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Introduction: The molecular mechanism of chemotherapy resistance in breast

cancer is not well understood. The identification of genes associated with

chemoresistance is critical for a better understanding of the molecular

processes driving resistance.

Methods: This study used a co-expression network analysis of Adriamycin (or

doxorubicin)-resistant MCF-7 (MCF-7/ADR) and its parent MCF-7 cell lines to

explore the mechanisms of drug resistance in breast cancer. Genes associated

with doxorubicin resistance were extracted from two microarray datasets

(GSE24460 and GSE76540) obtained from the Gene Expression Omnibus

(GEO) database using the GEO2R web tool. The candidate differentially

expressed genes (DEGs) with the highest degree and/or betweenness in the

co-expression network were selected for further analysis. The expression of

major DEGs was validated experimentally using qRT–PCR.

Results: We identified twelve DEGs in MCF-7/ADR compared with its parent

MCF-7 cell line, including 10 upregulated and 2 downregulated DEGs. Functional

enrichment suggests a key role for RNA binding by IGF2BPs and epithelial-to-

mesenchymal transition pathways in drug resistance in breast cancer.

Discussion: Our findings suggested that MMP1, VIM, CNN3, LDHB, NEFH, PLS3,

AKAP12, TCEAL2, and ABCB1 genes play an important role in doxorubicin

resistance and could be targeted for developing novel therapies by chemical

synthesis approaches.

KEYWORDS

breast cancer, chemoresistance, differentially expressed genes, gene co-expression
network, doxorubicin (DOX)
Abbreviations: ADR, Adriamycin resistance; DEG, differentially expressed genes; GCN, gene co-expression

network; GEO, gene expression omnibus; PPI, protein-protein interaction; ECM, extracellular matrix.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1135836/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1135836/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1135836/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1135836/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1135836&domain=pdf&date_stamp=2023-06-15
mailto:v.jajarmi@gmail.com
https://doi.org/10.3389/fonc.2023.1135836
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1135836
https://www.frontiersin.org/journals/oncology


Miri et al. 10.3389/fonc.2023.1135836
Introduction

Breast cancer is the most common malignancy among women

worldwide and is the second cause of cancer-related mortalities after

lung cancer (1). In the United States alone, 268,600 new cases and

41,760 fatalities were reported for breast cancer in 2019 (2),

accounting for greater than 30% of all new cancers and 15% of all

cancer-related deaths. Breast cancer is distinguished by molecular,

histological, and clinical characteristics, necessitating distinct clinical

management strategies (3). Based on immunohistochemistry

analysis, breast cancer can be classified into three distinct

molecular subtypes, including estrogen or progesterone receptor

positive (ER+/PR+), human epidermal growth factor receptor

positive (HER2+), and triple-negative (TNBC) (4, 5). ER+/PR+

breast tumors have distinct gene expression signatures

characteristic of ductal luminal cells of the breast and are

accordingly subclassified into luminal A and luminal B subgroups

with very different prognoses (6, 7). The luminal A subtype, for

example, is characterized by a high expression of proliferative and cell

cycle-related genes and a low proliferative rate (8). A high expression

of Ki-67 and proliferating cell nuclear antigen and a high mutation

rate of p53 are characteristics of luminal B subtypes (9, 10). TNBC or

basal-like tumors are heterogeneous in gene expression profiles and

can be categorized into multiple different subgroups (11).

Endocrine hormone therapies, including ovarian function

suppression, selective estrogen receptor modulators, selective

estrogen receptor down regulators, and aromatase inhibitors, are

commonly used as primary systemic therapies in patients with ER

+/PR+ breast cancer, complementing surgery (12, 13). HER2+

breast cancer, which accounts for ~20% of all breast cancer cases,

benefits from therapies targeting the epidermal growth factor 2

(ERBB2 or HER2/neu) gene, such as anti-ERBB2 antibodies and

tyrosine kinase inhibitors (13). However, TNBC, which represents

about 15% of all breast cancer cases and is more common in

premenopausal young women under 40, lacks effective targeted

therapies and is unresponsive to current endocrine therapies (14).

Chemotherapy, including doxorubicin/Adriamycin, paclitaxel,

docetaxel, cyclophosphamide, and carboplatin, alone or in

combination, is commonly used for neoadjuvant or adjuvant

treatment of breast cancer, to downstage tumors or as a standard-

of-care regimen for aggressive and early-stage disease (13, 15–20).

