producing factories that secrete vast amount of

immunoglobulins. PC proliferation within the BM leads to

increased production and circulation of the monoclonal (M-

spike) protein in serum and/or urine (6, 26). Cardinal clinical

features of MM include anemia, hypercalcemia, renal impairment

and myeloma-related bone lesions (6, 20–22). The clinical course of

nearly all MM patients is characterized by cycles of continuously

shortening periods of remission followed by relapse. The prevalence

of obesity, cardiovascular disease and diabetes increases with age

and elderly patients diagnosed with MM generally present with

these concurrent co-morbidities (6, 27–32). The prognosis of MM

patients has significantly improved over the past two decades,

primarily due to the incorporation of novel agents developed

based upon the biology of disease (20, 22, 33). MM cells

synthesize and secrete vast amounts of protein, especially

immunoglobulins, and have adapted to withstand an enhanced

capacity for unfolded polypeptides. Hence, MM cells are exquisitely

sensitive to drugs that disrupt protein homeostasis, e.g., proteasome

inhibitors (PIs). Although PIs represent a highly effective anti-

myeloma therapy and transformed the management of MM, drug

resistance inevitably emerges through compensatory protein

clearance mechanisms, e.g., the aggresome+autophagy pathway

(34). Genome-wide profiling identified individual microRNAs

(miRs), e.g., miR-29b, that were differentially expressed in

bortezomib-resistant MM cells compared to drug-naive cells. The

highly distinct function and specialized habitat of MM cells shapes

the circuitry of intracellular pathways that contribute to drug

resistance (35).

Genomic, proteomic and metabolic changes in myeloma cells

stimulates their clonal evolution and expansion that eventually

leads to the emergence of drug resistant clones that are

responsible for disease relapse (36–38). Altered cellular

metabolism also reduces the anti-myeloma effect of standard-of-

care agents, e.g., PIs and immunomodulatory drugs (IMiDs).

Metabolic changes within the TME further decreases the

beneficial anti-myeloma effects of PIs and IMiDs, monoclonal

antibodies and cellular immunotherapies (14, 15, 23, 36). Despite

the development of novel anti-myeloma drugs over the past two

decades, disease heterogeneity, high-risk disease, early relapse and

treatment resistance remain challenges (14, 20, 22, 24, 33).
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Moreover, subclonal heterogeneity of PCs evolves alongside disease

progression through the selection of genetically and metabolically

adapted subclones (37, 38). Importantly, the incidence of MM is

associated with metabolic syndrome and inflammatory cytokines,

while the anti-diabetic agent metformin that lowers blood glucose

levels and statins, which lower the level of low-density lipoprotein

(LDL) cholesterol, are positive prognostic factors in patients

diagnosed with MM (39–42).
3 Metabolic pathways altered in
multiple myeloma

MM cells employ specialized metabolic programs that differ

from neighboring, untransformed somatic cells to sustain their

extraordinary anabolic and catabolic needs (6, 42–45). Features of

altered metabolism in MM include deregulated uptake and

metabolism of glucose and amino acids especially glutamine,

capacity to acquire scarce nutrients, enhanced glycolytic and

tricarboxylic acid (TCA) cycle intermediates, elevated

nicotinamide adenine dinucleotide phosphate (NADPH)

production and elevated level of fatty acid (FA) synthesis.
3.1 Glucose metabolism

The glycolytic enzyme hexokinase II (HKII) is overexpressed in

MM cells relative to PCs from healthy donors (46). Ikeda et al.

found that hypoxia-inducible HKII impaired glycolysis and

contributed to autophagy activation as well as the acquisition of

an anti-apoptotic phenotype in myeloma cells. To detect candidate

genes crucial for the acquisition of hypoxia-inducible autophagy, a

comprehensive expression analysis was performed using MM

patient samples incubated under normoxia or hypoxia. Hypoxic

stress upregulated glycolytic genes (PFKFB4, ENO2, ALDOC,

PFKFB3, HK2, PFKP, GPI, PGK1, LDHA, ALDOA, ENO1, PKM,

and GAPDH) including HKII in samples obtained from MM

patients (46). These results suggest that hypoxia-drive event may

permit myeloma cells to metabolize glucose in an energetically

favorable multi-step process. Antisense oligonucleotide (ASO)

directed against HKII (HII-ASO1) suppressed HKII expression in

MM cell cultures and in MM patient tumor cells xenografted into

murine models (47). HKII-ASO1 shows selective HKII inhibition to

support the clinical development of this approach. Aerobic

glycolysis also activates the TCA cycle to produce NADPH and

glutathione (GSH) which reduces oxidative stress. Since oxidative

damage is essential for bortezomib-mediated cytotoxicity, drug

resistance may be accompanied by increased tolerance towards

oxidative insults. Soriano et al. showed that PI-adapted myeloma

cells tolerate subtotal proteasome inhibition owing to metabolic

adaptations that favor the generation of NADPH reducing

equivalents, supported by oxidative glycolysis (48).

