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Impact of localized fine
tuning in the performance
of segmentation and
classification of lung nodules
from computed tomography
scans using deep learning
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Yuan-Ming Fleming Lure3 and Xiaoping Yin1*

1Radiology Department, Affiliated Hospital of Hebei University, Baoding, Hebei, China, 2Clinical
Medical College, Hebei University, Baoding, Hebei, China, 3Shenzhen Zhiying Medical Imaging,
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Background: Algorithm malfunction may occur when there is a performance

mismatch between the dataset with which it was developed and the dataset on

which it was deployed.

Methods: A baseline segmentation algorithm and a baseline classification

algorithm were developed using public dataset of Lung Image Database

Consortium to detect benign and malignant nodules, and two additional

external datasets (i.e., HB and XZ) including 542 cases and 486 cases were

involved for the independent validation of these two algorithms. To explore the

impact of localized fine tuning on the individual segmentation and classification

process, the baseline algorithms were fine tuned with CT scans of HB and XZ

datasets, respectively, and the performance of the fine tuned algorithms was

tested to compare with the baseline algorithms.

Results: The proposed baseline algorithms of both segmentation and

classification experienced a drop when directly deployed in external HB and

XZ datasets. Comparing with the baseline validation results in nodule

segmentation, the fine tuned segmentation algorithm obtained better

performance in Dice coefficient, Intersection over Union, and Average Surface

Distance in HB dataset (0.593 vs. 0.444; 0.450 vs. 0.348; 0.283 vs. 0.304) and XZ

dataset (0.601 vs. 0.486; 0.482 vs. 0.378; 0.225 vs. 0.358). Similarly, comparing

with the baseline validation results in benign and malignant nodule classification,

the fine tuned classification algorithm had improved area under the receiver

operating characteristic curve value, accuracy, and F1 score in HB dataset (0.851

vs. 0.812; 0.813 vs. 0.769; 0.852 vs. 0.822) and XZ dataset (0.724 vs. 0.668; 0.696

vs. 0.617; 0.737 vs. 0.668).
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Conclusions: The external validation performance of localized fine tuned

algorithms outperformed the baseline algorithms in both segmentation

process and classification process, which showed that localized fine tuning

may be an effective way to enable a baseline algorithm generalize to site-

specific use.
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1 Introduction

Lung cancer is one of the most common cancers in the world

(1), which has no obvious clinical symptoms in the early stage, but is

hardly cured after the onset of disease. Therefore, early diagnosis

and differentiation of benign and malignant pulmonary nodules has

great significance for the long-term survival of patients (2). As one

of the most important means to screen lung cancer for high-risk

groups (3), low-dose CT scans have been widely used in health

examinations, and a large amount of CT data has created heavy

workload for radiologists. Deep learning (DL) is considered as a

powerful tool that have gained great achievements in the detection

of benign and malignant pulmonary nodules in chest CT images (4,

5). However, in most cases, decreased performance is observed

when the proposed algorithm is applied in the external tests, even

with adopted and balanced validation datasets (6–9).

It has been a public concern that algorithm malfunction occurs

when it is applied on external dataset that is inherently different

from the training set. It may halt the possible implementation of the

general model into routine clinical care if it does not have a

consistent accuracy for site-specific use. To obtain a comparable

external test performance to the internal tests, reported studies

involving training datasets from multicenter to develop the

detection algorithm demonstrated that it can either underperform

(10–12) or have a comparable performance to the internal test (11,

13) without any unanimous conclusion reached, which may be

explained by the differences of the datasets scale and the numbers of

dataset origins (14). Using local images for model training seems to

be another way to obtain a site-specific used tool for diagnosis.

However, a large amount of training images is needed to develop a

DL algorithm, which is challenging for those regions with lower

prevalence of lung nodules, especially malignant nodules.

Therefore, developing a baseline algorithm using only public

dataset and then recalibrating it with local images may be an

effective way to reduce site-specific bias.

It has been proved that recalibration strategy with local data is

able to correct for the anticipated drop in model performance.

Various studies related to recalibration method were reported, but

in most cases, they are statistical prediction models focusing on

updating regression coefficients, or adding new covariates for the

model (15–18). To the best of our knowledge, few studies have been

conducted with recalibration strategy of localized fine tuning on
02
imaging to separately explore its impact on the segmentation and

classification process.

