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Gastric cancer remains the fourthmost frequently diagnosedmalignancy and the

fifth leading cause of cancer-related mortality worldwide owning to the lack of

efficient drugs and targets for therapy. Accumulating evidence indicates that

UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an

important role in the GC tumorigenesis. The imbalance of UPS impairs the

protein homeostasis network during development of GC. Therefore, modulating

these enzymes and proteasome may be a promising strategy for GC target

therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is

an emerging tool for drug development. Thus far, more andmore PROTAC drugs

enter clinical trials for cancer therapy. Here, we will analyze the abnormal

expression enzymes in UPS and summarize the E3 enzymes which can be

developed in PROTAC so that it can contribute to the development of UPS

modulator and PROTAC technology for GC therapy.
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1 Introduction

According to the global cancer statistics, one million new gastric cancer (GC) cases and

about 769,000 deaths were estimated in 2020, ranking fourth for mortality and fifth for

incidence among all types (1). At present, the clinical treatments of GC mainly include

surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy (2, 3).

Molecular targeted therapy has achieved major success in recent years with the

understanding of molecular mechanisms in cancer. However, only scant targets are used

to develop drugs in GC such as VEGFR-2, HER2, PD-1, etc. (4). Moreover, most of

traditional small molecule inhibitors affect active site of the targets to inhibit its function.
Abbreviations: GC, gastric cancer; PROTAC, proteolysis-targeting chimeras;

UPS, ubiquitin-proteasome system
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Due to the limit of drugs targets and related technology, the

development of targeted therapy for GC is still limited. Thus,

investigating more effective therapeutic targets and developing

novel technologies for GC treatment are highly expected.

Ubiquitin-proteasome system (UPS) is one of the main pathways

for protein degradation in mammals, which regulate various cellular

biological processes through changing the protein levels, such as cell

signal transduction, cell cycle, transcription, DNA damage and

repair, etc. (5, 6). Through the coordination between ubiquitin-

activating enzyme E1, ubiquitin-conjugating enzyme E2 and

ubiquitin-ligase E3 in UPS, target proteins modified by ubiquitin

are transferred to the proteasome for degradation. Therefore, UPS is

essential for maintaining the normal levels of intracellular proteins

by removing damaged organelles and misfolded proteins (7).

During GC development, it is commonly observed that

dysfunction of UPS due to the abnormal changes of E1, E2, and

E3 enzymes causes the imbalanced accumulation of large numbers

of proteins. Fortunately, it has been validated by clinical success of

many UPS modulators, emphasizing the therapeutic potential of

this pathway (8). Besides, PROTAC (proteolysis-targeting

chimeras) is the novel drug development technology using UPS

to degrade target proteins, which plays an important role in the

treatment of prostate cancer and breast cancer (9). Hence, to

develop targeted drugs by using UPS has bright prospects for

further GC treatment. This review will elaborate the research

progresses of UPS modulators and PROTAC to provide a novel

perspective for targeted therapy of GC.
2 UPS is a viable strategy in
GC therapy

Compared with other cancers, such as breast cancer (HER2)

and lung cancer (EGFR, ALK, ROS1), there are still no effective

molecular targets for GC which lacks the dominant driver genes and

epigenetics targets. Thus, researchers are turning their attention to
Frontiers in Oncology 02
other fields. UPS, as an important system for degradation of

intracellular proteins, has attracted more attention for GC

treatment. Accumulating evidence indicates that abnormal

expression of E1, E2, and E3 enzymes is involved in the GC

tumorigenesis, resulting in imbalance of intracellular protein

homeostasis. UBE2C, UBE2T, UbcH10 are significantly

upregulated in GC, which correlate with poor differentiation, high

T classification, and poor prognosis (10–12). A fraction of E3

enzymes, such as MDM2, MKRN1, Cullin1, and Hakai, are

overexpressed and have established oncogenic roles in gastric

carcinogenesis (13–16). Numerous E3 enzymes, including

FBXW7 and CHIP, have been shown to function as typical tumor

suppressors in GC owing to frequent inactivating mutations or

downregulated expression in GC (17). Besides, the proteasome is

the primary site for protein degradation, and its activity affects UPS

efficiency (18). Mechanically, abnormal UPS could lead to gastric

cancer by regulating the epithelial-mesenchymal transition (EMT)

through degradation of E-cadherin and N-cadherin, affecting the

cell cycle through regulation of cell cycle proteins p21/p27 and

cyclin D, impacting apoptosis by regulating the expression of BAX

and Bcl-2 proteins. Furthermore, abnormal UPS influences the

PI3K/AKT, Hippo pathway, p53 pathway, TGF-b signaling,

STAT3 signaling, Wnt/b-catenin pathway, NF-kB pathway,

autophagy, and so on by regulation of corresponding protein in

these signaling pathway such as p53, b-catenin, SHP-1, etc.