Lactate dehydrogenase A (LDHA) expression is increased in

relapsed MM patients to suggest that glucose metabolism is

enhanced (49). Proliferator-activator receptor-g coactivator-1b
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(PGC-1b) and LDHA are highly expressed in MM cells and

LDHA is upregulated by PGC-1b through the PGC-1b/RXRb axis

by acting on the LDHA promoter. Overexpression of PGC-1b or

LDHA potentiated glycolysis metabolism and increased cell

proliferation and tumor growth. Conversely, knockdown of either

PGC-1b or LDHA suppressed glycolysis, increased reactive oxygen

species (ROS) formation and apoptosis, suppressed tumor growth

and enhanced mouse survival. Liu et al. investigated whether excess

glucose induced hypoxia-inducible factor-1a (HIF-1a) and

stimulated glucose metabolism and cell migration in pancreatic

cancer cells (50). The authors studied wild-type (WT) MiaPaCa2

pancreatic cancer cells and a MiaPaCa2 subline transfected with an

HIF-1a-specific small interfering (siRNA). Excess glucose

stimulated the migration of WT and siRNA-treated MiaPaCa2

cells grown under normoxia and hypoxia, while glucose

stimulated cell migration independent of HIF-1a. These studies

indicated that excess glucose increases HIF-1a and ATP in hypoxic

WT-MiaPaCa2 cells. Extracellular glucose levels and hypoxia

regulate glucose metabolism independent of HIF-1a while glucose

stimulates cell migration through HIF-1a-dependent and

independent mechanisms.

The Warburg effect describes an increase in the rate of glucose

uptake and preferential production of lactate, even in the presence

of oxygen (51–53). Further evidence that Warburg’s

experiments on tumor tissue in vitro were valid in vivo was

demonstrated in experiments on surviving tumor tissue and

replicated in tumor-bearing animals (54, 55). The effect is

clinically utilized in 18F-fluorodeoxyglucose (18F-FDG) positron

emission tomography (PET) scans as sensitive diagnostic and

prognostic tools (56, 57). Glucose is transported across the cell

membrane through glucose transporters (GLUTs) through a

facilitated diffusion mechanism (58–61). Owing to its elevated

glycolytic gene profile, MM cells have been shown to be

dependent on glycolysis and, therefore, susceptible to glycolysis

inhibitors, e.g., GLUT inhibitors (58). Of the 14 GLUT subtypes,

GLUT1 overexpression is most associated with poor clinical

outcomes in cancer cell lines and cancer patients (44, 47, 58, 61).

In MM cells, GLUT1 upregulation increases glucose uptake and

enhances susceptible to GLUT1 inhibitors (61). MM cells are also

dependent on GLUT4 for glucose uptake, survival, and elevated

expression of the anti-apoptotic protein Mcl-1, that has been

associated with tumorigenesis, poor prognosis, and drug

resistance (58).

Upregulation of the GLUT membrane transporters, e.g.,

GLUT1 GLUT4, GLUT8 and GLUT11, increases the level of

glycolytic metabolites in MM cells. The Federal Drug

Administration (FDA)-approved HIV protease inhibitor ritonavir

demonstrates an off-target inhibitory effect on GLUT4 as well as a

dose-dependent inhibitory effect on glucose uptake and

proliferation in L363 and KMS11 cells (62). However, a subset of

MM cells survive glucose deprivation or ritonavir treatment,

possibly through mitochondrial oxidative phosphorylation

(OXPHOS). Targeting the mitochondrial complex I using the

FDA-approved anti-diabetes drug metformin combined with

ritonavir induced apoptosis in primary MM cells. The PI3K/AKT

pathway, through mTOR-dependent activity, is linked to increased
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glucose metabolism and may explain the elevated levels of glycolytic

intermediates seen in MM cells (63–66). The combination also

suppressed AKT and mTORC1 phosphorylat ion and

downregulated Mcl-1 expression (62).

