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Differential regional
importance mapping for
thyroid nodule malignancy
prediction with potential to
improve needle aspiration
biopsy sampling reliability
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Jincao Yao1, Lijing Wang1* and Lei Xu3,4*

1Department of Ultrasonography, The Cancer Hospital of the University of Chinese Academy of
Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of
Sciences, Hangzhou, China, 2School of Mathematical Sciences, Zhejiang University, Hangzhou, China,
3Department of Ultrasound, Zhejiang Society for Mathematical Medicine, Hangzhou, China, 4Group of
Computational Imaging and Digital Medicine, Zhejiang Qiushi Institute for Mathematical Medicine,
Hangzhou, China
Objective: Existing guidelines for ultrasound-guided fine-needle aspiration

biopsy lack specifications on sampling sites, but the number of biopsies

improves diagnostic reliability. We propose the use of class activation maps

(CAMs) and our modified malignancy-specific heat maps that locate important

deep representations of thyroid nodules for class predictions.

Methods: We applied adversarial noise perturbations to the segmented

concentric “hot” nodular regions of equal sizes to differentiate regional

importance for the malignancy diagnostic performances of an accurate

ultrasound-based artificial intelligence computer-aided diagnosis (AI-CADx)

system using 2,602 retrospectively collected thyroid nodules with known

histopathological diagnosis.

Results: The AI system demonstrated high diagnostic performance with an area

under the curve (AUC) value of 0.9302 and good nodule identification capability

with a median dice coefficient >0.9 when compared to radiologists’

segmentations. Experiments confirmed that the CAM-based heat maps reflect

the differentiable importance of different nodular regions for an AI-CADx system

to make its predictions. No less importantly, the hot regions in malignancy heat

maps of ultrasound images in comparison with the inactivated regions of the

same 100 malignant nodules randomly selected from the dataset had higher

summed frequency-weighted feature scores of 6.04 versus 4.96 rated by

radiologists with more than 15 years of ultrasound examination experience

according to widely used ultrasound-based risk stratification American College

of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) in

terms of nodule composition, echogenicity, and echogenic foci, excluding shape

and margin attributes, which could only be evaluated on the whole rather than

on the sub-nodular component levels. In addition, we show examples
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demonstrating good spatial correspondence of highlighted regions of

malignancy heat map to malignant tumor cell-rich regions in hematoxylin and

eosin-stained histopathological images.

Conclusion: Our proposed CAM-based ultrasonographic malignancy heat map

provides quantitative visualization of malignancy heterogeneity within a tumor,

and it is of clinical interest to investigate in the future its usefulness to improve

fine-needle aspiration biopsy (FNAB) sampling reliability by targeting potentially

more suspicious sub-nodular regions.
KEYWORDS

tumor heterogeneity, ultrasound guided biopsy, class activation map, artificial
intelligence, thyroid nodule
Introduction

Thyroid nodules are detected in as high as 65% of the

population (1), and thyroid cancer is one of the most frequently

occurring malignant tumors. Meanwhile, ultrasound imaging is the

most commonly used method for evaluating thyroid nodules, given

its ease to detect the nodules and good sensitivity to differentiate

benign from malignant tumors as well as its non-invasive nature

with widespread accessibility in clinics. However, the diagnosis of

thyroid nodules is highly dependent on radiologists’ personal

experience and subjective judgment, leading to not uncommonly

inconsistent conclusions. Currently, cytopathological examination

performed on minimally invasive fine-needle aspiration biopsy

(FNAB) typically has a diagnostic sensitivity and specificity that

vary at 65%–98% and 72%–100%, respectively (2–4). More

importantly, as cancerous masses are typically heterogeneous (5,

6), it is of clinical importance to be able to differentiate regions of

different malignancy levels within the same imaged tissue such that

FNAB sampling can be more precisely guided. To date, there are

numerous practical guidelines about under what circumstances

FNAB shall be applied (7–9), but there exists no consensus or

guideline about the number of needle-sampling passes to acquire

adequate specimens for diagnostic purposes, let alone

recommendations for precise sampling sites in nodules under

ultrasound guidance. With the advancement of artificially

intelligent technologies and especially the development of deep

learning algorithms, it becomes increasingly common for

radiologists to include these auxiliary mathematical models in

their toolboxes during clinical studies for disease detection and

diagnosis (10–12).