Doxorubicin, an anthracycline chemotherapeutic agent, is still a

first-line therapy for early-stage breast, ovarian, lymphoma, and

leukemia cancers (21–24). However, the development of

chemoresistance continues to be a significant clinical obstacle in

treating breast cancer (15).

Chemoresistance refers to the ability of cancer cells to survive

and proliferate despite exposure to high doses of chemotherapeutic

agents, resulting in a lack of response or failure of the treatment.

The most common routes for chemoresistance include over-

expression of membrane efflux pumps, such as ATP-binding

cassette (ABC) transporters, drug sequestration in lysosomes,

alterations in drug metabolism, mutations or downregulation of

drug targets, upregulation of cell cycle regulators and apoptosis

inhibitors, activation of survival pathways, changes to cellular

metabolism, mitochondrial alteration, and changes to the tumor
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microenvironment (25–33). Understanding the molecular

mechanisms underlying doxorubicin resistance in breast cancer is

crucial for developing effective strategies to overcome this resistance

and improve patient outcomes.

Despite extensive research on doxorubicin resistance in breast

cancer, there are still gaps in our knowledge regarding the specific

genes and pathways involved in this process. In this study, we aimed

to identify co-regulated genes associated with doxorubicin

resistance in the MCF-7/ADR breast cancer cell line using gene

co-expression network (GCN) analysis of publicly available

microarray gene expression datasets (34). GCN analysis has been

extensively used for the identification of genes and molecular

pathways dysregulated in various cancers (35, 36), particularly

those genes with uncertain significance in biological processes (37).
Materials and methods

Breast adenocarcinoma datasets

We searched the GEO database for breast cancer mRNA

expression data related to doxorubicin or Adriamycin resistance,

specifically focusing on datasets that included profiling of both

MCF-7/ADR and normal parent MCF-7 cell lines for downstream

analysis. Four human mRNA datasets (GSE5920, GSE87864,

GSE24460, and GSE76540) were identified based on these criteria.

After an initial analysis, we noticed that the GSE87864 and

GSE5920 datasets were unsuitable for network analysis due to

high heterogeneity among replicates and inconsistent patterns of

results. The remaining two datasets comprised at least two cell lines

(MCF-7/ADR and parent cell line MCF-7) and two experimental

conditions (doxorubicin and no doxorubicin), and both were

generated by the same Affymetrix platform (Affymetrix Human

Genome U133 Plus 2.0 Array). Table 1 shows detailed information

about the analyzed datasets.
Identification of dysregulated genes

Primary analyses were performed using the online GEO2R suite

(http://www.ncbi.nlm.nih.gov/geo/geo2r). The GEO2R enables the

comparison of samples in a GEO dataset and the identification of

differentially expressed genes (DEGs) under a particular

experimental condition. We ignored the probe sets without a gene

symbol. The GEO2R build-in R package Limma was used to identify

DEGs (38). The raw expression data were corrected for background

noise and normalized using the Robust Multi-array Average (RMA)

algorithm, which takes into account data quantiles to correct for

array biases (39). DEGs were identified by comparing normalized

expression data from MCF-7 and MCF-7/ADR cell lines and

looking for a minimum |log2 fold change (FC)| > 1 and a

Bonferroni corrected P-value < 0.05. Correlations (the Pearson

method) between gene expression data were calculated using the

psych package in R (40). Only correlations with |r| = 0.7 and P-value

< 0.05 were considered for network construction. The resulting

correlation matrix was used for network construction using the R
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package iGraph under the default settings (38). Gene clusters were

generated using the clusterMaker plugin in Cytoscape based on the

AutoSOME algorithm (41). Genes with the greatest betweenness

and/or degree were chosen for further experimental validation, as

previously described (42). Figure 1 shows the details of the

bioinformatic workflow employed to identify DEGs and the final

hub genes.
Functional annotation analysis

To assign specific functional roles to DEGs and to visualize

them in the context of molecular pathways, we used a set of

functional annotation and pathway inference tools. The Kyoto

Encyclopedia of Genes and Genomes (KEGG) database was used

for the functional annotation of DEGs. Gene ontology (GO)

annotation allowed us to categorize DEGs into cellular

components, molecular functions, and biological processes’

functional ontologies. Protein-protein interactions were inferred

by the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING, www.string-db.org/cgi/input.pl) considering all

interaction sources. Interactions with a combined score > 0.4

were used for network visualization, and those with a score > 0.7

were kept for further analysis.
Cell line characterization
and authentication

The MCF-7 and MCF-7/ADR cell lines were obtained from the

Iranian Biological Resources Center. The authenticity of cell lines

was validated using Short Tandem Repeat (STR) DNA profiling.