LDH, which converts pyruvate and NADH to lactate and

NAD+, is elevated in ~10% of patients with newly-diagnosed,

symptomatic MM (67). HIF-1a is upregulated in drug resistant

MM cells and leads to enhanced lactate production and the

accumulation of glycolytic metabolites (68). HIF-1a upregulation

is associated with metastasis, unfavorable prognosis, and reduced

OS in cancer patients (68, 69). Since bortezomib decreases HKII

activity in MM cells grown under hypoxic conditions and loss of
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HKII decreases LDHA activity, targeting LDHA could enhance

effects of bortezomib (45). Indeed, inhibition of HIF-1a and LDHA

have been shown to restore sensitivity to bortezomib and melphalan

in MM cells (45). FX11 is a selective and potent LDHA inhibitor

which reduces ATP levels by inducing oxidative stress and ROS

production (70) (Table 1). PX-478 selectively inhibits HIF-1a to

suppress cell migration, angiogenesis and drug resistance (71).

Pyruvate kinase M2 (PKM2) regulates glycolysis and promotes

tumor cell survival and proliferation (86). Never in mitosis gene

A (NIMA)-related kinase 2 [NEK2] increases the PKM2/PKM1

ratio by splicing PKM to promote enhanced glycolysis that drives

oncogenesis (54).
TABLE 1 Pharmacologically targeting metabolic vulnerabilities in hematologic malignancies.

Metabolic
Pathway Target Drug Mechanism of Action

Glycolysis

HIF-1a
PX-478 (Phase I,
NCT00522652)

Decreases nuclear HIF-1a protein levels to reduce HIF-1a (71).

LDHA and HK2 FX11 (Preclinical) Inhibits aerobic glycolysis (70).

GLUT4
Ritonavir (Phase I,
NCT02948283)

Cytostatic and/or cytotoxic effects by chemosensitizing tumor cells both in vitro and in vivo (62,
72).

GLUT1

Vincristine (Phase II,
NCT00003493)

Inhibits microtubule formation in mitotic spindle, resulting in an arrest of dividing cells at the
metaphase stage (73).

Bortezomib (Phase IV,
NCT00257114)

Binds reversibly to the chymotrypsin-like subunit of the 26S proteasome, resulting in its
inhibition and preventing the degradation of various pro-apoptotic factors (48).

WZb117 (Preclinical)
Inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting
glycolysis (74).

Phloretin (Preclinical)
Blocks cyclins and cyclin-dependent kinases and activates mitochondria-mediated cell death to
promote cell death (61, 75).

Hexokinase
Vincristine See above.

Bortezomib See above.

OXPHOS
Glycerophosphate
dehydrogenase

Metformin (Phase II,
NCT04850846)

Inhibits MM proliferation by inducing cell cycle arrest and apoptosis (39, 40, 76).

Amino acid
metabolism

Glutaminase

Benzophenanthridinone
968 (Preclinical)

Promotes apoptosis in both human MMCL and patient primary cells (77, 78).

CB-839 (Telaglenastat)
(Phase I, NCT03798678)

Allosteric, noncompetitive inhibitor of both splice variants of the broadly expressed glutaminase-
1. Enhanced CFZ-induced ER stress and apoptosis, characterized by a robust induction of ATF4
and CHOP and the activation of caspases (79).

Guanine and
Guanosine
GSH

Melphalan (Phase II,
NCT02669615)

Alkylates guanine and causes linkages between strands of DNA leading to cytotoxicity in dividing
and non-dividing cells (80).

SNAT1
a-Methylamino-isobutyric
acid (Preclinical)

Competitive inhibitor of the neutral amino acid transport A system which
decreases glutamine uptake and reduces cell growth (81, 82).

ASCT2 V-9302 (Preclinical)
Blocks ASCT2 to attenuate cancer cell growth and proliferation, increase cell death, increase
oxidative stress, to contribute to anti-tumor responses in vitro and in murine models in vivo (83).

LAT1
Nanvuranlat (JPH203)
(Phase I, in solid tumors,
PMID: 32198649)

Inhibits essential amino acids uptake in tumor cells to activate apoptosis (84).

Fatty acid
metabolism

Carnitine
palmitoyltransferase-
1 (CPT1)

Etomoxir Inhibits b-oxidation and de novo fatty acid synthesis in MM cells (43, 85).