In the study, we conducted localized fine tuning for the baseline

DL algorithm of segmentation and classification to segment and

classify benign and malignant nodules. The baseline algorithms

were first developed using public dataset of Lung Image Database

Consortium (LIDC) (19) and then 50% of the public data was

replaced with local dataset to develop the fine tuned algorithms. The

performance of the fine tuned algorithms and baseline algorithms

were tested and compared in multicenter datasets.
2 Methods

2.1 Patient cohorts
The studies involving human participants were reviewed and

approved by the Institutional Review Board (IRB) of the Affiliated

Hospital of Hebei University. The informed consent from human

participants was waived because this is a retrospective study, and

the waiver was indicated in the IRB approval document. Three

datasets were involved in the study, including a public dataset of

LIDC and two collected datasets named HB and XZ, respectively.

All identifications of the patient were removed.

LIDC has a total of 1018 cases (the number of patients was

unknown) with annotation process performed by four radiologists.

Each radiologist independently reviewed the CT images and marked

lesions that belonged to one of three categories (“nodule >or = 3 mm”,

“nodule < 3 mm” and “non-nodule >or = 3 mm”). The nodules are

finally marked with 5 malignancy levels, from 1 to 5 (17). As the

detection algorithmwas developed for the nodule-level classification, the

inclusion criteria for nodules are as follows: (1) Nodule diameter >3mm;

(2) Nodules with score greater than 3 were included with malignant

label, and nodules with score less than 3 were included with benign label;

(3) Nodules with borderline median malignancy (rating =3) were

excluded; (4) Nodules with only one score were excluded. Finally, 582

cases comprising of 430 malignant nodules and 671 benign nodules

were included, and they were randomly divided into training and testing

set at a ratio of 8:2; the training set contained 344malignant nodules and

536 benign nodules, and the testing set contained 86 malignant nodules

and 135 benign nodules.
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A total of 541 patients in HB dataset were retrospectively

collected from January 2017 to June 2020, and 261 patients in XZ

dataset were collected from July 2019 to May 2020. The inclusion

criteria for these two datasets were: (1) The patients had typical

imaging signs and pathological results of the lesions; (2) There was

no surgery in the lung; (3) There was no history of malignant tumor

in other part of the lung. Finally, a total of 963 nodules of HB

dataset were included, comprising of 537 malignant nodules and

426 benign nodules, and a total of 785 nodules in XZ dataset with

387 malignant nodules and 398 benign nodules were also involved.
2.2 CT acquisition and image
preprocessing

CT scans in HB dataset were performed using Siemens 64-row

128-slice helical CT scan and 40-row 64-slice helical CT scan

(SOMATOM Definition AS, tube voltage: 100 kV, tube current: 100

mA, pitch: 1.3, slice thickness: 5.0 mm, field of view (FOV): 430 mm).

CT scans in XZ dataset were performed using PHILIPS Brilliance 64-

row CT scan (collimator width: 0.75mm, pitch factor: 0.1-2.0, slice

thickness: 0.75-2.0mm, scanning parameters 80-140KV, 80-320mAS,

A scan matrix: 512 × 512). All CT images were independently reviewed

by two radiologists (more than 5-10 years of experience in reading CT

images) using LabelImg software with the annotation reference (17). If

two Dice coefficient values were all greater than or at least equal to 0.95,

they would be averaged as the ground truth of the image. Otherwise, a

senior radiologist (more than 20 years of experience in reading CT

images) would review and outline the images again to make the final

determination. Since the CT imaged were generated by different

scanning devices with different resolutions, all data were spatially

resampled with the isotropic interval of 1.0 mm × 1.0 mm ×

1.0 mm (20).
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2.3 Development of the baseline
segmentation algorithm

As shown in Figure 1, 3D MaskRCNN was used to develop a

baseline segmentation algorithm to detect and segment nodules on

LIDC database. Before inputting the CT images to the network, the

input images were transformed to physical millimeter size from

pixel size with the spatial location information unchanged. The lung

area was first extracted with the remaining part supplemented with

pixel of 170 whose neighborhoods are close to one another, where

this significantly reduces noise while preserving most image

content, and then the images were randomly cropped to the size

of [128,128,128] as input training. 3D MaskRCNN is similar to the

2DMaskRCNN which consists of backbone architecture, RPN head

and ROI head. The backbone architecture used in the research is

resnet50, for which kernels with the size of 3x3x3 were used to

convolve the input image, and the feature maps output from it were

input into the pooling layer to aggregate contiguous values to one

scalar by the mean. The RPN architecture includes a convolutional

layer and two following heads which were used to generate every

anchor’s shift and the score belonging to foreground, respectively.