Surprisingly or not, the capability of convolutional neural

networks (CNNs) to approximate any arbitrary functions has

become a double-edged sword, as any insights about how the

models come to their conclusions are hardly accessible to human

understanding given their architectural designs. Some proposed

circumventing strategies include weighting the predicted

classification probability of a CNN model as a contributing factor

together with other human-interpretable image features (13) and
02
taking the similarities between imaged lesions with known

diagnosis as an extra channel of information to guide human-

centered diagnosis (14).

Other possibilities to retrieve hints using computer-aided

artificial intelligence diagnosis as we perceive include generating

the class activation map (CAM) (15) that localizes the deep

representation of class-discriminating image regions. In the field

of medical imaging, CAMs have been employed to visualize hot

regions that conclude each predicted classification type of tissue

(16–18) using a heat map representation. To date, it is however

mostly a visualization tool and lacks quantitative validation to show

whether hot regions in such heat maps for malignant samples

indeed possess higher importance in determining the classification

type. If so, the question of how much more important the hot

regions are relative to other regions still awaits an answer.

To answer these questions, we designed this proof-of-concept

computational study described as the following. We first generated

CAMs in two different rendering configurations using the Software

Development Kit (SDK) of the artificial intelligence computer-aided

diagnosis (AI-CADx) system referred to as “AI-SONIC™ Thyroid”

for thyroid nodule diagnoses. In the first configuration, the heat

maps were rendered conventionally such that they make no

distinctions between benign and malignant cases visually, and the

color temperature is supposed to show the associated regional

importance in predicting the classification regardless of what the

predicted type is. In the second configuration, however, the

intensities of these heat maps were normalized to the malignancy

probabilities predicted by the AI-CADx system and rendered in

such a way that the more reddish the color, the higher probability

that the nodule is predicted to be malignant, whereas the bluish

color indicates benignity. In other words, the second visualization

configuration presents essentially malignancy heat maps.

To quantitatively analyze the importance of different regions

within the ultrasound-imaged thyroid nodules in the diagnosis by

the AI-CADx system, we subdivided each nodular CAM into five

concentric areas of the same size and then evaluated the AI

diagnostic performances after the adversarial noises (19) were

applied to each subdivided nodular region in ultrasound images.
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The motivation behind this is that, hypothetically, the regions of

higher importance for predicting the correct diagnosis of thyroid

nodules should be more vulnerable to noise perturbations. As a

second attempt, we also performed a test by varying the heat

intensity threshold to segment CAMs and evaluated how the

diagnoses were based on regions above the thresholds.
Materials and methods

Data acquisition

The ultrasound images covering a total of 2,602 thyroid nodules

from 2,488 patients were collected between January 2011 and

February 2019 by The Cancer Hospital of the University of

Chinese Academy of Sciences in Hangzhou, Zhejiang, China. All

nodules were diagnosed by surgical pathological examinations,

among which 1,581 cases were determined to be benign and

1,021 cases were found to be malignant. The local ethics

committee waived the ethical approval in view of the

retrospective nature of the study, and all reviews of the

ultrasound image and postsurgical hematoxylin and eosin (H&E)-

stained pathological images being performed were part of the

clinical routine.
AI-CADx model

This study was based on the AI-SONIC™ Thyroid nodule

diagnosis system (Demetics Medical Technology, Hangzhou,

China). It is built on the EfficientNet (20) architectural backbone

and employs supervised sharpness-aware minimization for model

parameter optimization to realize automatic nodule segmentation

and classification (21). The classification module of the AI model

relies on the precise localization of the nodules. This system can

automatically detect thyroid nodules in two-dimensional grayscale

ultrasound images and output corresponding masks. Therefore,

radiologists do not need to manually outline the thyroid nodules

except on rare occasions when manual corrections are necessary.
Heat map

All the generated heat maps in this study were based on CAM

(15) using global average pooling (GAP) in CNNs. Before the final

output layer for image classification, we performed global average

pooling on the convolutional feature maps and used those as

features for a fully connected layer that produces the desired

output. We projected back the weights of the output layer onto

the convolutional feature maps using the cited CAM method.