(Figure 1). Consequently, UPS can be considered as promising

targets and it is a worth strategy by modulating the abnormality of

UPS during the progression of GC for developing therapeutic drugs.
3 UPS modulators

UPS is a complex structure involving the proteasome; and the

E1, E2, and E3 enzymes (19). Derangements of UPS leads to

alterations in protein homeostasis and causes many human

diseases, particularly cancer (20). Here, the recent advances of
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FIGURE 1

Abnormal UPS affects the normal signaling pathways in cells, leading to or inhibiting the occurrence of gastric cancer.
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UPS modulators by targeting proteasome and enzymes and how

they pave the way towards GC treatment are discussed in detail

below (with the working model seen in Figure 2).
3.1 Targeting proteasome for GC

The proteasome is a large multi-protein complex designed to

degrade proteins specifically marked by ubiquitination (21). In

2003, the FDA approved bortezomib as the first proteasome

inhibitor for treating multiple myeloma that hugely increase the

survival time of patients with multiple myeloma, which has

provided ample evidence that targeting the proteasome is a viable

approach for the treatment of human cancer (22, 23). For GC,

bortezomib suppresses proliferation in vitro and in vivo, and is

more effective in GC cells with lower NF-kB activation than others

(24). In addition, proteasome inhibitor MG132 can effectively

reverse the multidrug resistance by promoting drug-induced

apoptosis of GC cells and inhibiting the expression of p-

glycoprotein, confirming the hypothesis that proteasome

inhibitors may be effective chemotherapeutics for GC with

multidrug resistance (25). Unfortunately, the results of the phase

II clinical trial show that bortezomib as a single inhibitor is inactive

in advanced or metastatic GC therapy (26, 27). Therefore, future

studies of proteasome inhibitor should focus on the combination of

other targeted drugs in GC therapy.
3.2 Targeting E1 and E2 enzymes for GC

Ubiquitin-activating enzyme E1 is the first enzyme in UPS,

which mediates the activation of ubiquitin. In mammals, only two

E1 enzymes including UAE and UBA6 have been discovered (28).

At present, a variety of E1 enzyme inhibitors have been reported,

such as PYZD-4409 and TAK-243 that inhibit the activity of UAE.

PYZD-4409 not only inhibits the growth of primary acute myeloid
Frontiers in Oncology 03
leukemia cells in vitro, but also delays tumor growth in mouse

models of leukemia in vivo (29). In addition, TAK-243, as a new

class of drugs inhibiting UAE, can induce the death of various

cancer cells and attenuate the growth of xenograft models of many

types of tumors (8). To date, however, there is no report on E1

enzyme inhibitors for GC due to the low specificity of inhibitors and

less E1 enzymes.

Ubiquitin-conjugating enzyme E2 as the key enzyme performs

the second step of the ubiquitination reaction (30). The human

genome encodes around 40 different E2 enzymes (31).

Accumulating evidence suggests that E2 enzymes are crucial in

the occurrence and development of cancer (32). Based on the

indispensability and diversity of E2 enzymes in ubiquitination,

more and more inhibitors are designed for E2 than E1 enzymes.

For example, the silence of UBE2D1 reduces the ubiquitination of

SMAD4, inhibiting the migration of GC cells (33). Moreover,

UbcH10 promotes the growth of GC cells and may represent a

potential biomarker for GC (12). Besides, the novel UBE2T

inhibitor controls the overactivation of Wnt/b-catenin signaling

and the progression of GC by blocking RACK1 ubiquitination (34).