The ROI align head was involved to pool different proposals to

boxes with the shape of 7×7×7, and then a box header and a mask

predictor were applied to finetune box position and format the

lesion boundary. Specifically, in the research, the image was first

input into the backbone and it would output 256 features at a 1/32

ratio of the raw image size, then these features maps were input into

the RPN network and 1000 proposals sorted by scores were

obtained. Finally, the 1000 proposals were reshaped to 7×7×7

boxes and all the boxes were input into mask head. We ended up

selecting the predicted result with a threshold of 0.5. The total

training epoch was 200, and ROI Head and Mask Head were added

when the epoch was 65 and 80, respectively.
A

B

FIGURE 1

Study workflow. (A) The development of baseline and fine tuned segmentation model, and nodules were segmented as the output in the end.
(B) The development of baseline and fine tuned classification model, and prediction score was given about malignancy or benignity.
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2.4 Development of the baseline
classification algorithm

Resnet was used to develop the baseline classification algorithm

for benign and malignant nodules diagnosis (Figure 1). Specifically,

first, in the binary classification task of benign and malignant

nodules, the center point of the nodule was used as the reference

point to extent 64 pixels in the x and y directions, and 32 layers were

expanded in the z direction, forming a nodular cube block with the

size of [3, 32, 64, 64], which was the input of the algorithm. Then

the resnet18-3D was applied to make the calculation of the input of

[b, 3, 32, 64, 64], and output [b, 2], where b is the batch size of the

algorithm input.
2.5 Algorithm fine tuning

For both baseline segmentation algorithm and classification

algorithm, 50% of the LIDC training set was replaced by HB and XZ

datasets, and then they were trained again to be locally fine tuned,

before which the HB and XZ datasets were divided into two parts of

sets respectively. For the HB dataset, the one consisting of 172

malignant nodules and 268 benign nodules was used for algorithm

fine tuning, and the other set consisting of 365 malignant nodules

and 158 benign nodules was used as an independent test. Similarly,

for XZ dataset, one set consisting of 172 malignant nodules and 268

benign nodules was used for algorithm fine tuning, and the other set

consisting of 215 malignant nodules and 130 benign nodules was

used as an independent test. Both baseline algorithms and fine-

tuned algorithms were evaluated on HB and XZ independent sets

respectively, and their performance were compared in the end(i.e.,

baseline segmentation algorithm vs. fine-tuned segmentation

algorithm; baseline classification algorithm vs. fine-tuned
Frontiers in Oncology
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classification algorithm).
2.6 Statistical analysis

In the process of evaluating the segmentation algorithm

performance, labeled nodules by radiologists are defined as positive

findings, and we illustrated segmentation test results by Dice coefficient

(DICE), Intersection over Union (IOU), and Average Surface Distance

(ASD). For the classification results, the positive findings are malignant

nodules and benign nodules are negative, and the receiver operating

characteristic (ROC) curve, the value of the area under the ROC curve

(AUC), accuracy, sensitivity, specificity and F1 score were used.

Statistical analysis was performed using Python 3.8 and SPSS 20.

Statistical tests were conducted with p-value< 0.05 as an indicator of

statistical significance.
3 Results

3.1 Clinical characteristics

The main characteristics of patients in the HB and XZ datasets

are shown in Figure 2. 541 patients from HB dataset were 54.2%

males, and the median age was 62 years with an age range of 17-85

years. XZ included 241 patients with 50.2% males (median age of 61

years; age range 21-87 years). There was no significant difference in

the patient age (P = 0.668) and gender (P = 0.292) for both cohorts.