Global average pooling outputs the spatial average of the feature

map of each unit at the last convolutional layer. A weighted sum of

these values is used to generate the final output. We computed a

weighted sum of the feature maps of the last convolutional layer to

obtain our class activation maps.
Frontiers in Oncology 03
For an image, we used gk(x, y) to represent the activation of unit k

in the last convolutional layer at the spatial location. Next, for unit

(x, y), Gk is the result of performing global average pooling, which is

defined asox,ygk(x, y). Then, for a class i, the input to the softmax Si
isokw

i
kGk, where the w i

k is weight corresponding to class i for unit k.

In particular, the w i
k implies the importance of class i. The final

output of the softmax for class i, Pi is given by exp (Si)

oi exp (Si)
. The bias term

was ignored as in the original paper by setting the input bias of the

softmax to 0 to have no impact on the classification performance.

By adding Gk =o
x,y
gk(x, y) into the class score, we have the

following:

Si =o
k

w i
ko
x,y
gk(x, y)

               =o
x,y
o
k

w i
kgk(x, y)

In addition, we define Mi as the class activation map for class i,

where each spatial element is the product of the weight w i
k and the

activation gk(x, y) given by the following:

Mi(x, y) =o
k

w i
kgk(x, y)

Therefore, Si =o
x,y
Mi(x, y) and Mi(x, y) directly show the

importance of the activation at spatial grid (x, y) leading to the

classification of an image to class i.

The CAM is a weighted linear sum of the presence of these

visual patterns at different spatial locations. By upsampling the class

activation map to the size of the input image, we could identify the

image regions most relevant to the particular category.
Nodular region segmentation and noise
perturbation

We divided each CAM of thyroid nodules into five nearly

concentric regions of equal sizes. This was performed first by

setting a binarization threshold to 0 to obtain a nodular

segmentation with a total area of N. Then, we searched for a

second threshold for level setting the CAM to segment the

outermost region with the size of N/5. We iterated this process

until we segmented out the innermost region with the same size.

To illustrate the different importance of each region of the heat

map, we added perturbations to the different regions. A commonly

employed first-order adversarial attack method—Fast Gradient Sign

Method (FGSM) (19)—was used to generate perturbed thyroid

ultrasound images.

Let x be the input to the model, y the output to the model (the

targets associated with x), f the parameters of a model, and L(x, y,

f) the cost function used to train the neural network. Then, we can

linearize the cost function about the current value of f, acquiring an
optimal max-norm constrained perturbation of

d = bsign(∇x L(x, y,j))

where b is a predefined perturbation size, which represents the

maximum change to pixel values of an image. sign() is a symbolic

function, which is defined as
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sign(x) =

1,                  x > 0

0,                 x = 0

−1,                 x < 0

8>><
>>:

In addition, we used the back-propagation to compute the

required gradient.

This method can reliably generate perturbations to the input of

the model. The single-step FGSM perturbs the original example by a

fixed amount along the direction (sign) of the gradient of loss

function such that the result from the perturbed image is given by

the following:

x0 = x + bsign(∇x L(x, y,j))
Statistical methods

To assess the performance of the AI-CADx system, we

computed the receiver operating characteristic (ROC) curve and

used the area under the curve (AUC) as the evaluation metric. For

each nodule, we randomized five times the positions in segmented

nodular regions where perturbation noises were applied, and we

used the malignancy probabilities averaged over five times of

randomized noise perturbations to compute the ROC curves and

the subsequent AUC values. To compare individual ROC curves, we

performed DeLong’s test (22) to evaluate whether the differences in

AUC values were statistically significant.

For further statistical significance validation, we evaluated AUC

values computed for different regions in each dataset (the division

of which is described above), followed by paired t-test for different

segmented nodular regions.
Ultrasound feature evaluations in
highlighted regions versus the inactivated
regions

We randomly selected 100 malignant nodules from our dataset

and had the ultrasound features rated by radiologists with 15 years

of ultrasound examination experience according to widely used

ultrasound-based risk stratification American College of Radiology

(ACR) Thyroid Imaging Reporting and Data System (TI-RADS)

(23) in terms of nodule composition, echogenicity, and echogenic

foci. We excluded feature evaluation based on shape and margin

attributes, as they, by design, could only be evaluated on the whole

rather than on the sub-nodular component levels. We included the

statistical evaluation of sub-component localizations for the

highlighted and inactivated regions visualized through our

proposed malignancy heat map representation, however without

any associated risk scores. Each scored feature was weighted against

its occurrence frequency and multiplied with the risk points given

by ACR TI-RADS criteria to gain an overview of the average

ultrasound feature profile of the highlighted regions in contrast to

the inactivated regions of our proposed malignancy heat map.
Frontiers in Oncology 04
Histopathological correspondence
evaluation of malignancy heat map

