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Gliomas are considered one of the most malignant cancers in the body. Despite

current therapies, including surgery, chemotherapy, and radiotherapy, these

tumors usually recur with more aggressive and resistant phenotypes. Indeed,

the survival following these conventional therapies is very poor, which makes

immunotherapy the subject of active research at present. The anti-tumor

immune response could also be considered a prognostic factor since each

stage of cancer development is regulated by immune cells. However, glioma

microenvironment contains malignant cells that secrete numerous chemokines,

cytokines and growth factors, promoting the infiltration of immunosuppressive

cells into the tumor, which limit the functioning of the immune system against

glioma cells. Recently, researchers have been able to reverse the immune

resistance of cancer cells and thus activate the anti-tumor immune response

through different immunotherapy strategies. Here, we review the general

concept of glioma’s immune microenvironment and report the impact of its

distinct components on the anti-tumor immune response. We also discuss the

mechanisms of glioma cell evasion from the immune response and pinpoint

some potential therapeutic pathways, which could alleviate such resistance.

KEYWORDS
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Introduction

Gliomas are considered the most common malignant brain tumors, representing 75%

of malignant central nervous system tumors, with a worldwide incidence of 6 per 100.000

person-years (1). These constitute a profound and unsolved clinical problem. Even though

considerable progress has been made in treating other types of cancers, many questions
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remain unanswered in the case of gliomas (2). We know very little

about the factors related to their appearance and their dynamic of

evolution (3). Despite current therapies, including surgery,

chemotherapy, and radiotherapy, these tumors usually recur with

more aggressive and resistant phenotypes (4). Patients live an

average of 15 months, and less than 5% of them are alive at five

years. The most common glioma in adults is astrocytoma that

includes glioblastoma (GBM), which appears to be the most

aggressive brain tumor diagnosed in adults, showing abysmal

prognosis (5).

Clinical signs of gliomas are very variable. These can range from

headaches, ocular changes, or gastrointestinal manifestations such

as loss of appetite, nausea, and vomiting. Changes in personality,

mood, mental capacity and concentration might be observed as well

(6). Furthermore, the prognosis of patients with gliomas is directly

linked to the tumor’s degree of differentiation and malignancy and,

thus to the grade (7). Since each stage of cancer is regulated by

immune cells, the anti-tumor immune response could be used as a

prognostic factor (8).

The present review aims to describe the immune micro

environment within glioma. We will discuss the involvement of the

immune system in the regulation of glioma growth and pinpoint

some potential therapeutic pathways, which could enhance the

immune system to fight against glioma.
General concept of immune
microenvironment in glioma

Initially, the brain was considered to have no immuno

surveillance activity and was, therefore, considered an

“immunologically privileged” site. This view was largely accepted

because of the presence of the blood-brain barrier (BBB) and the

anatomical segregation of the brain from general circulation. It was

thought that the brain did not have draining lymphatics, and

microglia were considered the main antigen presenting cells in

the brain tumor microenvironment (9). However, in 2015, Louveau

et al. discovered functional lymphatic vessels lining the dural

sinuses while trying to find out about T-cell gateways into and

out of the meninges. These structures express all of the molecular

hallmarks of lymphatic endothelial cells. They can carry both fluid

and immune cells from the cerebrospinal fluid and are connected to

the deep cervical lymph nodes (10). Furthermore, these authors

showed, using immunohistochemical analysis, that the meningeal

lymphatic vessels could carry leukocytes (10).

In the brain, the innate immune system is the first line of

defense against pathogens and includes phagocytes, such as

microglia and granulocytes, like neutrophils. The adaptive

immunity includes T and B lymphocytes, which will induce

immune memory for later dangers (11). Innate and adaptive

immunity interact closely to maintain a good immune balance

within the brain (9).

The glioma microenvironment contains malignant cells that

secrete numerous chemokines, cytokines and growth factors that

promote infiltration of various cells into the tumor, including
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astrocytes, pericytes, endothelial cells, circulating progenitor cells

and Treg cells (12). There are also many immune cells, such as

microglia, peripheral macrophages, myeloid-derived suppressor

cells (MDSC), leukocytes and CD4+ T cells (12).
Innate immune response in glioma

The innate immune system comprises many hematopoietic cells

cooperating and with the adaptive immune system to promote

immunity, inflammation and tissue repair (13) (Figure 1).
Microglia or glioma-associated
macrophages

Microglias are myeloid cells which reside in the CNS. These

constitute the most abundant immune cells in brain tumors often

representing up to 30% of the tumor mass (14). In gliomas,

microglia are mainly polarized towards the M2 phenotype and do

not express co-stimulation molecules that are essential for the full

activation of T lymphocytes (15). Their capacity to regulate the

expression of MHC class II molecules positively is altered and hence

express immunosuppressive ligands such as PD-L1 on their surface.