STR profiling was conducted using the AmpFlSTR Identifiler PCR

Amplification Kit (Applied Biosystems, Foster City, CA, USA)

according to the manufacturer’s instructions. STR profiles were

evaluated using the GeneMapper ID software. The MCF-7/ADR cell

line was further characterized based on cell morphologies and IC50

drug dosage.
Cell culture

MCF-7 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM; Gibco source; DNA Biotech, Iran) supplemented

with 100 units/mL penicillin-streptomycin and 10% FBS (BioIdea,

Tehran, Iran) at 37 °C and 5% CO2. MCF-7/ADR cells were cultured
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in RPMI 1640 medium (Gibco source) containing 10% FBS and 13

mg/mL doxorubicin. The drug was omitted from the culture medium

48 h before the experiment.
MTT assay to determine the lethal
concentration (IC50) of doxorubicin

Cells were seeded at a density of 2×104 cells/well in a 96-well

culture plate and incubated at 37°C in a humidified environment

containing 5% CO2 for 16 hours. Subsequently, doxorubicin was

added at concentrations of 0, 5, 10, and 15 mg/mL after cells fully

adhered to the plate. The experiment was conducted in triplicate,

with each drug concentration assayed in at least three independent

wells. The MTT assay was performed by adding 20 mL of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reagent (5

mg/mL) to each well and the cells were incubated for an additional 4

h. After incubation, 100 mL of dimethyl sulfoxide (DMSO) was

added to each well and the plate was shaken for 15 min to ensure the

complete dissolution of cells. The optical density (OD) was

measured at 492 nm using a microplate reader. Cell growth

inhibition was calculated using the formula: inhibitory rate

(percentage) = (1 - mean OD value in the experimental group/

mean OD value in the control group) × 100. The IC50 value was

estimated from the OD values and used to determine the

doxorubicin cytostatic activity on MCF-7 and MCF-7/ADR cells.
Total RNA extraction and quantitative real-
time PCR analysis

Total RNA was isolated from MCF-7 and MCF-7/ADR cell lines

using the Roche High Pure RNA Isolation Kit (Roche GmbH,

Mannheim, Germany) according to the manufacturer’s instructions.

The concentration and integrity of the extracted mRNAs were

evaluated by a nanodrop spectrophotometer (Maestrogen, Taiwan)

and agarose gel electrophoresis.

A total of 1 mg RNA was reverse transcribed in a 20 mL
reaction mixture using the ExcelRT™ One-Step RT-qPCR Kit

(SMOBIO, Taiwan) according to the manufacturer’s protocol.

qRT–PCR reactions were carried out under the following cycling

conditions: a denaturation step at 95°C for 10 min, followed by

40 cycles of 95°C for 15 s and 60°C for 1 min in an ABI Step One

Plus™ Real-Time PCR System (Applied Biosystems). RT–PCR

reactions were performed in triplicate. The cycle threshold (Ct)

values for the target gene and internal control gene (GAPDH)
TABLE 1 The detailed characteristics of the datasets included in this study.

Country Cancer Type Samples Platform Dataset DEGs

MCF-7/ADR MCF-7

USA Breast cancer 2 2
Affymetrix
HG-U133A_2

GSE24460 1108

China Breast cancer 3 3
Affymetrix
HG-U133_Plus_2

GSE76540 3207
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were extracted and used to estimate gene expressions following

the 2-DDCt method (43).