H&E staining images of postoperative histopathological slides

with saved ultrasound images of matched sectional views were

reexamined by a senior pathologist with 25 years of work experience

with the boundaries and shapes of the malignant regions of thyroid

tumors on the H&E slides outlined using software provided by

digital pathology slide scanner KF-PRO-005-EX (Konfoong Biotech

International Co., Ltd., Yuyao, China).
Results

Heat maps for benign and malignant
nodule classifications

Representative examples of the CAMs generated by using AI-

SONIC™ Thyroid SDK are shown in Figure 1. The first row shows

a benign thyroid nodule, and the second row shows a malignant

thyroid nodule. The maps highlight the discriminative image

regions for thyroid nodule classification. On the left column,

zoomed-in thyroid nodule images are shown, whereas the middle

column shows the corresponding CAMs. The thyroid images

together with their CAMs are superimposed and shown in the

original images on the right column. We can see from the exemplars

that the malignant nodule has a more complicated CAM profile

than the benign one, which may reflect some correlation with the

shapes of nodular margins.
Influence of noise perturbations to
different CAM regions on thyroid nodule
diagnosis

In order to evaluate whether different regions of thyroid nodules

may contribute differently to their classifications by the AI-CADx

system, we first segmented individual CAMs into five concentric

areas of equal sizes according to the method section about nodular

CAM segmentation as described above. An illustration of how the

segmentation of a nodular CAM looks is given in Figure 2.

We then added gradient sign noise perturbation, which is

commonly used for adversarial attacks for CNN models, to each

segmented region in the original ultrasound images as shown in

Figure 3. The first row shows the noise images added to each

segmented region (Figure 2), and the second row shows the noise-

perturbed images. The noises added to the original images are

barely visible to human eyes but do have a strong impact on the

diagnostic performance of the AI-CADx system. We chose the

noise magnitude b to be 0.0136 by searching for the maximum

absolute gradient of AUC values with respect to the noise

magnitudes (Supplementary Figure 1). As a control, the ROC

curve and the corresponding AUC value calculated for non-

perturbed images are given in Supplementary Figure 2.
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All thyroid nodule images with noises added to different regions

were then classified, and the ROC curves were computed for

different noise-perturbed regions, as shown in Figure 3K. To

statistically compare the influence of noise perturbation on

different regions using ROC curves, we computed pairwise p-

values according to DeLong’s test (16), with the results shown in

Figure 3K. Note that we skipped the statistical comparisons against

oneself, as in this case, the p-values were constant 1. It can be seen

that it was not the innermost or hottest region (green line for region

I) from the CAMs that were worst affected by noises but region IV
Frontiers in Oncology 05
(purple line) followed by region III (orange line), suggesting that the

tissues surrounding the core area identified by CAMs played a

crucial role in the benign and malignant nodule diagnoses.

To further validate this observation, we subdivided the

complete dataset into five subsets randomly, summarized

in Table 1.

We calculated the AUC values for each dataset in which noise

perturbations were applied in the same way as described above to

individually segmented nodular regions, and we computed their

average values and standard deviations over the five datasets as well
FIGURE 2

Division of a CAM into five equal parts. (A) The CAM of a thyroid nodule. (B–F) The segmented region from the outermost region (labeled as region
I) to the innermost region (labeled as region V), respectively. CAM, class activation map.
FIGURE 1

The CAMs of thyroid nodules. (A) A benign thyroid nodule. (B) The corresponding CAM. (C) The superposition of panels (A, B) in the original image.
(D) A malignant thyroid nodule. (E) The corresponding CAM. (F) The superposition of panels (D, E) in the original image. CAMs, class activation maps.
frontiersin.org
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as the p-value matrix for pairwise comparisons. The corresponding

results are given in Figure 4.
Influence of noise perturbations to
different malignancy regions on thyroid
nodule diagnosis

As cases with suspicious malignant features are more clinically

important to be identified in order for subsequent treatment

planning, for instance, FNAB, to verify the malignancy status, we

modified the conventional CAMs by multiplying the malignancy

probability predicted by the AI-CADx model with the CAM specific
Frontiers in Oncology 06
for cases suspicious for being malignant to generate malignancy

heat maps.