Fatty acid synthase
(FASN)

Orlistat Inhibits lipases and induces apoptosis in myeloma cells (43, 85).
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The HK isoform HKII is the rate-limiting step in aerobic

glycolysis and is overexpressed in many cancers including MM

(87, 88). Vincristine and bortezomib suppressed GLUT-1 and HK

expression to induce apoptosis in MM cells (73), while WZb117 and

phloretin inhibited GLUT-1 activity to decrease glucose uptake with

synergistic anti-tumor effects in leukemia, lung, colon and breast

cancers (74, 89, 90). Under hypoxic conditions, phloretin enhanced

the effects of daunorubicin and overcame hypoxia-conferred drug

resistance (91). Targeting glucose consumption through enzymatic

regulators and transporters could serve as an effective anti-

myeloma therapy.
3.2 Amino acid metabolism

Glutamine is an abundant amino acid crucial for cell

proliferation, differentiation, apoptosis, and cytokine production

(92). Glutamine is needed in MM cells for nucleic acid biosynthesis,

to generate energy in the TCA cycle and to support increased amino

acid and FA synthesis. MM cells are particularly dependent on

extracellular glutamine since they exhibit high glutaminase levels

and low glutamine synthetase expression. Glutamine depletion

prevents MM growth and enhances sensitivity to anti-myeloma

agents (77, 79, 84, 93–95). The histidine/large neutral amino acid

transporter LAT1 (SLC7A5) glutamine transporter is overexpressed

in MM cells and is associated with reduced overall survival (OS)

(84). MM cells primarily rely upon the alanine, serine, cysteine

transporter 2 (ASCT2/SLC1A5) and glutamine transporters for

glutamine uptake. Targeting glutamine transporters, specifically

ASCT2 inhibitors combined with the PI carfilzomib induced

proteotoxic stress and ROS generation (81, 83). The need for

extracellular glutamine makes glutamine transporters interesting

targets for MM therapy.

Glutamine serves as an important energy source for cancer cells

and glutamine deficiency or the glutaminase inhibitor

benzophenanthridinone 968 induces apoptosis in MM cells (13,

78, 82). Benzophenanthridinone 968 effectively inhibits glutaminase

and this inhibition induces apoptosis in MM cell lines (MMCLs)

and patient primary tumor cells. Elevated expression of the

glutamine transporters SNAT1, ASCT2 and LAT1, makes these

an attractive target for anti-myeloma therapy (6). The

prognostic significance of LAT1 in MM was investigated by

immunohistochemistry to monitor the expression of LAT1 and

its functional subunit, 4Fc heavy chain (CD98), on tumor cells in

100 newly diagnosed MM (NDMM) patients (84). LAT1

overexpression was associated with high proliferation and poor

prognosis in NDMM patients. LAT1 may be a promising

pathological marker to identify high-risk MM.
3.3 Fatty acid metabolism

A lipid profiling study uncovered large differences in lipid

composition as well as amino acid and energy profiles from

NDMM, relapsed and/or refractory (RRMM), monoclonal

gammopathy of unknown significance (MGUS) and healthy
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controls (96). The metabolomic profile was quite different

between that observed with samples from healthy controls

compared to that of samples from patients with either MGUS,

NDMM or RRMM. Significant alterations in amino acid, lipid, and

energy metabolism were observed between the different patient

groups. Eight metabolites, i.e., free carnitine, acetylcarnitine,

glutamate, asymmetric dimethylarginine and phosphatidylcholine

species, differed between MGUS and NDMM patients, supporting

the notion that metabolic changes occur during myelomagenesis. A

second lipidomics study revealed upregulation of ceramides and

phosphatidylethanolamines (PEs) and downregulation of

phosphatidylcholines, sphingomyelin and one species of PE in

MM patients (97). Increased sphingomyelinase expression in

primary patient samples was found and inhibition of

sphingomyelinase by GW4869 further increased bortezomib and

melphalan-mediated cell death (80). Treatment of MM cells with

ixazomib led to the accumulation of lipids. Pre-treatment of MM

cells with docosahexaenoic acid (DHA) or eicosapentaenoic acid

(EHA) also increased the sensitivity to bortezomib by altering the

GSH metabolic pathway (98). Tirado-Velez et al. tested the

hypothesis that inhibition of b-oxidation and de novo FA

synthesis would reduce cell proliferation in myeloma cells (85).