However, we observed that the distribution of benign and

malignant nodules was statistically significant among LIDC, HB

and XZ datasets (P<0.001), and the two-two pairwise comparison

between any two cohorts also showed significant difference (i.e.,

LIDC vs. HB: P<0.001; LIDC vs. XZ: P<0.001; HB vs. HB: P=0.007).
A B C

FIGURE 2

Patients characteristics. (A) Age distribution in HB and XZ datasets. (B) Gender composition in HB and XZ datasets. (C) The composition of malignant
nodules and benign nodules in LIDC, HB and XZ datasets. LIDC, lung image database consortium. ns, not significant; **p-value <0.01; ***p-value <0.001.
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3.2 Effect of fine tuning on
segmentation algorithms

The performance of the baseline and fine tuned segmentation

algorithms assessed by the DICE, IOU, and ASD are summarized in

Table 1. In the internal set of LIDC, the DICE, IOU, ASD of the

baseline algorithm were 0.771, 0.642, 0.244, respectively. Then we

observed a drop in its performance for external tests, with three

metrics being 0.444, 0.348 and 0.304 in HB dataset and 0.486, 0.378

and 0.358 in XZ dataset. Fine tuning enabled the baseline algorithm

to perform better on both local datasets, as we observed an increase

in the value of DICE and IOU and a decrease in the value of ASD

(i.e., 0.593, 0.450 and 0.283 in HB dataset and 0.601, 0.482 and 0.225

in XZ dataset) with corresponding change rate of 33.56%, 29.31%

and -6.91% in HB and 23.66%, 27.51% and -37.15% in XZ. Almost

all of the change rates are significant except for the -6.91%. Higher

values of DICE and IOU, and a lower value of ASD indicate better

performance of the segmentation algorithm.

Figure 3 shows examples of segmentation result of the

algorithm with and without fine tuning. We observed that the

baseline algorithm segmented the lesion region in more details after

using the fine tuning method for the HB dataset (i.e., After_HB vs.

Undo_HB), which could be reflected by a higher value of ASD that

was used to evaluate the algorithms’ edge fitting performance. In

addition, it is noteworthy that when the baseline algorithm was

applied in XZ dataset, a false positive nodule was detected, but after
Frontiers in Oncology 05
the algorithm fine tuning the false positive nodule was no longer

identified and segmented (i.e., After_XZ vs. Undo_XZ).
3.3 Effect of fine tuning on
classification algorithms

As shown in Table 2, the baseline classification algorithm

achieved an AUC of 0.881, and the accuracy was 0.846 in the

internal testing. When it was applied in two local datasets, the AUC

decreased to 0.812 and 0.668, and the accuracy decreased to 0.769

and 0.617 in HB and XZ datasets, respectively. Other metrics of

sensitivity, specificity and F1 score also experienced a decreasing

tendency in both HB and XZ datasets. However, they exhibited

varying degrees of decrease (Figures 4, 5), which is consistent

with prior research revealing that the proposed algorithm

would display high variability in performance across external

datasets (18).

To explore the effect of fine tuning on classification algorithm,

the comparison of the validation results between baseline

algorithms and fine tuned algorithms, namely MHB and MXZ,

was conducted (Table 3). The classification performance of both

MHB and MXZ was improved after the fine tuning (Figure 6).

Specifically, comparing with the baseline validation results, the

MHB had higher AUC (0.851 vs. 0.812), accuracy (0.813 vs.

0.769), sensitivity (0.849 vs. 0.767) and F1 score (0.852 vs. 0.822),
TABLE 1 Performance of baseline and fine tuned segmentation model in public LIDC dataset and two independent collected datasets.

Measure Performance

Datasets

LIDC HB XZ

Dice coefficient (DICE)

Baseline algorithm 0.771 0.444 0.486

Fine tuned algorithm NA 0.593 0.601

Delta in DICE NA 33.56% 23.66%

P NA 0.021 0.048

Intersection over Union (IOU)

Baseline algorithm 0.642 0.348 0.378

Fine tuned algorithm NA 0.450 0.482

Delta in IOU NA 29.31% 27.51%

P NA 0.029 0.035

Average Surface Distance (ASD)

Baseline algorithm 0.244 0.304 0.358

Fine tuned algorithm NA 0.283 0.225

Delta in ASD NA -6.91% -37.15%

P NA 0.067 0.022
LIDC, lung image database consortium; NA, not applicable.
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TABLE 2 Performance of baseline classification model in both public dataset and independent collected datasets.