We performed nodular segmentation and applied noise

perturbations in the same way as described previously in the

Materials and Methods section. In this experiment, we also

randomly subset the samples with predicted malignancy scores of

higher than 0.4 (below which the probability of being malignant was

approximately 3%) to five datasets for the purpose of ensuring

reproducibility. The results together with the p-value matrix for

pairwise comparisons are summarized in Figure 5. It can be found

that in this case, adding noises to innermost region V has the

greatest influence on thyroid nodule diagnostic performances,

correlating well with the heat intensity profile (Figure 5).
FIGURE 3

Adding noise perturbations to five regions from the outermost area to the innermost area of equal sizes in the original image and their influence on
classification performances. (A–E) The generated gradient sign noise images. (F–J) The perturbed images with noises with magnitude b of 0.0136
(identified as the point where the overall AUC values decay the fastest as measured by absolute gradient) added to each corresponding region. (K) ROC
curves calculated from the complete dataset with nodular regions separately perturbed by noises in regions I to V represent the outermost to innermost
nodular regions. (L) The associated p-value matrix for statistical comparisons. All p-values were ≤0.002, and p-values lower than 1 × 10−14 were shown
as 1 × 10−14. Self-comparisons were omitted, as they were constant at 1. AUC, area under the curve; ROC, receiver operating characteristic.
TABLE 1 The subdivided datasets for subsequent nodular region comparison experiment.

Dataset Total nodules Benign Malignant

1 520 320 200

2 520 329 191

3 520 300 220

4 520 322 198

5 522 310 212
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A B

FIGURE 4

The AUC values calculated from the five subdivided datasets with nodular regions separately perturbed by noises and the associated p-value matrix
for statistical comparisons. (A) Each bar representing the corresponding region is presented with the average AUC values over the five subdivided
datasets and the standard deviations. (B) All p-values were<0.004, and self-comparisons were omitted, as they were constant at 1. AUC, area under
the curve.
FIGURE 5

Our proposed malignancy heat map and the influence of noise perturbations to five different regions on classification performances. (A, D) The
cropped zoomed-in images for benign and malignant nodules, respectively. (B, E) The corresponding heat maps with color temperature bounded by
the predicted malignant probabilities (0.2907 vs. 0.9382) by the AI-CADx system. (C, F) The superimposed images for the corresponding nodules
and heat maps. (G) Each bar representing the corresponding region is presented with the average AUC values over the five subdivided malignant
datasets and the standard deviations. (H) The associated p-value matrix for statistical comparisons. The smallest p-values were<0.001, and self-
comparisons were omitted, as they were constant at 1. AI-CADx, artificial intelligence computer-aided diagnosis; AUC, area under the curve.
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Correlation of highlighted regions with
higher risks versus inactivated regions of
the heat maps

To investigate whether the highlighted regions had a higher

correlation with malignancy risks compared to the inactivated

regions of our proposed malignancy heat map, radiologists with

more than 15 years of ultrasound examination experience evaluated

the ultrasound features according to the ACR TI-RADS risk

stratification criteria in terms of nodular composition,

echogenicity, and echogenic foci, which are applicable to

subcomponent evaluations. The results summarized from 100

randomly selected malignant nodules in Table 2 show that the

more centrally localized highlighted regions in the malignancy heat

maps had higher summed weighted risk scores of 6.04 when

compared to the inactivated regions of 4.96, demonstrating a

higher correlation with the malignancy risks. On the whole, the

highlighted regions turn out to be more hypoechoic and more likely

to contain punctate calcifications.
Pathological significance of the heat maps

In order to verify the pathological significance of the heat maps,

we first compared the nodule masks generated by the AI system

with the masks outlined by the radiologists of different nodule sizes

in Figure 6 to show that the basis for computing the heat maps is

pathologically relevant. We calculated the dice similarity coefficient

(Dice) as a metric to evaluate how well the AI system performs for

localizing thyroid nodules within the gland tissues, with the result
Frontiers in Oncology 08
shown by the boxplot in Figure 7. It can be found that the masks

outputted by the AI system are highly overlapped with the masks

delineated by the radiologists (the median dice coefficient >0.9),

demonstrating the high accuracy of the AI system in identifying the

nodule areas. This verifies that the area of the heat map is mainly in

the lesion area, as nodule segmentation is a key step for heat

map computations.