The secretion of pro-inflammatory cytokines such as IL1b, IL-6,
and TNFa, which are essential for developing an efficient innate

immune response, is also decreased (16). Also, the reduction of

microglia polarization by P4H (a necessary enzyme for procollagen

hydroxylation and collagen synthesis and secretion) induces

inhibition of proliferation and invasion of GBM cells (17).

Clinical studies have shown significant infiltration of gliomas

associated macrophages (GAM) in tumors. In fact, their numbers

increase with the degree of malignancy (12). Monocytes recruited to

the tumor site have a high expression of CCR2, which decreases as

they differentiate into macrophages (18). Chen et al. observed a

broad range of CCR2 expression in the GAM, suggesting an active

transformation from infi ltrating monocytes to mature

macrophages. These are mainly found around blood vessels and

then spread in the tumor. It may imply that these GAMs interact

with neoplastic cells in the perivascular area to promote tumor

development. The authors also found that GBM patients who had a

low expression of CCL2 (monocyte chemoattractant protein) had a

significant prolonged survival, inhibiting the CCL2-CCR2 axis in

glioblastoma-bearing mice significantly increased their

survival (19).

Periostin (POSTN) is a tumor-associated macrophages (TAM)

attractant that is preferentially secreted by glioma stem cells (GSCs).

In this study, Zhou et al. found that its protein level positively

correlates with TAM density in primary GBM. The authors used

two specific shRNA to silence POSTN in GSCs and significantly

reduced its chemoattractant effect. Furthermore, when disrupting

POSTN in the in vivo model, it significantly reduced the

recruitment of the TAMs, especially those of the M2 phenotype

and inhibited GBM tumor growth (20). Another study

demonstrated that glioma cells with heterozygous IDH1 R132H
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mutation change TAMs towards a phagocytic anti-tumor

phenotype (21).
Natural killer cells

Natural killer (NK) cells are effector lymphocytes that recognize

and lyse target cells that display the MHC I or MHC I-like proteins.

The NK group 2D (NKG2D) receptor is an activating NK and CD8

T-cell receptor that mediates cytotoxicity by ligating stress-

inducible ligands on target cells (22). Some studies reported that

the tumor-infiltrating NK cells were non-functional, likely due to

contact with immunosuppressive cells such as GAM and regulatory

T cells, which might inhibit the secretion of IFN-g by NK cells by

producing TGFb (23). Tumor cells may inhibit NK cell function by

releasing TGFb and IL10, although in some cases, IL-10 has also

been shown to activate NK cells (24). On the other hand, Zhang

et al. have reported that the IDH mutant glioma stem-like cell lines

have significantly lower expression of NKG2D ligands compared

with IDH wild-type cells (25). It suggests that the IDH mutant

glioma cells acquire resistance to NK cells through epigenetic

silencing of NKG2D ligands ULBP1 and ULBP3 (25). As a

therapeutic strategy, the authors used the hypomethylating agent

5-aza-2’deoxycytodine (decitabine). It was found to restore ULBP1

and ULBP3 expression in IDH mutant glioma cells (25). Another

study generated a CAR NK cell line based on the human NK cell

line KHYG-1. The newly generated EvCAR-KHYG-1 cell line

inhibited GBM cell growth via apoptosis in EGFRvIII expressing

cells, in a specific manner. Thus, EvCAR-KHYG-1 may become an

effective treatment option for patients with GBM (26).
Dendritic cells

This heterogeneous population of professional antigen-

presenting cells (APC) is an essential link between innate and
Frontiers in Oncology 03
adaptive immunity. These are specialized in presenting antigens

to T and B cells to initiate adaptive immunity or immunological

tolerance. In the case of gliomas, there is a complex interaction

between DCs, microglia, T lymphocytes, and tumor cells in the

tumor microenvironment (TME) (11). Their role is the

presentation of tumor antigens in the brain or cervical lymph

nodes to initiate responses by effector T lymphocytes associated

with immune defense, such as cytotoxic T lymphocytes (CTL) and

CD4+ T lymphocytes (27). Garzon-Muvdi et al. reported that

treatment with a TLR3 agonist leads to DC activation and

increased infiltration of T effector cells in the tumor, in addition

to a decrease in tumor-infiltrating Tregs. The authors further

showed that treatment with TLR3 agonist in addition to anti-PD-

1 blockade improved survival in the preclinical orthotopic GBM

mouse model (28). These observations indicate that the activation

of antigen presentation provides an effective way to boost the

antitumor immune response in glioma patients.
Myeloid-derived suppressor cells

These are immature myeloid cells that promote the vascular

supply of the tumor and disrupt main immunosurveillance

mechanisms. Studies have shown that their level increases in the

blood of patients with glioblastoma (29). Their origin is unknown.