Thus, it is attractive to develop inhibitors targeting E2 enzymes such

as UBED1, UbcH10, and UBE2T for GC treatment.
3.3 Targeting E3 enzyme for GC

In the series of enzymatic cascades, ubiquitin-ligase enzyme E3

determines the specific recognition of target proteins and plays a

key role in the functioning of the UPS (35). Compared to efforts

against the E1 and E2 enzymes or proteasome, it is considered a

better therapeutic target through targeting E3 enzymes for GC drug

development because the E3 enzymes confer substrate specificity.

Up to now, more than 600 types of E3 enzymes have been

discovered in humans (36). In accordance with the roles, E3

ubiquitin ligases can be divided into two categories: tumor

promoter and tumor suppressor based on their target proteins.
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FIGURE 2

UPS modulators inhibit gastric tumorigenesis by regulating the abnormal components of the UPS including proteasome, E1 enzymes, E2 enzymes
(UBE2C, UBE2T, etc.), and E3 enzymes (MDM2, Cullin1, etc.).
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Although many types of E3 enzymes are reported, the related

research is rare in GC development. At present, about 66 kinds of

E3 enzymes are involved in GC, of which 40 types exerted an

oncogenic function for promoting cancer progression and 26 types

play tumor-suppressive functions (Tables 1, 2). Subsequently,

representative E3 enzymes that play key roles in the development

of GC will be summarized separately and analyzed the possibility as

the drug targets.

The growth and development of GC can be inhibited by

suppressing E3 enzymes which are the tumor promoting factor.

The upregulation of MDM2 and the accompanying inactivation of

p53 pathway play an important role in diffuse gastric cancer (119).

MiR-410 inhibits gastric cancer cells proliferation, migration, and

invasion by targeting the MDM2 gene (120). Nutlin-3, which is the

MDM2 inhibitor, has anti-tumor effects in GC cells in vitro and in

vivo (121). Besides, SKP2, also named FBXL1, is an F-box typed E3

ligase, which is an overexpressed and modulated malignant

phenotype via p27 proteolysis in GC (122). Downregulation of

SKP2 inhibits the growth and metastasis of GC cells (123).

Moreover, UHRF1 (Ubiquitin-Like PHD And RING Finger

Domain-Containing Protein 1) expression is significantly higher

in GC and is an independent and significant predictor of GC

prognosis (124, 125). The knockdown of UHRF1 suppresses the

growth, migration, invasion, and apoptosis of GC cells via an ROS-

associated pathway (72). To date, there is no E3 enzyme inhibitor

for clinical trials in GC treatment. However, the above studies show

that the development of drugs that target the promoting function of

E3 enzymes is valuable for GC therapy, though researching and

finding the antagonist to inhibit promoter maybe the promising

therapy for GC.

Different from a tumor promoter, the expression of a tumor

suppressor needs to be enhanced to inhibit the occurrence of GC.

RNF43 acts as a negative regulator of the Wnt signaling pathway by

mediating the ubiquitination, endocytosis, and subsequent

degradation of Wnt receptor complex component Frizzled.

Research shows that RNF43 that inhibits cell proliferation is

significantly downregulated in the gastric carcinoma, and its

expression is positively correlated with p53 and negatively

correlated with Ki67 and Lgr5 protein (107). RNF43 is related to

the development of GC and attenuates the stemness of GC stem-like

cells through the Wnt-b/catenin signaling pathway (108). The loss

of endogenous RNF43 function enhances the growth of GC (126).

FBXW7 is another important E3 ligase which negatively regulates

GC progression. Low levels of FBXW7 protein in primary GC

contributes to malignant potential and poor prognosis (127). In

vitro studies found that FBXW7 inhibits GC progression by

inducing apoptosis and growth arrest (94). In addition, CHIP is

the ubiquitin ligase which contains a tetratricopeptide repeat and a

U-box, and can significantly reduce the migration and invasion of

GC cells though inhibiting the NF-kB signaling pathway (84). CHIP

overexpression impedes the growth of xenografts in nude mice and

inhibits endothelial cell growth and tube formation (128). Based on

current research, enhancing the function of E3 enzymes can inhibit
Frontiers in Oncology 04
the development of GC. For example, eprenetapopt, as the first