To further demonstrate and qualitatively verify the pathological

relevance of the computed heat maps, we compared the post-

operation pathological images with heat maps computed on

ultrasound images shown in Figure 8. It shows that the shapes of

cancer cell-rich areas in pathological images outlined by the

pathologists have very good correspondence to “hot regions” in

our proposed malignancy heat maps, suggesting that the

malignancy heat map has promising potential to provide accurate

sampling position guidance for FNAB. It is interesting to observe

that in Figure 8G where there is clearly one single nodule in the

original ultrasound image, the malignancy heat map shows two

strongly activated subregions that correspond nicely with the two

malignant cell-enriched regions outlined in H&E-stained

histopathology images.
Discussion

In this study, we proposed to take advantage of CAMs for

differentiating regions in the ultrasound images of thyroid nodules

that may contribute differently to the diagnosis by an AI-CADx

system. We segmented the CAMs of individual nodule images into

five concentric areas of equal sizes, applied adversarial noise
TABLE 2 The ACR TI-RADS feature analysis of CAM highlighted and inactivated regions in 100 malignant nodules randomly selected from the dataset.

Features CAM hot regions (100) CAM inactivated regions in the same nodules (100)

Localization Frequency Probability Weighted score Frequency Probability Weighted score

On the margin 27 0.27 – 93 0.93 –

Not on the margin 73 0.73 – 7 0.07 –

Echogenicity

Very hypoechoic 84 0.84 2.52 43 0.43 1.29

Hypoechoic 16 0.16 0.32 52 0.52 1.04

Isoechoic 0 0.00 0 5 0.05 0.05

Composition

Solid 100 1.00 2 100 1.00 2

Echogenic foci

Macro-calcification 0 0.00 0 16 0.16 0.16

Punctate calcification 40 0.40 1.2 14 0.14 0.42

None 60 0.60 0 70 0.70 0

Sum 100 1 6.04 100 1 4.96
Note that the nodular shapes and margin features in ACR TI-RADS are defined for the whole nodules but not sub-nodular regions. Therefore, only relative localizations are provided, which are
however not associated with defined risk points.
ACR, American College of Radiology; TI-RADS, Thyroid Imaging, Reporting and Data System; CAM, class activation map.
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perturbations to the different segmented regions, and evaluated the

impact on the diagnostic performances of the AI-CADx system.

Our results confirmed that the CAMs can reflect the importance of

different degrees in different nodular regions for a CNN-based

diagnosis system to make its predictions according to our noise

perturbation experiments. Surprisingly or not, it was found that it

was not the innermost region or in other words the “hottest” region

seen in the CAMs that were most severely influenced by the noise

perturbations as one might presumably expect. This phenomenon

was again observed in experiments where we randomly divided the

original dataset into five subsets and verified by the statistical

significance tests, suggesting that the regional sensitivities to noise
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perturbations may not perfectly correlate with the heat intensity

profi le in conventional CAM for nodular malignancy

state predictions.

We then tried modifying the conventional CAM by multiplying

the heat maps generated by CAM with the predicted malignancy

probabilities by the AI-CADx system to produce malignancy heat

maps. The resulting heat maps can therefore visually convey

information about the malignancy predictions for individual

nodules. Furthermore, this malignant nodule-specific modification

to the conventional CAM would in principle allow more insightful

inspection of regional importance for malignancy assessment and

thus provide guidance to doctors about where the FNAB should be

mostly directed to. In this case, the innermost nodular area defined

by the heat map was found to be the most sensitive region to noise

perturbations, which could be due to the multiplication of

malignancy probability, which improves its malignancy relevance

and subsequently the perturbation responsiveness, though it was

not statistically different from the region adjacent to it, which

suggests that both regions are the most critical for determining

malignant thyroid nodule diagnosis.

By comparing the influences of noises on AI-CADx

performance for thyroid nodule diagnosis by perturbing regions

segmented according to the conventional CAMs that analyze both

benign and malignant nodules and our proposed variant that

concentrates on suspicious nodules, it can be seen that noise

perturbations to inner regions defined in CAMs had a more

dramatic effect on datasets not excluding benign nodules

predicted with high confidence. This could be because the inner

regions of benign nodules are more vulnerable to noise

perturbations, while the malignant nodules are more resistant to

noise perturbations. This can also explain why the regional
FIGURE 7

The boxplot of the Dice coefficients for quantitative evaluation of
the automatically segmented nodules by the AI system in
comparison to radiologists’ segmentations. AI, artificial intelligence.
FIGURE 6

Comparison of the masks generated by the AI system and the masks outlined by the radiologists. (A, C) The original thyroid ultrasound images. (B, D)
Masks generated by the AI system and radiologists, where the red segments are produced by the AI system, and the green ones are manually drawn
by the radiologists. AI, artificial intelligence.
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differences in suspicious malignant nodules were less abrupt.