However, normal monocytes cultured with glioma cells acquire

MDSC-like properties such as increased production of

immunosuppressive factors, suggesting that MDSC could

originate from glioma infiltrating-monocytes (30). A study

revealed that the Polymorphonuclear (PMN) MDSC that

expressed lectin-type oxidized LDL receptor 1 (LOX-1) inhibited

T cell proliferation and enhanced immune suppression, which may

play a key role in driving GBM progression (31). In addition, Guo

et al. reported that gliomas-derived exosomes (GDEs) play an

important role in MDSC differentiation and facilitate their

expansion and function in hypoxic conditions. It promotes the
FIGURE 1

Innate immune response in glioma. The innate immune system comprises numerous hematopoietic cells, which collaborate with each other and
with the adaptive immune system to enhance immunity, inflammation and tissue repair.
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upregulation of miR-21 and miR-10a expression in GDEs, leading

to MDSC activation via Rora/IkBa/NF-kB and Pten/PI3K/AKT

pathways that are involved in glioma progression (32) One study

showed that PI3K inhibition had the most substantial effects on

global signaling pathways implicated in glioma expansion, reducing

tumor cell proliferation (33). The GBMmicroenvironment contains

an accumulation of the monocytic subset of MDSCs (M-MDSCs)

which expressed high levels of the MIF cognate receptor CD74.

However, blocking M-MDSCs with Ibudilast, an inhibitor of MIF-

CD74 interaction, reduced MDSC function and enhanced CD8 T

cell activity in the tumor microenvironment (34).
Adaptive immune response in glioma

The primary response is generated by circulating B and T

lymphocytes, which have established specificity for a given

antigen. When they bind to an antigen recognized by the B cell

receptor, B lymphocytes proliferate and secrete antibodies specific

to this pathogen. T cells, on the other hand, need Interaction of the

TCR with peptide-MHC. T cells are subdivided into two main

groups (12, 35):
B cells

B cells contribute to immunity by producing antibodies and

presenting antigens (36). Another important strategy B cells use to

influence immunological responses in the central nervous system is

the release of pro-inflammatory and anti-inflammatory cytokines.

Anti-inflammatory cytokines are secreted by regulatory B (Breg)

cells, whereas pro-inflammatory cytokines are secreted by antigen-

experienced B cells (36, 37). Glioblastoma promotes the

transformation of B cells into Breg cells, which maintains

tumorigenicity (38). According to one study, Bregs accounted for

10% of bone marrow-derived infiltrating immune cells in two

orthotopic brain tumor models, and 40% of GBM patients who

were examined tested positive for B-cell tumor infiltration. GBM-

associated B cells suppressed activated CD8+ T cells, as evidenced

by the expression of inhibitory molecules PD-L1 and CD155 and

the production of immunoregulatory cytokines TGF and IL10 (39).

Extensive animal survival after local administration of B cell-

depleting immunotherapy emphasized the pathophysiologic

significance of B cells (39). Based to studies, B cells expressing the

costimulatory marker 4-1BBL (or CD137L) can boost CD8+ T cell

antitumor cytotoxicity (40). To sustain the Ag presentation

function of B cells (41), 4-1BBL+ B cells were activated utilizing

CD40 and IFN receptor (IFNR) ligation (designated as BVax). BVax

migrates to critical secondary lymphoid organs and is adept at

antigen cross-presentation, which increases CD8+ T cell survival

and functioning (41). A combination of radiation, BVax, and PD-L1

inhibition resulted in tumor elimination in 80% of tumor-bearing

rats treated. This treatment induced immunological memory, which

prevented the formation of new tumors in cured animals upon

reinjection (41).
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CD8+ T and CD4+ T cells

CD8+ T cells are activated upon antigen presentation through

MHC class I molecules. This T cell subtype constitutes a crucial

component of the tumor-specific adaptive immunity, which

differentiates into cytotoxic T lymphocytes, directly lysing target

cells (42). Han et al. showed that the infiltration of CD8+ T cells in

tumors inversely correlated with glioma grades and could be a

predictor of clinical outcome (43). Besides, Yang et al. have found

that miR-15a/16 defficiency increased tumor-infiltrating CD8+T

cell number and enhanced CD8+T cell-mediated immune response

via targeting mTOR. The authors identified the target gene (mTOR)

by a computer-assisted analysis and reported a direct interaction

between miR-15a/16 and mTOR but not with other genes. This was

also closely associated to T cell function (44). The authors also

showed that GL261-bearing mice deficient in miR-15a/16 had lower

expression of PD1, TIM3 and LAG3 and displayed higher

production of IFNg, IL2 and TNFa, which relieved the

immunosuppressive state of CD8+ T cells, reduced the tumor

volume and prolonged mice survival (44).