Measure Performance (95% CI)

Datasets

LIDC HB XZ

AUC 0.881 (0.830-0.920) 0.812 (0.776-0.845) 0.668 (0.615-0.717)

Accuracy 0.846 (0.792-0.888) 0.769 (0.731-0.803) 0.617 (0.565-0.667)

Sensitivity 0.837 (0.744-0.902) 0.767 (0.721-0.808) 0.619 (0.552-0.681)

Specificity 0.852 (0.782-0.903) 0.772 (0.700-0.831) 0.615 (0.530-0.695)

F1 score 0.809 (0.789-0.828) 0.822 (0.803-0.840) 0.668 (0.621-0.713)
F
rontiers in Oncology
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AUC, area under the ROC curve.
FIGURE 3

The results for example cases before and after using the localized fine tuning method in pulmonary nodules segmentation, and the manually-labeled
ROI (blue contour) was compared to segmentation algorithm predicted ROI (red contour).
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and their change rate were 4.8%, 5.7%, 10.7% and 3.6%. Though the

specificity was slightly decreased by 5.4%, there was no significant

difference (0.730 vs. 0.772, P=0.363). For MXZ validation results, all

the evaluating metrics were increased, including AUC (0.724 vs.

0.668), accuracy (0.696 vs. 0.617), sensitivity (0.684 vs. 0.619),

specificity (0.713 vs. 0.615) and F1score (0.737 vs. 0.668), and

their change rate were 8.4%, 12.8%, 10.5%, 15.9% and 10.3%.
4 Discussion

In this study, we developed a baseline segmentation algorithm

and a baseline classification algorithm with public dataset of LIDC

to segment nodules and classify them as being benign or malignant,

and then conducted fine tuning for both of them to compare their

performance with that of their baseline ones. The results showed

that both segmentation and classification process benefit from fine
Frontiers in Oncology 07
tuning and end up obtaining higher performance for the site-

specific use.

Generally, the development of a computer-aided diagnosis

(CAD) scheme consists of the following steps: image

preprocessing, ROI segmentation, feature extraction, and finally

classification. DL models have been shown to significantly

contribute to medical image analysis for the processes of

segmentation and classification (21), and many methods have

been proposed on optimizing the segmentation and classification

algorithm independently (22). Technically, segmentation is used to

detect and localize the ROI from the background within the medical

image, followed by the segment-based classification task to classify

the ROI to a certain class, and the DL model performance may

largely rely on the reliable ROI segmentation and good classifier

(23). In the current study, we first proposed baseline DL algorithms

of segmentation and classification, and compared the performance

before and after fine tuning on imaging to explore to what extent the

fine tuning can help improve the segmentation and classification

process independently.

Algorithms developed on public datasets may not be implied

directly on other populations, and rigorous external validation is

essential to objectively assess the performance of a detection

algorithm (24). In the study, we developed a segmentation and a

classification algorithm using public dataset of LIDC, and unlike

most of the work with adopted and balanced validation dataset, we

applied two external datasets which are inherently different from

each other with a significant difference in the distribution of benign

and malignant nodules. Thus, the algorithm performance was

evaluated in the real-word screening setting, providing objective

evidence for the usefulness of the algorithm. It is common to

conduct a pilot phase to optimize a triaging threshold of CAD

system for external test. However, the threshold choice is balanced

between maximal case finding and lower false positive cases without

model improvement (25, 26). Therefore, in the study, even with the

optimal threshold we observed a decreased performance in the two

external tests for both baseline segmentation and classification
TABLE 3 Comparison of the baseline classification model and its fine tuned models.