Nonetheless, the central region defined by the malignancy heat

map was significantly more sensitive to noise perturbation,

suggesting the potential of this technique for differentiating

tumor heterogeneity.

As an alternative to the noise perturbation experiments, we have

also tried varying binary thresholds to segment the CAMs and

evaluated the diagnostic performance of the AI-CADx system

directly on the ultrasound images of the regions above the

thresholds with the hope of finding an appropriate heat intensity

threshold that could permit a satisfactory cutoff to differentiate

insignificant regions from regions where special attention would be

paid to. However, such a conclusion could not be drawn from this

attempt, as the AUC values (Supplementary Figure 3) showed a

continual decrease with the heat intensity threshold. This can be

attributed to the fact that the marginal shapes of thyroid nodules are

crucial for malignancy diagnosis because the segmented regions can

have very complicated margins and even hollow structures that can

easily confuse the AI-CADx system. Noise perturbation

experiments however circumvent this challenge.

As final proof, we qualitatively evaluate the spatial correlation of

the malignancy heterogeneity identified by our CAM-based

malignancy heat map with the surgical pathology. Due to not

only the technical difficulty of automatically registering cross-

modality images, i.e., digital histopathology images and

ultrasound images, but also more importantly the retrospective

nature of this study, we could not specifically collect the ultrasound
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images of the very nodular cross-sections that best corresponded to

those of the histopathology images. Moreover, arbitrary shape

changes can be introduced during the surgical operation and fully

automatic registration between digital H&E histopathology images,

and ultrasound images would also require training of a sufficient

good segmentation model for cancer cell-rich regions in

histopathology images, which is currently beyond our capacity of

assessable resources. It is however important to note that the

ultrasound feature evaluations of the highlighted regions

performed by radiologists according to ACR TI-RADS criteria

show a higher correlation with malignancy risks compared to the

inactivated regions, demonstrating the malignancy relevance of the

highlighted regions in our proposed variant of CAM heat map. This

can be mainly attributed to two facts: the AI system has high

accuracy in localizing thyroid nodules with a median dice coefficient

>0.9, and the AI system has very high diagnostic accuracy with an

AUC value of 0.9302 in this study for discriminating between

malignant and benign nodules. The nodule segmentation is a

crucial step for the computations of heat maps, and it proves that

the corresponding area of the heat map is mainly in the lesion area

of the nodule. Good performance in distinguishing malignant from

benign nodules also plays a vital role in identifying the “hot” regions

in the malignancy heat map to be the key regions for the diagnosis

of malignant nodules. Furthermore, other recent studies have

shown that the AI system has balanced specificity and sensitivity

with overall diagnostic accuracy matching high-performing senior

radiologists (24), can outperform senior radiologists in diagnosing
FIGURE 8

Correspondence of post-operation pathological images and malignancy heat maps computed on ultrasound images. (A, D, G) The original thyroid
ultrasound images. (B, E, H) The superimposed images for the corresponding nodules and heat maps. (C, F, I) The cropped zoomed-in pathological images.
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rare thyroid carcinomas (25), and can be potentially helpful for

discrimination between malignant and benign follicular-patterned

thyroid lesions (21). Interestingly, the shapes and subregions of

cancer cell-rich pathological images showed good correspondence

to the heat maps computed from the ultrasound images, suggesting

a promising potential to use the heat map visualization to guide

targeted FNAB for more reliable sampling compared with

conventional ultrasound-guided sampling.

Ultrasound-guided thyroid FNAB has been shown to improve

the sampling accuracy for suspicious nodule identification (26).

However, there is a trade-off between the reduction of patient

discomfort that would put a constraint on the number of needle

passes and the diagnostic accuracy that is limited by specimen

adequacy. The CAM-based heat maps computed from AI-CADx

systems with diagnostic performances comparable to or even better

than those of senior radiologists (27–29) on ultrasound images with

the capability of differentiating regional importance for malignancy

diagnosis may provide additional guidance to localize diagnosis-

enabling nodular regions, especially large ones, for more accurate

sampling, given that the number of needle passes has to be limited.