Primers used for qRT–PCR were designed using the Oligo7

software and searched against the human RefSeq database to verify

their amplification specificities. Table 2 shows the sequence of

primers used for qRT–PCR.
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Statistical analysis

All statistical analyses were performed using GraphPad Prism

(Version 9, San Diego, CA). Statistically significant differences

between the treatment groups were identified using the student t-

test. Statistical data are presented as mean ± sd. A P-value less than

0.05 was considered statistically significant.
Results

Comparing gene expression profiles
between MCF-7 and MCF-7/ADR cell lines

To identify DEGs, the microarray gene expression profiles of

MCF-7/ADR and its parent MCF-7 cell line were compared in

two independent GSE datasets (GSE24460 and GSE76540),

considering a minimum fold change in expression > 2 and an

FDR-corrected P-value cutoff of 0.05 (Table 1; Supplementary

Data 1). We identified 1,108 DEGs in GSE24460 (566 up-regulated

and 542 down-regulated DEGs) and 3,207 in the GSE76540

dataset (1,835 up-regulated and 1,372 down-regulated DEGs), as

shown by volcano plots in Figures 2A, B. Correlating gene

expressions in each data set, considering a correlation coefficient

> 0.7 and an adjusted P-value < 0.05, resulted in the identification

of 36 strongly co-regulated genes in GSE24460 and 406 in

GSE76540. GCN analysis resulted in the identification of 18 and

115 genes with the highest degree and/or betweenness for the

GSE24460 and GSE76540 datasets, respectively (Figures 2C–E).

Among the final list of candidate co-expressed genes, only nine

were shared in the two data sets, some of which are already known

to contribute to chemoresistance, including ABCB1, LDHB, and

ESR1. We thus identified a total of 122 differentially expressed

genes (two genes were excluded from further analysis due to a lack

of gene symbols) between MCF-7/ADR and MCF-7 cells,

including 86 upregulated and 36 downregulated genes. The

expression patterns of the candidate DEGs in the two datasets

are visualized in heatmaps (Figure 3).
Functional enrichment analysis of DEGs

To link the candidate DEGs to biological or molecular

processes, a gene ontology enrichment analysis was performed.

The gene enrichment analysis was conducted by the FunRich GO

analysis software suite (44). Genes associated with all three

functional categories, including biological processes (BP),

molecular processes (MP), and cellular components (CC), were

identified among the candidate DEGs. The genes categorized in

the CC group mostly originate from the cytoplasm, nucleus,

plasma membrane, and exosome. Genes associated with the MF

category were mainly transcription factors, extracellular matrix

structural constituents, cell adhesion molecules, and transcription

regulators. Cell growth and/or maintenance, signal transduction,

and cell communication were significantly enriched in the BP

group (Figure 4).
FIGURE 1

The diagram shows the overall analysis performed in this study. The
mRNA expression datasets were retrieved from the GEO database
by searching for the MCF-7 and ADR keywords. The candidate
datasets were screened for the number of analyzed samples and the
reproducibility of the expression data. Datasets with low sample
numbers and inconsistent results were excluded from further
analysis. DEGs, differentially expressed genes; PPI, Protein-Protein
Interactions; GEO, Gene Expression Omnibus, GCN, Gene co-
expression network.
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Most of the DEGs were enriched in pathways associated with

insulin-like growth factor-2 mRNA binding proteins and epithelial-

to-mesenchymal transition (Figure 5). KEGG pathway analysis also

revealed that most of the DEGs are involved in propanoate and

pyruvate metabolism, bladder cancer, and membrane transport

(ABC transporters).

Establishing a PPI network for the
candidate DEGs, cluster analysis, and
selection of hub genes

The candidate co-expressed genes were searched for potential

protein-protein interactions using STRING. The resulting PPI

network included 122 nodes and 50 edges, with a PPI enrichment

P-value of 1.3e-12 (Figure 6). Cluster analysis using Cytoscape

revealed a critical module across the network with 10 essential co-

regulated genes, including EGFR, ESR1, FGF2, CDKN2A, KRT19,
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VIM, CTGF, CALD1, GJA1, and MMP1. Particularly, EGFR and

ESR1 genes showed the highest degree of connectivity in the PPI

network, suggesting their critical role in maintaining the integrity of

the whole network. To confirm whether the changes in gene

expression detected by microarray could be validated in the

corresponding cell lines, the expression of these functionally

significant genes was evaluated by qRT–PCR.
MCF-7/ADR cells showed resistance to
doxorubicin-mediated apoptosis