CD4+ T cells detect mainly extracellular proteins recognized

through MHC class II receptors on APCs (45). This T cell subset

mediates systemic immunity, compatible with long-term tumor

eradication (46). CD4+ T cells are central in initiating and

maintaining anti-cancer immune responses. Nonetheless, CD4+

regulatory T cells (Tregs) suppress anti-tumor immunity and

promote tumor progression (43). It was demonstrated that when

CD4+ T cells with tumor-specific TCRs were administered to

tumor-bearing mice, it mediated direct cytotoxicity against tumor

cells (47). Wang et al. demonstrated that CD4+ CAR T cells

mediated CD8-independent GBM eradication with long-term

efficacy both in vitro and in vivo. This finding pinpoints the

importance of the CD4+ cell subset for effective CAR therapy (48).

In gliomas, the infiltrating CD4+ and CD8+ cells represent a

low percentage compared to GAM (49). T lymphocyte cell numbers

decrease in low-grade glioma compared to high-grade (50). The

lack of adequate activation of T lymphocytes in the tumor

microenvironment may be because anti-tumor responses of T

lymphocytes are inhibited by soluble factors such as TGF-b and

IL-10 that are secreted by glioma cells (12). Besides, glioma cells lack

the co-stimulation molecules B7.1/2, and overexpress the PD-L1

mRNA and protein, a potent inhibitor of CD4+ T cell functions

(51). Previous studies showed that high-grade gliomas exhibit high

levels of CD4+ but low levels of CD8+ TILs. This might be another

reason behind the compromised immune function in the high-

grade glioma tissues (43).

Regulatory T cells are considered to be CD4+ CD25+ FoxP3+ T

cells. Their natural role is to prevent the immune response from

causing significant damage to internal tissues (52). In glioma, it is

now well established that tumors infiltrating Treg cells are

associated with a poor clinical prognosis (53). The tumor makes

use of the immunosuppressive functions of Treg cells to escape

immune responses. It would be interesting to attenuate local and

specific Treg cells for glioma treatment to improve anti-tumor

immune responses (54). Zhang et al. showed that down-
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regulation of FoxP3 promotes glioma cell growth and suppresses its

apoptosis, while its up-regulation inhibits the invasion ability of

glioma cells and suppresses migration (55). It was also reported that

FoxP3 overexpression favors apoptosis of glioma cells; it also

considerably enhances the induction of apoptosis by TNF-a or

chemotherapeutics (56). A transcriptomic study showed that Foxp3

expression increases with the aggressiveness of gliomas and is

associated with poor survival in TCGA and Moroccan patients

(57). Table 1 summarizes some of the immunological differences

between low-grade and high-grade gliomas.
Mechanisms of glioma cell evasion
from the immune response

Immune checkpoints

Immune checkpoints are a group of co-stimulation and co-

inhibition pathways that limit the functioning of the immune

system. Recently these have been the subject of extensive

research. Through the blockade of inhibitory immune

checkpoints, researchers could reverse immune resistance of

cancer cells and thus activate the anti-tumor immune response

(60, 61).
Programmed death-ligand 1

PD-L1 has significant involvement in immune evasion in GBM.

It inhibits the proliferation and function of cytotoxic T lymphocytes

and promotes the activity of Treg cells by binding to Programmed

cell death 1 (PD-1). The expression of PD-L1 on tumor cells and T

lymphocytes is correlated with tumor grades and poor overall

survival of glioblastoma patients (62). Microglia and TAM are

also known to express PD-L1 on their surface and simultaneously

promote its expression on GBM cells, which make this immune

checkpoint a prime target for immunotherapy for these patients

(63).Blochet al. showed that the expression of PD-L1 on glioma-

infiltrating macrophages is upregulated by glioma tumor cells,

which made these macrophages capable of suppressing T cell

activity through IL-10 signaling. Inhibition of IL-10 and IL-10

receptor reduced the expression of PD-L1 on monocyte by more

than 50% (51). In hypoxia, there is an increased expression of PD-
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L1 in glioma cell lines. In addition, PD-L1 and HIF-1a inhibitor

therapy reduced tumor mass and improved dendritic cell (DC) and

CD8+ T cell activation in a mouse model of glioma (64). PD-L1 is

also correlated to IgSF11, VISTA and CTLA-4 in high-grade

glioma (65).
The programmed cell death
protein 1 receptor

PD-1 is expressed on activated CD8+ T cells, as well as B cells

and natural killer cells, in the event of chronic antigen exposure. By

binding to its ligand, it leads to inhibition (66). It is also expressed

on suppressive myeloid cells in human GBM. However, combined

blockade of PD1 and TIGIT restored antigen specific T cell

proliferation that is inhibited by MDSC (67).

Zhao et al. confirmed that GBM patients responsive to anti-PD1

immunotherapy had significantly better overall survival after

treatment (68). However, tumors from non-responders had

significantly more PTEN mutation than the responsive ones and

were associated to immunosuppression signatures such as Treg cells

(68). In another study, it was shown that combining Anti-CXCR4

and anti-PD-1 on mice that were implanted with glioma cells,

presented immune memory and decreased populations of

immunosuppressive tumor-infiltrating leukocytes within the brain

(69). This treatment also improved CD4+/CD8+ ratios in the brain

and contributed to increased levels of pro-inflammatory

cytokines (69).
Cytotoxic T-lymphocyte antigen

CTLA-4 is expressed on activated CD4+ and CD8+ T

lymphocytes and Treg cells. It plays a major role in the escape of

gliomas from the immune system (70). Several studies

demonstrated that the expression of CTLA-4 is positively

correlated with disease progression in patients with glioma.