targeting drug of p53 as suppressor gene, binding the cysteine

residue of mutant p53 and converting to the wild-type

conformation, can restore p53 function. Therefore, by restoring

the function of the inactivated mutant E3 enzymes to exert tumor

suppressor roles, it is an interesting research field for GC treatment.
4 PROTAC

Traditional small molecule drugs and antibodies play a critical

role for diseases treatment by activating or inhibiting the function of

the target protein, which is defined as “occupation-driven” mode

(129). This mode requires higher concentration of inhibitors or

monoclonal antibodies to occupy the activity site of the target so

that the transduction of downstream signaling pathways is blocked

(130, 131). As an emerging new technology, PROTAC is different

from the “occupation-driven” mode through the UPS system to

ubiquitinate and degrade the target proteins (132–134). A PROTAC

includes three key parts: E3 ubiquitin ligase ligand, POI (protein of

interest) ligand, and linker (135, 136). As shown in Figure 3, in this

technology, the specific target protein is recognized by the POI

ligand, and the E3 ubiquitin ligase ligand is used to recruit the

specific E3 enzyme of the target protein, so that the target protein

and its E3 enzyme are spatially bound together via a flexible

chemical linker to promote the degradation of the target protein

(137–139). Based on this principle, a variety of PROTAC drugs have

been designed and synthesized. For example, ARV-110 is the first

oral bioavailable PROTAC small molecule drug that enters clinical

trials in the field of PROTAC in world, which can selectively target

degradation androgen receptor (AR) to treat prostate cancer (132).

In the GC process, there is an abnormal expression of protein. It is

attractive by looking for E3 enzymes of these proteins to design

effective PROTAC drugs for GC therapy.
4.1 Advantages and disadvantages of
PROTAC technology

PROTAC as the novel therapeutic technology offers numerous

advantages over traditional inhibition strategies (140, 141). Firstly,

the dose of traditional small molecules drugs is high, which may

result in toxic side effects (142). However, in PROTAC technology,

by catalyzing the degradation of the target protein, lower drug

concentration could achieve good degradation efficiency to

overcome on-target drug toxicity (143, 144). Secondly, the UPS is

the main protein degradation system and E3 ubiquitin ligases are

widely expressed in a variety of cells (145). The PROTAC molecule

only needs to connect the target protein and E3 enzymes together;

subsequently, protein is degraded through the proteasome (146).

Therefore, PROTAC technologies have broad applications for

different targets. Thirdly, PROTAC degrades the protein to the

basal level within a few minutes (137). However, the re-synthesis
frontiersin.org
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rate of most proteins is very slow so that the cell still needs the time

to restore the physiological protein level; even PROTAC is

completely cleared, thereby PROTAC could prolong the action

time (147).
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In general, the use of PROTAC drugs is associated with several

disadvantages, such as worse membrane permeability and bad oral

availability (148). In addition, the molecular weight of PROTAC is

higher compared with traditional small molecule drugs because of
TABLE 1 E3 enzymes as the promoter in GC.

Types E3 enzymes Function Substrate Signal References

RINGs CHFR promoter PARP-1 EMT, Cell cycle (37, 38)

Cullin1 promoter – Cell cycle, Apoptosis (39)

FBXL7 promoter Survivin Apoptosis (40)

FBXO11 promoter – PI3K/AKT, EMT (41)

FBXO2 promoter – EMT (42)

FBXO6 promoter – Apoptosis, Invasion (43)

FBXW5 promoter – Hippo pathway (44)

MDM2 promoter p53 p53 pathway (13)

MKRN1 promoter p14ARF Senescence (14)

PRAJA promoter ELF/Smad3 TGF-b signaling (45)

RFWD3 promoter p53 AKT, ERK/P38 and Slug pathways (46)

RNF114 promoter – Cell cycle (47)

RNF115 promoter – Autophagy (48)

RNF126 promoter – Cell cycle (49)

RNF185 promoter JWA Metastasis (50)

RNF2 promoter – Cell cycle (51, 52)

RNF31 promoter FOXP3 Metastasis (53)

RNF38 promoter SHP-1 STAT3 signaling (54)

RNF6 promoter SHP-1 STAT3 signaling (39, 55)

SIAH1 promoter b-catenin Nuclear translocation of b-catenin (56)

SIAH2 promoter – Invasion (57)

SKP2 promoter - Cell cycle (58)

TRIM14 promoter - AKT signaling (59)

TRIM15 promoter - Invasion (60)