To characterize whether MCF-7 and MCF-7/ADR cell lines have

the same genetic origin, we performed STR profiling. Our results

showed that MCF-7/ADR and its parent MCF-7 cell line have a

shared STR profile, confirming their common origin. To test whether

our MCF-7/ADR cell line has maintained its drug resistance

phenotype, cell viability under an increasing concentration of

doxorubicin was evaluated. Exposing MCF-7 cells to an increasing

dose of doxorubicin for up to 48 h significantly decreased cell

viability, while no significant change to the MCF-7/ADR cells was

noted. MCF-7/ADR cells had a vitality almost three times higher than

that of their parent MCF-7 cells. Doxorubicin treatment effectively

suppressed the development of MCF-7 and MCF-7/ADR cells with

an IC50 value of 3.09 ± 0.03 and 13.2 ± 0.2 mg/mL, respectively

(Figure 7A). Doxorubicin at doses of 5, 10, and 15 mg/mL

significantly inhibited the proliferation of MCF-7 cells (P<0.05).

MCF-7/ADR cells treated with 5 and 10 mg/mL of doxorubicin for

7 days displayed a normal cell morphology with only minor swelling.

Evaluating the expression of the
candidate DEGs in the MCF-7 and
MCF-7/ADR cell lines

The qRT–PCR method was used to confirm the expression of ten

candidate co-expressed genes, five of which were shared between the two

datasets, namely MMP1, ABCB1, AKAP12, PLS3, and CTGF. Three

genes were selected from the GSE76540 dataset, namely VIM, TCEAL2,

and NEFH, while two genes were selected from the GSE24460 dataset,

including LDHB andCNN3 (Table 3). Two additional co-downregulated

genes, ESR1 and FXYD3, were also included to further check for

amplification biases. The expression of genes was compared between

MCF-7 and MCF-7/ADR cell lines in the presence or absence of

doxorubicin. In the absence of the drug, a low expression of ESR1 and

FXYD3mRNAs in MCF-7/ADR cells was noticeable. Their expressions

increased steadily in the presence of the drug at concentrations greater

than 5 mg/mL. A significant difference in PLS3, CNN3, and NEFH

expression was also noted between MCF-7 and MCF-7/ADR cells,

correlating with microarray data (Figure 7B). CTGF was the only gene

for which no expression was detected by qRT–PCR.
Discussion

Doxorubicin is widely used as a first-line neoadjuvant

chemotherapy medication to treat breast cancer (45). While
TABLE 2 The sequence of primers used for quantitative real-time PCR
(qRT-PCR) analysis of target genes.

Gene symbol Primer sequence (5’ ! 3’)

ABCB1
F: AACACCCGACTTACAGATGATG

R: CTTCCAACCACGTGTAAATCCT

AKAP12
F: AAGTCATTGTCACAGAGGTTGGA

R: CTCAGTGGGTTGTGTTAGCTCT

CNN3
F: CATCATCCTCTGCGAACTTATAAACA

R: TTGCTTCGAATATGTCATGTGGC

ESR1
F: TGATGAAAGGTGGGATACGAAAAG

R: GGTTGGCAGCTCTCATGTCT

FXYD3
F: TCCTTTCTACTATGACTGGCACA

R: AGCTCCTCCACTCACTCATG

VIM
F: CCACGAAGAGGAAATCCAGGAG

R: TACCATTCTTCTGCCTCCTGC

LDHB
F: GCGACTCAAGTGTGGCTGT

R: GACTTCATAGGCACTTTCAACCAC

MMP1
F: GGACCAACAATTTCAGAGAGTACAA

R: CCGATATCAGTAGAATGGGAGAGT

NEFH
F: GAGTGGTTCCGAGTGAGGC

R: GCTCTGTGGTCCTGGCC

PLS3
F: TGGCAGCTGATGAGAAGATATACC

R: TCCAGCTTCACTCAACGTTCT

TCEAL2
F: AGTCAGAGATGCAGGGAGGA

R: TGCAGCCCTTGTTTCACTTTCT

CTGF
F: GTGTGCACCGCCAAAGATG

R: GCTGGGCAGACGAACGT

GAPDH
F: GTATCGTGGAAGGACTCATGACC

R: CAGTAGAGGCAGGGATGATGTTC
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doxorubicin therapy proved to be extremely effective in the short-

term treatments, long-term use may result in chemoresistance.