Meanwhile, blocking it, increased the proliferation capacity of

CD4+ T cells (71). This suggests that targeting it could perhaps

increase the anti-tumor activity of T cells by the up-regulation of

granzyme B (71). Selby et al. found that anti-CTLA-4 induced the

loss of intratumoral Tregs along with the expansion of CD8 T

effector in mice (72).
TABLE 1 Comparison of immune cells between GBM and LGG.

Comparison of immune cells between GBM and LGG

Myeloid cells

• GBM favors MDSCs remaining as MDSCs (58).
• LGG promotes MDSCs maturing to DCs (58).
• GBM have a significant infiltration of glioma-associated macrophages (12).
• The level of M0 gradually increases from LGG to GBM (59).

APC and NK • Reduced antigen-presenting cells and NK cells are found in GBM patients, which are an indication of a diminished anti-tumor response (58).

T lymphocytes
• T lymphocyte cell numbers decrease in low-grade glioma compared to high-grade (50).
• Treg infiltration was found to be positively associated with the grade of the glioma tumor (57).
• Infiltration of CD8+ T cells in tumors inversely correlated with glioma grades (43).
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T cell immunoglobulin and mucin domain-
containing protein 3

TIM-3 is expressed on activated T cells, NK cells, and

monocytes. It binds to its ligand Gal-9, which plays an essential

role in tumor survival, and even the progression of various

malignant tumors; however its role in tumorigenesis is still

unknown (73). In patients with glioma, the expression of TIM-3

on CD4+ and CD8+ T cells is significantly higher than in healthy

controls, and its expression level correlates with the grade. Similarly,

the use of monoclonal antibodies to block TIM-3 increases the

proliferation of T cells (74). Kim et al. investigated TIM-3

expression in a glioma model and the antitumor efficacy of TIM-

3 blockade. These authors demonstrated that anti-TIM-3 mAb

alone had no significant improvement in a mouse model in vivo.

However, triple therapy with anti-TIM-3, anti-PD-1, and

stereotactic radiosurgery resulted in overall survival of 100% (75).
Immunotherapy

For gliomas, treatment often involves surgery, radiation

therapy, and chemotherapy. Surgical removal generally improves

neurological functions and reduces dependence on corticosteroids

(76). Patients are then treated by external radiotherapy or

chemotherapy. However, survival following conventional

therapies is very poor (77), which makes immunotherapy the

subject of active research at present.
Vaccines

Dendritic cell vaccines
Dendritic cell vaccines constitute one of the most explored

immunotherapies in glioblastomas. These are made by exposing

DCs, which are taken from patients to tumor peptides or tumor

mRNA. These cells are then transfused to the patient to activate the

immune response (78). In a preclinical study, Garg et al. used a

single-agent immunogenic cell death (ICD) inducer–based DC

vaccine in an orthotopic High Grade Glioma (HGG) mouse

model and tested its efficacy as a next-generation anti-HGG

immunotherapy. In prophylactic setups, the ICD-based DC

vaccines showed considerable survival benefit against HGG,

especially in combination with standard chemotherapy

Temozolomide (TMZ). It increased median survival by more than

30%. However, the efficacy of this vaccine was highly dependent on

an intact adaptive immune system and a high number of CD8+ T

cells. It also induced a high infiltration of TH1/CTL/TH17 cells and

reduced Treg (79). In human subjects, the DC-based

immunotherapy strategy appears promising for inducing anti-

tumor immune responses. Treated patients had developed

significantly more CD4+ and CD8+ T cell infiltrations in the

tumor compared to the pre-vaccination state. Furthermore, the

magnetic resonance imaging showed a regression of the tumor mass

after vaccination (80) (Figure 2).
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Peptide vaccines
These are based on the induction of an immune response by

injecting tumor-specific antigens, which are absent from normal

tissue. These antigens are often proteins encoded by mutant genes

in the tumor. These are relatively conserved among different types

of cancers and patients (81). Shibao et al. evaluated VEGFR1 and

VEGFR2-derived peptides in vaccines targeting tumor vasculatures

in high grade gliomas. VEGFR-specific CD8+ T cells induced by the

vaccine were able to kill not only VEGFR-expressing endothelial

cells but also glioma (82) (Figure 2). Furthermore, the combined

application of this peptide vaccine and bevacizumab (anti-VEGF)