The authors found that the RPMI-8226, NCI-H929 and U-266B1

cells displayed increased FA oxidation (FAO) and elevated

expression of FA synthase (FAS). Inhibition of FAO by etomoxir

and FAS by orlistat inhibited b-oxidation and de novo FA synthesis

without significantly altering glucose metabolism. These effects

were associated with cell cycle arrest in G0/G1 and reduced cell

proliferation (43, 85). Etomoxir-mediated inhibition of FAO

modestly increased the amount of lactate generated without

altering glucose metabolism, to suggest that the inhibition of FAO

in myeloma cells did not result in an adaptive mechanism to sustain

energy homeostasis. FAS was elevated in ~70% of MM patients

compared to healthy volunteers and inhibition of FAS by cerulenin

promoted apoptosis (99). MMCLs and primary MM cells

overexpress FAS to promote their survival and proliferation. MM

patients have been reported to exhibit greater levels of saturated FAs

and n-6 polyunsaturated FAs (PUFA), compared to healthy

controls. Acetyl-CoA synthetase 2 (ACSS2) is overexpressed in

MM cells derived from obese patients and contributes to

myeloma progression (100). ACSS2 interacts with the

oncoprotein interferon-regulated factor 4 (IRF4), and enhances

IRF4 stability and IRF4-mediated gene transcription through

act ivat ion of acety la t ion. The importance of ACSS2

overexpression in myeloma was confirmed by finding that an

ACSS2 inhibitor reduced myeloma growth in vitro and in a diet-

induced obese mouse model. The findings demonstrated a key

impact for obesity-induced ACSS2 on myeloma progression and

could be important for other obesity-related malignancies. Glioma

cells were incubated with tetradecylthioacetic acid (T11111141),

which cannot be b-oxidized, and the oxidizable FA palmitic acid

(PA), in the presence of L-carnitine and the carnitine

palmitoyltransferase inhibitors etomoxir and aminocarnitine. L-

carnitine partially abolished PA-mediated growth reduction of

glioma cells, whereas etomoxir and aminocarnitine enhanced the

anti-proliferative effect of PA (101). Similarly, Samudio et al.
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demonstrated that inhibition of FAO with etomoxir or ranolazine

reduced the proliferation and sensitized human leukemia cells to

ABT-737-induced apoptosis (102). The conventional view has been

that cancer cells predominately produce ATP by glycolysis, rather

than by oxidation of energy-providing substrates. Mitochondrial

uncoupling, i.e., continued reduction of oxygen without ATP

synthesis, may obviate the ability of oxygen to inhibit glycolysis

and promote the preference for glycolysis by shifting from pyruvate

oxidation to FAO.
4 Oncogenic MYC and
myeloma metabolism

Transcription factors of the MYC family are deregulated in up

to 70% of all human cancers and MYC deregulation is a

determinant of myeloma progression (103–105). Oncogenic levels

of MYC regulate almost every aspect of cellular metabolism. MYC

plays a key role in the regulation of aerobic glycolysis and activates

glycolytic genes not only by transcription, but also through

alternative splicing. In addition, enhanced MYC expression

upregulates the level of glutamine transporters and suppresses

inhibition of glutaminolysis (77, 94, 106). Glutamine depletion

led to the rapid loss of the MYC protein, independent of MYC

transcription and post-translational modifications. However, MYC

loss was dependent on proteasomal activity and this loss was

paralleled by an equally rapid induction of apoptosis (106). MYC

transcription is upregulated in certain MM cells, especially during

later stages of disease. The estimated 24-month progression-free

survival was found to be significantly shorter in patients with

intermediate to high MYC expression compared with patients

with low MYC expression (107). However, this did not translate

into a significant difference in OS. Somewhat different results were

presented by Chng et al. which indicated that patients with MYC-

expressing tumors had a significantly shorter OS (105). Chng et al.

further reported that nearly all tumors with RAS mutations

expressed a MYC activation signature. MYC activation, assessed

by gene expression signature or immunohistochemistry was

associated with hyperdiploid MM, and shorter survival even in

tumors non-proliferative.
5 Impact of the hypoxic
microenvironment on metabolism in
myeloma cells

MM cells are exposed to different levels of oxygen and nutrients

leading to metabolically heterogeneous phenotypes that

differentially respond to therapeutic intervention (108–112).