Resistance to doxorubicin is a significant obstacle to the

effectiveness of chemotherapy in patients with breast cancer.

While the mechanism of chemoresistance is complex, identifying

the critical genes and signaling pathways involved in the process is

practically challenging. Large-scale analysis of gene expression in

chemo-sensitive and chemo-resistant cells is a key approach to

identifying genes or pathways associated with this phenomenon.

Here, we sought to explore the available microarray gene

expression data sets to identify potentially important
Frontiers in Oncology 06
components of the chemoresistance mechanisms in MCF-7/

ADR cells challenged with the chemotherapeutic agent

doxorubicin. GCN analysis is commonly used to identify

genes or molecular pathways in complex gene expression data

(46–48). Using this approach, we identified several candidate

DEGs that are known to implicate cell proliferation and/or

maintenance, insulin-like growth factor 2 mRNA binding, and

epithelial-to-mesenchymal transition (EMT). These include

several potential hub genes in the PPI network, such as

EGFR, ESR1, FGF2, CDKN2A, VIM, CTGF, CALD1, and

MMP1. Only ESR1 and FXYD3 showed decreased expression
A B

D

E

C

FIGURE 2

Identification and co-expression network visualization of DEGs between MCF-7 and MCF-7/ADR cell lines. Volcano plots show the overall changes
in gene expression between MCF-7 and MCF-7/ADR cell lines analyzed in the GSE76540 (A) and GSE24460 (B) datasets. Among a final list of 124
DEGs, only nine were shared between the two datasets, as depicted in the Venn diagram (C). One hundred and six DEGs were only detected in the
GSE76540 dataset and nine in the GSE2446 dataset. The gene co-expression network of DEGs identified in the GSE24460 (D) and GSE76540
dataset (E).
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in the chemo-resistant cell line, whereas the remaining genes

showed upregulation.

The most commonmechanism for chemoresistance is the active

efflux of the chemotherapeutic agent through the ABC transporters

(28). ABC transporters are a large group of membrane proteins that

mediate the import or export of diverse substrates across the cell

membrane (49). Overexpression of cell surface efflux ABC

transporters, including ABCB1, ABCC1, and ABCG2, was

associated with chemoresistance in breast cancer (50, 51). Our

analysis showed an increased expression of ABCB1, indicating its

potential role in conferring resistance to doxorubicin.

Lactate dehydrogenase B (LDH-1) is a glycolytic enzyme linked

to lysosomes and autophagy via the oxidative pathway (52, 53).

Deacetylation of LDHB by SIRT5 promotes the development of

autophagy vesicles and thus induces autophagy (54). Breast cancer

cells expressing high levels of LDHB show basal-like and glycolytic
Frontiers in Oncology 07
phenotypes, whereas the suppression of its expression reduces their

glycolytic dependence (55). The expression of LDHB is significantly

increased in response to chemotherapy, suggesting a marker role for

this gene in response to neoadjuvant chemotherapy in breast cancer

(56). In line with our results, previous proteomic analysis of

Adriamycin resistance in breast cancer also suggested a role for

LDHB in drug resistance (57).

PLS3 encodes a protein called plastin-3 that is found in cancer

cells. It promotes apoptosis via the TRAIL pathway, which is

accomplished by expanding the death pathway of the

mitochondrial arm (58). However, PLS3 has been identified as a

putative target for increasing p38 MAPK-mediated apoptosis

triggered by drug resistance, suggesting that targeting this enzyme

could be an effective strategy for overcoming drug resistance (59).

We identified AKAP12 as a key component of chemoresistance in

the MCF-7/ADR cell line. In ovarian cancer, AKAP12 has been
BA

FIGURE 3

The heatmaps show the differentially expressed genes (DEGs) between the MCF-7 and MCF-7/ADR cell lines in the GSE76540 (A) and
GSE24460 (B) datasets.
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FIGURE 4

Pie charts show the gene ontology annotations for the DEGs discovered by GCN analysis. DEGs were classified as cellular components, molecular
functions, and biological processes.
FIGURE 5

Functional enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
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FIGURE 6

The network shows the protein-protein interactions between the candidate DEGs identified by comparing the transcriptomes of the MCF-7/ADR
and MCF-7 cell lines. Proteins are represented by circles. Significant associations between proteins are shown by lines.
B