In addition, FNAB-based cytopathological examination is

acknowledged to have a limitation in diagnosing follicular-

patterned thyroid lesions (FPTLs) (30–32), while the AI system

was found to be 69% accurate in differentiating thyroid follicular

carcinoma from benign FPTL cases (21), suggesting that the heat

maps developed on top of the AI system may provide better

guidance than plain ultrasound for FPTL sampling by FNAB to

help with newly developed proteomics-based diagnosis (33). Of

course, for smaller thyroid nodules, it may be difficult to precisely

guide FNAB of the segmented nodular regions based on the

malignancy heat map. Meanwhile, it must be noticed that the

FNAB selection of thyroid nodules has become increasingly

conservative in clinical practice. FNAB for malignant suspicious

thyroid nodules recommended by guidelines (23, 34) is commonly

performed for nodules with the smallest diameter ≥10 mm.

Therefore, it is of clinical significance for this study to guide

FNAB of relatively large thyroid nodules with the heat maps. It

may also be of special interest to investigate whether CAM-based

heat maps on ultrasound images can be helpful for guiding core

needle biopsies of, for instance, liver lesions, which was shown to

have a complication rate of 10.6% for repeated biopsies with a

diagnostic accuracy of 83.3% (35).

Furthermore, currently, the generation of CAMs is based on an

AI-CADx system trained on static images. For real-world clinical

applications, it will be beneficial to have such heat maps

dynamically generated in real-time during ultrasound scanning,

which would require the corresponding AI-CADx system to be able

to operate in a dynamic mode with high diagnostic accuracy.

Practically speaking, ultrasound reflections from needles might

interfere with accurate heat map visualization in real time.

Another noteworthy limitation of the proposed CAM and its

variant presented in this study is that their visualization is

currently limited to being two-dimensional and thus not very

suited yet to visualizing the degree of malignancy suspiciousness
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of a targeted cross-sectional plane relative to that of the planes

above and below. If a three-dimensional heat map visualization is to

be developed such that additional guidance about how deep the

needles shall be inserted into the nodules to acquire samplings can

be possible. In addition to the applied basic CAMmethod, there are

also other published variants such as Grad-CAM (36), Score-CAM

(37), and Ablation-CAM (38). These methods of generating heat

maps can in principle be investigated as well. However, it is for

future studies to evaluate which heat map generation techniques

can be the most useful for guiding FNAB. This work is mainly to

show that CAM-based heat maps can visualize intra-nodular

malignancy heterogeneity, and this may recommend better sites

for FNAB sampling, which is to be evaluated in a separate study.
Conclusion

The CAM and its variant generated on ultrasound images

through a highly accurate AI-CADx system can provide

differential importance of nodular regions for tumor malignancy

prediction, which was validated by adding noise perturbations to

different regions of thyroid nodules. Our proposed malignancy heat

map offers quantitative visualization of malignancy heterogeneity

within a tumor, and the highlighted regions are better correlated

with the malignancy risk than the inactivated regions. The good

spatial correspondence with post-operation pathology warrants

clinical interests to investigate further whether such AI-based

malignancy-heterogeneity visualization techniques can provide

targeted guidance for needle-based aspiration biopsies of tumors

in comparison with plain ultrasound imaging to improve sampling

accuracy and reduce complications that may associate with

the procedures.
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SUPPLEMENTARY FIGURE 1

Influence of adding gradient sign noise perturbations to ultrasound images of

different magnitudes b. (a and d) The original image of thyroid nodule and its
surroundings. (b and e) The generated gradient sign noises with the

respective magnitude of 0.0136 and 0.05. (c and f) The resulting images

corresponding to noise perturbations given by panels b and e. (g) The
measurement of how the diagnosis performances (by AUC values) of the

AICADx system are influenced by noise perturbations with magnitudes b
ranging from 0 to 0.1.

SUPPLEMENTARY FIGURE 2

The ROC curve of the AI-CADx system for thyroid nodule diagnosis and the
corresponding AUC value.

SUPPLEMENTARY FIGURE 3

The diagnostic performance of the AI-CADx system directly on segmented

regions above the binarization CAM threshold (represented as a ratio to the
maximum temperature intensity 255).
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