Hypoxia-inducible factors (HIFs), e.g., HIF-1a, are stabilized

(108, 111, 113) within the TME and HIF-1a activation intensifies

conversion of pyruvate into lactate instead of the oxidation of

pyruvate in mitochondria. HIF-1a is also essential in regulating

vascular endothelial growth factor (VEGF) which is associated with

a poor prognosis in MM (114). HIF-1a was reported to be increased
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in MM as compared to controls (115, 116). The expression of HIF-

1a was also correlated with serum levels of VEGF, basic fibroblast

growth factor (bFGF) and angiopoietin-2 (Ang-2) (117–125). Gene

expression datasets indicated that HIF-1a and HIF-2a were

enriched in cells from NDMM patients compared to those from

healthy donors (45, 126, 127). IMiDs treatment has been shown to

decrease HIF-1a expression within the BM indicating that HIF-1a
could also serve as a target in MM (128).

The TME consumes vast amounts of oxygen that is required for

aerobic glycolysis within tumor cells (129) (Figure 1). Hypoxia

increases anaerobic glycolysis by activating HIF (130) and hypoxia-

induced LDHA andHKII promote PI-resistance in MM cells (45). It

was also shown that activation of miR-210 due to hypoxia

significantly reduced tumor susceptibility to CD8+ cytotoxic T-

lymphocytes (CTLs) by downregulating PTPN1, HOXA1, and

TP53I11 in melanoma and lung cancer cells (131). Hypoxia

inducible miR-210 significantly downregulated PTPN1 and

TP53I11 in MMCLs (132). Moreover, the HIF-inducible factor

adrenomedullin is released from MM cells and stimulates vascular

endothelial cells to express the angiogenic receptors CRLR and

RAMP2 to promote angiogenesis (133). HIF-1a regulates

interleukin (IL)-32 release from myeloma cells that is taken up by

osteoclasts (134). The hypoxia-inducible p38-cyclic adenosine

monophosphate (AMP) response element-binding protein

(CREB)-Dickkopf-related protein 1 (DKK1) axis and upregulation

of the HIF-1a-inducible MM SET domain-containing histone

methyltransferase (MMSET) suppress osteoblastic bone formation

(135). Taken together, hypoxic stress creates a favorable

environment for myeloma survival by regulating chemotaxis,

stimulating osteoclasts and endothelial cells, and inhibiting

osteoblasts (Figure 1).

Bortezomib inhibits HIF-1a at the transcriptional level which in

turn impairs recruitment of the coactivator CBP/p300 (136). The

effects of PIs are attenuated within the hypoxic TME possibly due to

reduced endoplasmic reticulum (ER) stress. In addition, the

degradation of unfolded proteins normally mediated by

proteasomes may be alternatively removed by autophagy.

HIF-inducible HKII activates autophagy by inhibiting

mammalian target of rapamycin (mTOR) signaling (137). HKII is

a promising therapeutic target and HKII inhibitors may increase the

efficacy of anti-myeloma agents.
6 Metabolic alterations that alter anti-
myeloma immunity

MM cells remodel the BM milieu to reshape the TME and

negatively impact effectors of anti-tumor immunity (138–140).

Deregulated tumor metabolism impairs the functional capacity of

neighboring immune cells and compromises their differentiation

(141–147). Adaptations within the TME create a competition for

nutrients required by myeloma cells with their neighboring non-

tumor cells. MM cells outcompete neighboring cells for nutrients to

enhance tumor growth and impair anti-tumor immunity. Further

dissecting the metabolic requirements of tumor and non-tumor
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cells in the TME may enhance immunotherapeutic responses. In

addition, a disrupted vasculature deprives the TME of adequate

blood supply and enhances competition between tumors and

infiltrating immune cells (148). In MM, CD4+ and CD8+ T-cells

form the primary immune defense, however, tumor-induced

remodeling of the TME is unfavorable to T-cells due to nutrient

deprivation, acidosis, and the accumulation of toxic metabolites

(146) (Figure 1). The hypoxic microenvironment also upregulates

PD-L1 expression on tumor cells through HIF-1a and a hypoxia

response element (HRE) (149, 150). In MM, PD-L1 expression has

been shown to be upregulated on malignant PCs (151, 152). NK

cells from MM patients express PD-1, in contrast to NK cells from

healthy individuals, which suppresses NK cell cytotoxicity (153).