TRIM23 promoter - – (61)

TRIM24 promoter - Wnt/b-catenin (62)

TRIM29 promoter - Wnt/b-catenin (63)

TRIM32 promoter – Wnt/b-catenin, AKT (64, 65)

TRIM37 promoter – NF-kB pathway (66)

TRIM44 promoter – Metastasis (67)

TRIM59 promoter p53 p53 pathway (68)

UBR2 promoter – Wnt/b-catenin (69)

UBR5 promoter GKN1 – (70, 71)

UHRF1 promoter – Invasion (72)

HECTs HUWE1 promoter TGFBR2 Invasion (73)

(Continued)
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its triplet form; as a result, its solubility may be poor (140). Besides,

the production of PROTAC is more difficult and costly and the

potential toxicity of PROTAC is longer than traditional small

molecule drugs (149). Hence, the researchers need still pay

attention to solve these problems for PROTAC drug development.
Frontiers in Oncology 06
4.2 PROTAC technology in GC treatment

With GC as heterogeneous cancer, is difficult to design effective

drugs using traditional targets. Patients are prone to drug resistance

in the current molecular targeted drug treatment. However,
TABLE 2 E3 enzymes as the suppressor in GC.

Types E3 enzymes Function Substrate Signal References

RINGs CBLB suppressor – Cell adhesion and Detachment (81–83)

CHIP suppressor TRAF2 NF-kB pathway (84, 85)

COP1 suppressor c-Jun/p53 Invasion (86)

DTX1 suppressor c-FLIP Apoptosis (87)

FBX8 suppressor – Metastasis (88)

FBXL2 suppressor FoxM1 Cell cycle (89)

FBXL5 suppressor Cortactin Invasion (90, 91)

FBXO21 suppressor Nr2f2 EMT (92)

FBXO31 suppressor SNAI1 EMT (93)

FBXW7 suppressor MCL1/RhoA/ENO1/GFI1 Apoptosis, AKT, GSK3b (94–97)

MARCH8 suppressor DR4 PI3K Pathway (98)

MKRN2 suppressor PKM2 MAPK/ERK (99)

PRAJA2 suppressor KSR1 MEK-ERK (100)

RBX1 suppressor PRDX2 Invasion (101)

RNF168 suppressor RHOC RHOC/HDAC1 (102)

RNF180 suppressor RhoC STAT3 signaling (103–105)

RNF181 suppressor – ERK/MAPK-cyclin D1/CDK4 pathway (106)

RNF43 suppressor – Wnt/b-catenin (107, 108)

SPOP suppressor – Hedgehog/Gli2 signaling (109)

TRIM15 suppressor – Invasion (110)

TRIM25 suppressor SP1 TRIM25/SP1/MMP2 (111)

TRIM31 suppressor – – (112, 113)

ZNRF3 suppressor – WNT and Hedgehog signaling (114, 115)

HECTs HACE1 suppressor – Invasion (116)

ITCH suppressor Smad7 EMT (117)

NEDD4L suppressor – PI3K-AKT (118)
TABLE 1 Continued

Types E3 enzymes Function Substrate Signal References

NEDD4-1 promoter PTEN PTEN pathway (74)

SMURF1 promoter MEKK2 MEK1/2-ERK1/2 (75, 76)

UBE3C promoter AXIN1 Wnt/b-catenin (77)

WWP1 promoter – PTEN-Akt (78, 79)

WWP2 promoter PTEN PTEN pathway (80)
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PROTAC technology as a means of precise treatment could

partially solve the above problems. Thus, based on the

characteristics of PROTAC technology, it is a promising strategy

to investigate new substrate proteins and their corresponding E3

enzyme in GC, which will provide a basis for the development of

PROTAC drugs. At present, E3 enzymes are often employed for

designing PROTAC including VHL, CRBN, and IAPs that belong to

the RING family (9, 150, 151). Besides, cancer-related proteins such

as AR, ER, BRD4, CDK4, and CDK6 are the top five studied targets

for degradation (152). To date, about 10 PROTAC drugs have

already entered the clinical development stages and about 110 are in

pre-clinical projects worldwide. Among them, ARV-110, ARV-471,

and CFT7455 that are currently the fastest clinically progressing

PROTAC drugs have entered clinical phase II trials (132, 153, 154).