exhibited more efficacy in clinical activity for high grade glioma

patients (82). A clinical trial has shown that a vaccine targeting the

IDH1 mutant in patients with grade III or grade IV glioma elicited

immune responses in both T and B cells (83).
Immune checkpoint inhibitors

An increasing number of clinical trials have been underway

since 2011 to assess the potential therapeutic efficacy of PD-1/PD-

L1 and CTLA-4 inhibitors as monotherapies and combination

therapies for GBM (71). In one study, the immune analysis

indicated that pembrolizumab anti-PD-1 monotherapy couldn’t

induce an effector immune response in most GBM patients, likely

because of immune-suppress ive CD68+ macrophages

preponderance in the tumor microenvironment and also

insufficient T-cell frequency within the tumor microenvironment

to eliminate the tumor (84). However, Cloughesy et al. have found

that pembrolizumab confers significant improvement in the overall

survival of patients with recurrent glioblastoma. The treatment is

associated with an upregulation of PD-L1 and CD8+ T cell

infiltration in tumors (85) (Figure 2). Another ongoing clinical

trial is being conducted on IDH1 or IDH2 mutation-bearing adult

glioma patients to test if nivolumab (anti- PD-1 antibody) stops

tumor growth and provides long-lasting control of the tumor. This

nivolumab-based treatment proved indeed promising for IDH-

mutation-bearing glioma patients (NCT03718767) https://

clinicaltrials.gov/ct2/show/NCT03718767.
Adoptive transfer

T lymphocytes are carefully designed to express chimeric

antigen receptors (CARs specific to the tumor. The interest of this

approach lies in the capacity of CAR T cells to have MHC-

unrestricted recognition of target cells by using antibody (ab)

binding regions that allow T cells to react to epitopes formed by

proteins, carbohydrates and also lipids. This would overcome many

mechanisms by which tumors avoid immunorecognition, such as

MHC down-regulation (86). This approach has shown promise for

the treatment of glioblastomas (87). O’Rourke et al. conducted the

first-in-human clinical trial of CAR-modified T cell (CART)–

EGFRvIII in patients with recurrent GBM expressing EGFRvIII.

The CART cells infiltrated the brain tumor and exerted antigen-
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dependent activity. However, the tumor microenvironment became

immunosuppressive upon CART cell injection, with the expression

of many immunosuppressive molecules, particularly IDO1, FoxP3,

IL-10, PD-L1, and/or TGFb (88) (Figure 2).
Oncolytic viruses

Oncolytic virotherapy relies on replicating viruses that can

selectively kill infected cancer cells (89). It can be a powerful

stimulus for the immune system and lead to activating specific

anti-tumor immunity (89). Besides, the innate immunity induced

by the pathogen associated molecular patterns (PAMPs) can act as a

powerful adjuvant to enhance the adaptive immune response. The

use of this immunotherapy would be particularly beneficial in the

treatment of highly immunosuppressive tumors such as GBM (89,

90)(Figure 2). Virotherapy for malignant gliomas has proven safe.

Furthermore, Andtbacka et al. successfully used the talimogene

laherparepvec, an oncolytic herpes simplex virus armed with

granulocyte-macrophage-colony-stimulating factor (GM-CSF). It

is the first oncolytic immunotherapy to demonstrate therapeutic

benefit against melanoma in phase III clinical trial. It was well

tolerated and resulted in a higher durable response rate (DRR). This

gives hope for virotherapy success in the treatment of neoplastic

diseases (91).
Frontiers in Oncology 07
Mechanisms of resistance to
glioma treatments

Numerous metabolic stresses, such as hypoxia, acidosis, stem cells

and blood-brain barrier, are present in the tumor microenvironment

and have a substantial impact on the ineffectiveness of immunotherapy.

Understanding the impact of these stressed factors on the tumor

microenvironment could improve the efficacy of immunotherapy

(92–95).
Glioma stem cells

In the brain, stem cells exhibit large MHC antigens compared to

normal neural stem cells; thus, immunotherapy using a vaccination

technique to generate a T cell response, particularly against cancer

stem cells, can be an effective therapeutic strategy (96). One of the

main reasons for the resistance of glioma to therapies is the

presence of a subpopulation of cells with self-renewal and tumor-

initiating skills in the tumor microenvironment, namely glioma

stem cells (GSCs) (93, 97). These cells are localized in niches where

these are maintained as slowly dividing cells (93). The resistance is

mainly due to its effect on the immune system as it promotes the

polarization of macrophages towards the M2 phenotype and

induces immune-suppressive activities through PD-L1 (98)
FIGURE 2

Immunotherapy strategies in glioma. Left to right, improved patient survival and tumor regression associated with successful CD4+ and CD8+ T
infiltration after treatment with Pembrolizumab or DC-based immunotherapy. The tumor microenvironment became immunosuppressive upon
CART cell injection. Oncolytic virotherapy can provide a potent stimulus to the immune system and activate specific anti-tumor immunity.
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(Figure 3). Interestingly, the blockade of the signal transducer and

activator of transcription 3 (STAT3) in GSC, which is likely to be a

key mediator of immune suppression, by the STAT3 siRNA

restored the anti-tumor function (including IL-2 and IFN-g
secretion)of T lymphocytes, inhibited their apoptosis, and

reduced the number of induced Tregs (99) (Figure 3).