Immune cells take up and utilize amino acids, e.g., L-arginine, a

non-essential amino acid present in macrophages and DCs, and

lipids that are necessary for functional activity (154–157). As a

product of aerobic or anaerobic glycolysis in tumors, lactic acid

induces VEGF expression and M2-like polarization of tumor-
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associated macrophages (158). Tumor secretion of lactate also

promotes overexpression of arginase I isoform in macrophages

and is associated with immunosuppression. Lactate is not only a

secondary product of cancer metabolism, but also promotes

immune evasion through various mechanisms (159–161).

Adenosine, and other products of cancer cell metabolism,

interfere with the antitumor effect of infiltrating T-cells (162,

163). Tryptophan metabolites, especially kynurenine generated

through indoleamine 2,3-dioxygenase (IDO1), have been shown

to modulate T-cell activity (141–144). Kynurenine, produced by

both IDO-1 and tryptophan-2,3-dioxygenase-2 (TDO-2),

upregulated the PD-1 co-inhibitory pathway on activated CD8+

T-cells in vitro compared with vehicle-treated cells (140). Since

tryptophan catabolites suppress immunity, blocking tryptophan

catabolism with IDO inhibitors is a potential anticancer strategy

(164). Targeting the tryptophan catabolic kynurenine pathway

using immune-based approaches has been shown to enhance

antitumor immunity and cytotoxicity in MM (165).
FIGURE 1

Targeting metabolic energy supply chains to enhance anti-myeloma therapy. Multiple myeloma cells use glucose as a primary source of energy
followed by glutamine and fatty acids. Within cytosol, glucose is metabolized via glycolysis into two molecules of pyruvate and adenosine
triphosphate (ATP) each. Next, pyruvate is transported across the mitochondrial matrix and is oxidized via TCA cycle to acetyl-CoA. Glutamine is
transported across the membrane via transporters where it is metabolized into a-ketoglutarate (a-KG) via glutaminolysis. Oxidation of fatty acids
results in breakdown of fatty acids into acetyl-CoA units. Which supplies energy to other tissues when glycogen stores are depleted. Each metabolic
step releases energy in the form of electrons which are accepted by the electron transport chain to generate even more ATP through oxidative
phosphorylation (OXPHOS). Metabolism targeting drugs (green) inhibit the key metabolic steps in glycolysis, TCA cycle, fatty acid synthesis, OXPHOS
and glutaminolysis. Figure 1 is an original image created with Biorender.com, Toronto, Canada.
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7 Conclusions

A century after Warburg discovered that tumor cells switch

from mitochondrial respiration to glycolysis to generate energy,

even under aerobic conditions, cancer metabolism remains

perplexing. Myeloma cells exhibit a metabolic phenotype

characterized by enhanced glycolytic flux for ATP production,

glucose to lactate conversion and reduced mitochondrial

OXPHOS (166–168). In contrast to healthy, differentiated cells,

which rely on mitochondrial OXPHOS to generate energy, cancer

cells rely on aerobic glycolysis. The switch to aerobic glycolysis may

represent an adaptation to facilitate the uptake of nucleotides,

amino acids, and lipids required for replication (169–171).

Reprogramming of the metabolic pathways that contribute to

tumor growth has exposed molecular vulnerabilities and

actionable targets that can be exploited (Table 1). Warburg

described aerobic, not anaerobic, glycolysis and therefore there

must exist factors other than HIF1-a which elicit the Warburg

effect. In addition, HIF1-a is not expressed in MM cells unless

grown under hypoxic conditions. Recent work by Abdollahi et al.

(172, 173) demonstrated a role for PRL-3 in the induction of glucose

uptake and enhanced glycolysis. Importantly, this effect was not

mediated through HIF1-a, c-Myc or AMPK, but rather through

STAT1 and STAT2. In hypoxia there was synergy between HIF1-a
and PRL-3 in promoting glycolysis. Contrary to HIF1-a, PRL-3
does not seem to reduce OXPHOS, and recent research has shown

that many hematological cancers do not downregulate OXPHOS

activity (174).