ARV-110 is a CRBN-based PROTAC, which is designed to degrade

AR for prostate cancer treatment (155). ARV-471, by degrading ER

for treating breast cancer, is also a CRBN-based PROTAC (156).

Moreover, CFT7455 is designed based on CRBN E3 ligases for

multiple myeloma through decreasing the level of IKZF1/3 protein

(157). Therefore, PROTAC technology provides the potential for

development of cancer-targeted therapy drugs.

However, the development of PROTAC drugs is relatively slow

in GC. According to research, ARV-825 as the PROTAC drug

effectively inhibits the growth of GC cells and elevates the apoptosis

through downregulation of c-MYC and PLK1, suggesting that it

may be a better therapeutic strategy for GC (158), while the clinical

application of ARV-825 needs to explore continually. For GC, there

are more than 40 types of E3 enzymes that have been reported, but

it is the focus topic how to select appropriate E3 enzymes and their

targets to develop PROTAC drugs. Three main points need to be

considered when choosing E3 ligase. a. Choose the E3 ligase whose

main function is to induce protein degradation. b. The substrate
Frontiers in Oncology 07
protein of E3 enzymes should play an important role in GC

development. c. The tissue and cell-level distribution of E3

enzymes should be fully considered. Here, we summarize the E3

enzymes and corresponding substrates that have been studied in

GC (Tables 1, 2) so as to provide the base for the development of

PROTAC drugs in the future. In addition to the selection of E3

ligase and specific target protein, it is considered to select the

corresponding ligand and appropriate length linker, which is the

problem that restricts PROTAC technology (159). At present, most

of the ligands are the thalidomide and its derivatives to recruit

CRBN in clinic (157, 160). With the development of PTOTAC, a

variety of E3 enzymes including AhR, clAP1, clAP2, CRBN,

DCAF11, DCAF15, DCAF16, IAP, MDM2, RNF114, RNF4, VHL,

and XIAP have developed corresponding ligands (147). Besides,

Linker is a structure connecting the two ligands of PROTAC drugs,

the length of which have an important influence on the biological

activity of PROTAC drugs (137). However, there are no general

rules for linker design (161). With current challenges solved, more

and more E3 enzymes that are mentioned in Tables 1 and 2 will be

used to develop PROTAC drugs in the future for GC treatment.

PROTAC may become another important disease treatment drug

after small molecule inhibitors and monoclonal antibodies.
5 Conclusion

The occurrence and development of GC is often accompanied

by the disorder of the UPS system, which is manifested as the

abnormal expression of the E1, E2, and E3 enzymes. Targeting these

abnormally expressed enzymes or proteasomes is a promising

strategy for GC treatment. At present, these E3 ligases are worth

considering as targets including MDM2, SKP2, UHRF1, RNF43,
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FIGURE 3

PROTAC drugs degrade important oncogenic substrates in the process of tumorigenesis by linking the E3 enzyme and substrate (HUWE1/TGFBR2,
FBXO31/SNAI1, ITCH/Smad7, etc.), preventing the occurrence of gastric cancer.
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FBXW7, and CHIP E3 enzymes widely studied in GC. However, it is

easier to inhibit the function of oncogenes than to restore the roles

of tumor suppressor, so E3 enzymes as oncogenes maybe more

suitable. However, there are no E3 enzyme modulators for clinical

trials in GC treatment to date. Considering the extensive and

complex activities regulated by ubiquitination, blocking or

activating E3 ligases for GC therapy may adversely affect other

normal biological process. Therefore, it remains a considerable

challenge to explore and solve these problems. Moreover,

PROTAC is the novel technology to develop drugs for degrading

intracellular important oncogenic proteins that could accomplish

precise treatment of GC through the UPS. So far, only a fraction of

E3 enzymes has been shown to be suitable for PROTAC. It also

needs to identify more available E3 ligases and explore the

mechanisms to develop PROTAC. It is believed that with the

progress of basic research and clinical trials, these problems can

be solved finally. Hence, targeting the Ubiquitin-proteasome system

for gastric cancer is a promising strategy to supply a gap due to lack

of sufficient drug selection via the UPS system in GC therapy. To

develop targeted drugs by using UPS has bright prospects for GC

treatment in further studies.
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