AUC
(95% CI)

Accuracy (95% CI) Sensitivity
(95% CI)

Specificity
(95% CI)

F1 score
(95% CI)

Baseline 0.812
(0.776-0.845)

0.769
(0.731-0.803)

0.767
(0.721-0.808)

0.772
(0.700-0.831)

0.822
(0.803-0.840)

MHB 0.851
(0.823-0.875)

0.813
(0.777-0.844)

0.849
(0.809-0.883)

0.730
(0.654-0.791)

0.852
(0.846-0.879)

Rate of change 4.8% 5.7% 10.7% -5.4% 3.6%

P 0.011 0.080 0.005 0.363 0.030

Baseline 0.668
(0.615-0.717)

0.617
(0.565-0.667)

0.619
(0.552-0.681)

0.615
(0.530-0.695)

0.668
(0.621-0.713)

MXZ 0.724
(0.673-0.770)

0.696
(0.645-0.742)

0.684
(0.619-0.742)

0.713
(0.632-0.786)

0.737
(0.714-0.759)

Rate of change 8.4% 12.8% 10.5% 15.9% 10.3%

P 0.096 0.030 0.157 0.088 0.034
f

AUC, area under the curve.
FIGURE 4

Pairwise performance comparison of the baseline classification
model in public LIDC dataset and two independent collected
datasets. ns, not significant; **p-value <0.01; ***p-value <0.001.
LIDC, lung image database consortium.
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algorithm (Table 2). The results showed that the algorithm trained

by public dataset needs further adjustments for site-specific use,

which is consistent with reported research (27, 28).

In previous studies, the deep learning models used for lung nodules

segmentation on LIDC dataset obtained the DICE values of over 0.6

(29), and the existed classification algorithm had AUC values of over

0.8 for benign and malignant nodules classification (5, 30, 31), which is

similar to our baseline segmentation algorithm and baseline

classification algorithm. However, the DICE value decreased when

the baseline segmentation algorithm was applied on HB and XZ, and

the performance drop could also be detected in the external tests for the

baseline classification algorithm. This may result from the significant

appearance variances caused by the population and setting differences

(32–34). It has been reported that involving multi-center datasets to

develop algorithm is effective to keep the algorithm robust to maintain

its accuracy across datasets (10, 11). However, it is unclear how many

datasets should be exactly included to create a robust detection

algorithm to obtain comparable performances of the internal test,

especially when those external datasets are significantly different from

internal datasets. Furthermore, AlBadawy et al. reported that using

multiple institutions for training does not necessarily remove the
Frontiers in Oncology 08
dataset shift limitation (32). Model tuning with additional data from

specific settings may be an effective way to reduce site-specific biases

(11) but few studies revealed its impact on segmentation and

classification process alone. In the current study, the baseline models

trained by public data set were fine tuned with site-specific images and

we observed both segmentation and classification algorithm benefit

from the fine tuning, which showed that localized fine tuning would be

a potential and well-operated way to develop an automated diagnostic

tool to screen lung cancer as both the segmentation process and

classification process could get optimized (35). It should be noted

that the baseline segmentation algorithmwas fine tuned to have as high

of a sensitivity as possible for localizing and segmenting the nodules,

allowing for false positive reduction, which might be due to that

homogeneous features of the local dataset were involved for the

learning process.

There are some limitations to this study. First, although both

segmentation process and classification process were found

improved with the fine tuning, it only focused on lung nodules.

For the next step of our study, we aim to expand to other lung

abnormality/disease to comprehensively validate the effectiveness of

the fine tuning method. Second, the current study was a
A B

DC

FIGURE 5

Performance comparison of the baseline classification model in public LIDC dataset and two independent collected datasets. (A) The ROC curves in
LIDC, HB and XZ datasets. (B) Normalized confusion matrix in LIDC dataset. (C) Normalized confusion matrix in HB dataset. (D) Normalized
confusion matrix in XZ dataset. ROC, receiver operating characteristic; LIDC, lung image database consortium.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1140635
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cai et al. 10.3389/fonc.2023.1140635
retrospective study where both LIDC and two collected datasets

were available at the time of study, therefore, a prospective

evaluation is needed to further validate the proposed method.

Conclusion

Our work is among the first that conducted the localized fine

tuning for DL algorithm on imaging to explore its impact on the

segmentation and classification process respectively. Results

showed that both segmentation and classification algorithm

outperformed their baseline model, which might enable a baseline

algorithm be generalized for site-specific use and promote the

future in-depth research towards its clinical application.
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