Proteasomes are central to the protein degradation machinery

of eukaryotes (175, 176). Healthy and transformed cells depend on

proteasomes to control the level of proteins linked to metabolism,

survival and proliferation (177). Based upon these findings, over the

past two decades PIs have emerged as a transformative anti-

myeloma therapy that has improved patient OS and quality-of-

life. Proteasome abundance and catalytic activity is controlled at the

level of assembly and is finely tuned by adaptations in cellular

metabolism (177). Sequencing of PCs from NDMM patients has

shown that MM is frequently dominated by RAS (43% of patients)

and nuclear factor kappa B (NF-kB) pathway (17%) mutations

(178). Malignant PCs undergo extensive metabolic reprogramming

during myelomagenesis that is enhanced by KRAS, NRAS, and

BRAF-activating mutations to elevate proteasomal capacity and

reduce ER stress (179). Ras and related proteins are mutated or

deregulated in many solid tumors, but PIs are ineffective against
Frontiers in Oncology 08
these cancers (180). Future studies are needed to decipher how solid

tumors reprogram cell metabolism to evade the cytotoxic effect of

PIs. Novel agents and drug delivery systems that target cancer

metabolism may broaden the therapeutic impact of PIs in

rationally-designed drug cocktails that improve patient survival.
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Glossary

a-KG a-ketoglutarate

ACSS2 Acetyl-CoA synthetase 2

AKT A serine/threonine kinase from the thymoma cell line AKT-8,
derived from the Stock A strain k AKR mouse. Also known as
Protein kinase B (PKB)

AML Acute Myeloid Leukemia

AMP Adenosine monophosphate

Ang2 Angiopoietin-2

ASO Antisense oligonucleotide

ASCT2 Alanine, serine, cysteine transporter 2

ATP Adenosine triphosphate

bFGF Basic fibroblast growth factor

BiTE Bispecific T cell engager

BM Bone marrow

CAR Chimeric antigen receptor

CD Cluster of differentiation

CTL Cytotoxic T-lymphocyte

CREB Cyclic AMP response element-binding protein

D2-HG {{sc}}d{{/sc}}-2-hydroxyglutarate

DKK1 Dickkopf-related protein 1

DLBCL Diffuse large B-cell lymphoma

DNA Deoxyribonucleic acid

DHA Docosahexaenoic acid

EHA Eicosapentaenoic acid

ER Endoplasmic reticulum

FA Fatty acid

FAO Fatty acid oxidation

FAS Fatty acid synthase

FDG Fluorodeoxyglucose

GLUT Glucose transporter protein type

GSH Glutathione

HKII Hexokinase II

HIF Hypoxia-inducible factor

HRE Hypoxia response element

HIV Human immunodeficiency virus

IDO Indoleamine 2,3-dioxygenase

IL Interleukin

IRF4 Interferon-regulated factor 4

LAT1 L-Type Amino Acid Transporter 1

(Continued)
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LDHA Lactate dehydrogenase A

LSC Leukemic stem cell

mTOR Mammalian target of rapamycin

mTORC1 Mammalian target of rapamycin complex 1

miR MicroRNA

M-spike Monoclonal or Myeloma protein spike or paraprotein

MGUS Monoclonal gammopathy of unknown significance

MM Multiple myeloma

MMSET MM SET domain-containing histone methyltransferase

NADPH Nicotinamide adenine dinucleotide phosphate

NDMM Newly diagnosed MM

NEK2 NIMA-related kinase 2

NIMA Never in mitosis gene A

NHL Non-Hodgkin’s lymphoma

NK Natural killer

NF-kB Nuclear factor kappa B

OXPHOS Oxidative phosphorylation

PE Phosphatidylethanolamine

PET Positron emission tomography

coactivator-
1b PFK

Phosphofructokinase

PKM1 Pyruvate kinase M1

PKM2 Pyruvate kinase M2

PI3K Phosphatidylinositol 3-kinase

PI Proteasome inhibitor

PUFA Polyunsaturated fatty acid

R-CHOP Rituximab, cyclophosphamide, hydroxydaunorubicin HCl,
vincristine (Oncovin) and prednisone used to treat both indolent
and aggressive forms of NHL

ROS Reactive oxygen species

RRMM Relapsed and/or refractory MM

siRNA Small interfering RNA

SLC Solute carrier

STAT-3 Signal transducer and activator of transcription 3

SGLT Sodium-dependent glucose transport

TCA Tricarboxylic acid

TCR T-cell receptors

TDO-2 tryptophan-2,3-dioxygenase-2

TP53 Tumor protein 53

UTR Untranslated region

VEGF Vascular endothelial growth factor

WT Wildtype.
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