So new approaches against glioma were built using the GSCs

as targets; for example, 3-Bromopyruvate (3-BrPA) that is a

glycolysis inhibitor and tumor energy blocker, was reported to

inhibit the malignant phenotype of macrophages induced by

glioma stem cells (100). There is also the transcription factor

CCAAT/enhancer-binding protein delta (CEBPD), which

regulates various genes responsive to inflammatory cytokines.

This indicated that this was a key mechanism for GSC self-

renewal in the inflammatory environment and exhibited a

pivotal role in inducing the stem-like feature (101). Hence,

targeting CEBPD seems an interesting therapeutic option to

improve gliomas (101). In another study, it was shown that the

stem cell marker CD44 is associated with poor prognosis and

radiation resistance and the survival was improved in a glioma
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mouse model of using CD44−/− and CD44+/− mice compared to

littermate controls (102).
Hypoxia

Hypoxia corresponds to a low/insufficient O2 supply and

constitutes a selection pressure that favors the rise of highly

aggressive cells. Not only can these cells adapt to low O2

conditions, but these could also resist anti-cancer treatments (103).

In GBM, hypoxia inhibits T cell proliferation and activation

and, on the other hand, activates Treg cells. Furthermore, it inhibits

macrophage phagocytosis compared to normoxia conditions. This

hypoxia-induced immunosuppressive effect was mediated via a

signal transducer, activator of transcription 3(STAT3), hypoxia-

inducible factor (HIF)-1a, and vascular endothelial growth factor

(VEGF). Indeed, inhibition of these pathways, down-regulates this

hypoxia-induced immunosuppressive effect (92) (Figure 3).

It was reported that radiotherapy with carbon ions could

overcome several central glioma resistance mechanisms by
FIGURE 3

Mechanisms of resistance to glioma treatments: Left to right; Administration of pHA-anti-PD-L1 alleviated the immunosuppression, resulting in the
infiltration of activated T cells in gliomas prolonged the survival of glioma-bearing mice. Direct interaction between PD-L1 expressed on glioma EV
and PD-1 expressed on T cells mediate the inhibition of both CD4+ and CD8+ T cell activation and proliferation. Autophagy combined with
Temozolomide (TMZ) could enhance the cytotoxicity of this chemotherapeutic agent. The blockade of the signal transducer and activator of
transcription 3 (STAT3) in GSC by the STAT3 siRNA restored the anti-tumor function of T lymphocytes, inhibited their apoptosis, and reduced the
number of induced Tregs. In GBM, hypoxia inhibits T cell proliferation and activation and, on the other hand, activates Treg cells. Acidosis inhibits the
function of CD8+ T cells, DCs, and monocytes, and increases MDSC infiltration and M2-polarized macrophages that exhibit intense
immunosuppressive function.
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elimination of hypoxic and stem cell-like tumor cells, but also

through modulation of the glioma niche towards an anti-angiogenic

and less immunosuppressive state. Radiation with carbon ions also

reduced the recruitment of microglia and myeloid-derived

suppressor cells, abrogated M2-like immune polarization, and

enhanced the influx of CD8+ cells (104) (Figure 3).
Acidosis

A common feature of glioma is acidosis caused by hypoxia. It is

characterized by the accumulation of lactate and the decrease of pH

(94)(Figure 3). It plays a critical role in glioblastoma

chemoresistance by interfering with angiogenesis, apoptosis,

oxidative stress, immune escape, and the activity of multidrug

resistance (105). Aggressive brain tumors have been shown to

produce lactate in their microenvironment, which helps them

metastasize and evade the immune response and even radiation

(106). It inhibits the function of CD8+ T cells, DCs, and monocytes,

and increases MDSC infiltration and M2-polarized macrophages

that exhibit intense immunosuppressive function (94). Chirasani

et al. showed that inhibiting the lactate dehydrogenase A (LDHA)

by diclofenac, is associated with a reduced production of lactate by

glioma cells, which leads to IL-12 production by tumor-infiltrating

DCs upon TLR stimulation (107) (Figure 3).
The blood-brain barrier

The blood-brain barrier (BBB) in the context of brain tumors

can be a major obstacle to the penetration of large therapeutic

agents into the brain and the tumor. For example, the checkpoint

inhibitor antibodies to cytotoxic T-lymphocyte-associated antigen 4

(CTLA-4) and programmed cell death-1 (PD-1) were unsuccessful,

especially due to their inability to cross the BBB (108).