A

FIGURE 7

Cell viability and gene expression in the presence of doxorubicin in MCF-7/ADR and its parent cell line MCF-7. MCF-7 and MCF-7/ADR cells were
treated with doxorubicin at concentrations of 0, 5, 10, and 15 mg/mL for 48 hours, and cell viability was determined using the MTT assay (A). qRT–
PCR analysis of the expression of candidate DEGs in MCF-7 and MCF-7/ADR in the presence or absence of doxorubicin (B). The genes were
selected from the GCN network based on their degree or betweenness. CTGF failed to amplify in both cell lines. *P-value < 0.05 and **P-value
<0.01.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2023.1135836
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Miri et al. 10.3389/fonc.2023.1135836
associated with paclitaxel resistance by modulating signaling

pathways related to cell survival and drug efflux (60). The role of

this protein in doxorubicin tolerance is not well understood.

MMP-1 is a gene that encodes a zinc-dependent matrix-

metalloprotease involved in the activation of EMT, the Akt

signaling pathway (61), and angiogenesis through various

mechanisms (62). Snail, Slug, and Twist are EMT-promoting

transcription factors that directly induce MMP-1 transcription in

chemo-resistant cells (63). By inactivating the Fas receptor,MMP-1

suppresses apoptosis and increases chemoresistance (64). In

addition, other members of the MMP family proteases, including

MMP-2 (65), MMP-7 (66), and MMP-9 (67), also contribute to

metastasis and multidrug resistance by degrading extracellular

matrix components in multiple types of cancer. MMP-1

expression has been linked to increased cell proliferation, tumor

development, metastasis, and resistance to chemotherapy in various

tumors (68, 69). Several studies have shown that overexpression of

MMP-1 significantly reduced drug sensitivity in MCF-7 cells,

whereas MMP-1 knockdown considerably increased drug

sensitivity in MCF-7/ADR cells (63, 70). Another candidate DEG

that is known to be involved in EMT is vimentin (VIM). The

contribution of VIM to EMT is mediated by activating the Akt

signaling pathway (71). CNN3 (calponin-3) expression is altered in

colorectal and breast carcinomas (72, 73). It has been linked to EMT

via b-Catenin, ERK1/2, c-Jun, heat shock protein 60, and mutant

p53 pathways (74).

Our results suggest that gene co-expression network analysis

can be used to identify genes that contribute to doxorubicin

resistance in breast cancer. Several of these genes have been

associated with cancer development, progression, metastasis,

and resistance to chemotherapy based on previous studies. In

many cases, potential inhibitors have been identified that could be

used to overcome drug resistance (75, 76). This research included

some limitations. For instance, it took advantage of microarray

data; however, the results can be further complemented by

additional analyses using mRNA sequencing and proteomics
Frontiers in Oncology 10
data to characterize changes in protein abundances ,

post-translational modifications, and protein localizations.

Additional functional analyses, including gene knockout and/or

overexpression, can help provide a mechanistic understanding of

the role of these genes in the development of chemoresistance in

breast cancer.
Conclusion

In this study, we analyzed microarray data sets from chemo-

resistant and chemo-sensitive breast cancer cell lines using GCNs.

Our results suggest a key role for certain extracellular matrix

component proteins in the development of chemoresistance in

the MCF-7/ADR breast cancer cell line. The results of the

bioinformatics analysis were confirmed by qRT–PCR analyses of

specific DEGs. These findings could pave the way for the

identification of genes linked to molecular mechanisms governing

chemotherapy resistance in breast cancer.
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TABLE 3 The list of the candidate up/down-regulated genes selected for qRT-PCR analysis following GCN analysis in the MCF-7/ADR and MCF-7 cell lines.

Data Set Name Rank_stat Degree Betweenness

GSE76540
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NEFH 103.25 18 289.2

GSE24460
LDHB 15.5 7 10.9

CNN3 13.5 6 5.8

GSE76540
and
GSE24460

MMP1 107.75 18 391.8

LDHB 15.5 7 10.9

ABCB1 70.25 7 70.9

AKAP12 43.25 4 0.4

PLS3 27.25 3 0.0

CTGF 11.25 5 3.8
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