An interesting therapeutic way would be using nanoparticles to

help antibodies cross the BBB. Indeed, using tumor-targeting

immunoliposome nanocomplex encapsulating the tumor

suppressor gene TP53 that is also known as SGT-53 (The p53

protein is involved in the regulation of cell cycle arrest and

apoptosis in response to genotoxic and oncogenic stresses) in

combination with anti-PD-1mAb resulted in the inhibition of

tumor growth and induction of tumor cell apoptosis (109). This

treatment also increased intratumoral T cell infiltration and

suggested that SGT-53 can boost anti-tumor immunity and

sensitize glioblastoma to anti-PD1 Ab treatment (109).

Furthermore, a versatile drug carrier-poly (b-L-malic acid)

(PMLA) was used to deliver covalently conjugated CTLA-4 and

PD-1 antibodies by using the transferrin receptor (TfR)-mediated

transcytosis to cross the BBB. This activated the local immune

system in the brain tumor area through increased infiltration of

CD8+ T cells, NK cells and macrophages and decreased infiltration

of Treg cells (108).

A successful immunotherapy strategy for glioblastoma will

ultimately consist of combinatorial therapy. It would allow
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enough tumor-specific T cells to enter and persist in an immune-

permissive tumor microenvironment. Investigations could focus on

the increase of adhesion between T cells and endothelial

glioblastoma cells by enabling trans endothelial migration of T

cells (110) (Figure 3). Such an approach would transform this

deadly disease into an immunologically hot target. Guo et al. used

an anti-PD-L1 conjugated with p-hydroxybenzoic acid (pHA) to

facilitate the crossing of the BBB by the antibody through dopamine

receptor-mediated transcytosis (110). This approach resulted in a

significant increase in the frequency of CD8+ and CD45+ cells in

brain tumors. The administration of pHA-anti-PD-L1 alleviated the

immunosuppression, resulted in the infiltration of activated T cells

in gliomas and prolonged the survival of glioma-bearing mice (111)

(Figure 3). This indicates that immune checkpoint inhibitors, when

adequately administered, could result in a positive outcome

in GBM.
Extracellular vesicles

Extracellular vesicles (EV) are small membrane vesicles derived

from multivesicular bodies or bud from the plasma membrane. EVs

released by glioma cells express PD-L1 on their surface (92). Direct

interaction between PD-L1 expressed on glioma EV and PD-1

expressed on T cells mediate the inhibition of both CD4+ and

CD8+ T cell activation and proliferation (95).

EV can also convert myeloid-derived innate immune cells to

immune-suppressive or tumor-supporting effector cells. This results

in the inhibition of T cell activation and tumor growth support

through the secretion of specific cytokines (95)(Figure 3). Studies

also demonstrated that EGFR+ EVs are useful diagnostic and

prognostic markers of glioma. The expression of EGFR in serum

EVs can accurately differentiate high-grade and low-grade glioma

patients (112). Gabrusiewicz et al. reported that GBM-derived stem

cell exosomes could induce upregulation of PD-L1 on CD14+

monocyte in human subjects. This results in the polarization of

monocytes into immunosuppressive M2 macrophages (98).

Another study found that GSC-derived exosomes significantly

inhibited CD3+ T cell proliferation (113), decreased the

expression of both activation markers, CD25 and CD69 (113) and

attenuated the production of Th1 cytokines (IL-2, INF-g, and TNF-

a) while upregulated IL-6, aTh2 type cytokine (113). In GBM

mouse model, EVs contribute to tumor growth and inhibited CD8+

T cell cytolytic activity (114).
Autophagy

Autophagy is a catabolic mechanism that eliminates, via

lysosomes, altered organelles, long-lived and misfolded proteins.

It occurs in response to nutrient starvation or oxidative stress and

leads to the formation of metabolic precursors (amino acids and

fatty acids) and ATP, ensuring homeostasis and cell survival (115)

(Figure 3). However, small repairs or major stress can lead to cell

death, named autophagic death. It was shown that autophagy could
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modulate both invasion and resistance to therapy in GBM and that

its inhibition (116), combined with Temozolomide (TMZ), could

enhance the cytotoxicity of this chemotherapeutic agent (117)

(Figure 3). It would be interesting to explore further the

relationship between autophagy and the modulation of the

immune system in glioma for a better understanding of resistance

mechanisms to therapies.

Concluding remarks

In the present review, we provided evidence indicating that the

immune system is indeed involved in glioma physiopathology.

However, the immune components are strongly inhibited in the

tumor microenvironment through distinct mechanisms including

immune checkpoints, hypoxia, acidosis, glioma stem cells, and

extracellular vesicles. The BBB constitutes a major obstacle

behind the failure of immunotherapy in gliomas. Therefore, we

suggest further studies involving all these different facets of the

glioma microenvironment. Lastly, in order to potentially benefit

from current and future immunotherapies, investigations in glioma

should decipher adequate ways to facilitate BBB crossing of these

therapeutic agents.
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