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Heterogeneity of glycan
biomarker clusters as an
indicator of recurrence in
pancreatic cancer

Luke Wisniewski1†, Samuel Braak1, Zachary Klamer1,
ChongFeng Gao1, Chanjuan Shi2, Peter Allen3

and Brian B. Haab1*

1Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States, 2Department of
Pathology, Duke University School of Medicine, Durham, NC, United States, 3Department of Surgery,
Duke University School of Medicine, Durham, NC, United States
Introduction: Outcomes following tumor resection vary dramatically among

patients with pancreatic ductal adenocarcinoma (PDAC). A challenge in defining

predictive biomarkers is to discern within the complex tumor tissue the specific

subpopulations and relationships that drive recurrence. Multiplexed

immunofluorescence is valuable for such studies when supplied with markers

of relevant subpopulations and analysis methods to sort out the intra-tumor

relationships that are informative of tumor behavior. We hypothesized that the

glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of

cancer cells, define intra-tumoral features associated with recurrence.

Methods: We probed this question using automated signal thresholding and

spatial cluster analysis applied to the immunofluorescence images of the STRA

and CA19-9 glycan biomarkers in whole-block sections of PDAC tumors

collected from curative resections.

Results: The tumors (N = 22) displayed extreme diversity between them in the

amounts of the glycans and in the levels of spatial clustering, but neither the

amounts nor the clusters of the individual and combined glycans associated with

recurrence. The combined glycans, however, marked divergent types of spatial

clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of

more than one cluster type within a tumor associated significantly with disease

recurrence, in contrast to the independent occurrence of each type of cluster. In

addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially

aligned with pathology-confirmed cancer cells, whereas regions with

homogeneous biomarker clusters aligned with various non-cancer cells.

Conclusion: Thus, the STRA and CA19-9 glycans are markers of distinct and

co-occurring subpopulations of cancer cells that in combination are associated

with recurrence. Furthermore, automated signal thresholding and spatial

clustering provides a tool for quantifying intra-tumoral subpopulations that are

informative of outcome.

KEYWORDS

multiplexed immunofluorescence, glycans, pancreatic cancer, biomarkers, recurrence,
digital pathology
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Introduction

Tumor behavior varies widely among patients with pancreatic

ductal adenocarcinoma (PDAC). Among patients who are

diagnosed with stage I/II cancer and undergo resection plus

systemic gemcitabine, 20-35% can have durable survival out to >5

years from surgery, but nearly 40% experience disease recurrence

within 1 year and 10-20% have overall survival (OS) of <1 year (1, 2)

. Treatment with FOLFIRINOX (5-fluorouracil, leucovorin,

irinotecan, and oxaliplatin) gives longer responses for many

patients—45-55% have OS >5 years—but ~30% have recurrence

times and 5-10% have OS of <1 year (2, 3) . The source of the

differences between patients is explained in part by tumor extent:

patients with lymph node involvement, positive resection margins,

and high tumor size fare worse than others (4, 5). Cellular and

histological features such as tumor grade and perineural invasion

also predict worse outcomes (4, 6, 7). But such conventional

measures of risk stratification do not provide enough accuracy to

clearly guide selection of patients who will benefit from surgery (8).

In the search for molecular markers to improve predictive

accuracy, the complexity of the tumor microenvironment brings a

challenge, as it has been to discern the specific features within the

complexity that are driving progression. Bulk gene-expression

methods uncovered subtypes of PDAC that partially explain

differences between tumors (9–11), with the basal subtype

showing worse outcomes that the classical subtype (6, 7). But

tumors encompass a variable admixture of cells, including both

non-cancer cells (10), cancer cells of more than one subtype (12,

13), and cancers cells that are not easily classified by the established

subtypes (14). Furthermore, cell states can interconvert based on

outgrowths from progenitor populations (12), changes in

microenvironment (15), or alterations in epigenetic drivers (16).

To make progress in detecting predictive features considering the

extreme intra-tumoral heterogeneity, methods are needed to detect

specific subpopulations and the relationships between them.

Multiplexed immunofluorescence could be valuable for this

purpose because it yields both a high-resolution image of the

biomarker locations within the tissue and a quantification of

biomarker amounts. In fact, several studies have established that

the combined analysis of biomarker amounts and spatial patterns

provides useful information about tumor subtyping. For example,

features of immune-cell density predicted response to anti-PDL1

therapy in melanoma patients (17) and in PDAC (18), and immune

cell features correlate with clinical outcome (19). But the key

component for such methods to be effective is markers to detect

the individual subpopulations within a tumor that have relevance to

tumor behavior. Furthermore, image-analysis algorithms and

software are needed to measure the levels and relationships

between the markers that are informative.

Biomarkers that are promising for the detection of

complementary subpopulations of cancer cells are the glycans

CA19-9 (cancer antigen 19-9) (20) and STRA (sialylated tumor-

related antigen) (17). CA19-9 is produced by cells of the classical,
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epithelial, and well-differentiated type, and STRA is produced by

cells of both the classical and the basal, mesenchymal and poorly

differentiated types (18). CA19-9 is useful as a marker of tumor

burden but not as a predictor of response. STRA, in contrast, is a

marker of biological subtype and resistance to chemotherapies (18).

Previous studies of primary tissue showed that tumors variously

produce CA19-9, STRA, or both (17, 19). The previous studies,

however, did not reveal information about the whether these

markers can home in the specific subpopulations of cancer cells

associated with cancer progression because image analysis methods

were not applied to explore the relationships among the biomarkers

within the specimens.

Multiple software tools are available for analyzing multiplexed

immunofluorescence images, but no particular method is

established for defining cancer-cell patterns associated with

outcome. The above-described studies relied on identification and

annotation of histologic structures such as cell nuclei, tubules, and

epithelial regions—a method known as segmentation. These

methods identify cells based on color, texture, and shape based

on pathologist-guided training. With proper training datasets, the

methods work very well for identifying distinct cell populations.

Once the cells are identified, further analyses can be performed such

as nearest neighbor or density analyses. Other methods that do not

require pathologist review involve the deep learning methods (21).

But a potential limitation of this approach with some biomarkers is

that the biomarkers do not neatly fit into cells, or that the cells

sometimes have very irregular characteristics. Another concern

with training is that it requires a user-defined gold standard. Such

a gold standard can be hard to define, given the immense

heterogeneity and diversity between tumors and the variation

between pathologists in determining certain cell types (22).

Variation in tissue quality also presents a problem for training

(22). A complementary approach to segmentation is to analyze

biomarker amounts and organization without reference to pattern

recognition, but rather based on intensity threshold. The challenge

with this approach is the automated setting of the intensity

threshold, which is an acknowledged difficulty in the field of

digital pathology (23). We previously developed an algorithm and

software package that automatically determines, without user

intervent ion, the optimal intensi ty threshold for an

immunofluorescence image and the quantification of signal and

background pixels (24). The advantage of this method is that it gives

a statistically based, unbiased, consistent analysis across all images,

which in turn provides a key starting point for exploring complex

biomarker associations.

We hypothesized that automated threshold determination and

signal identification provides a foundation for determining whether

the specific subpopulations or patterns defined by the CA19-9 and

STRA glycans in primary tumor specimens are associated with

pancreatic cancer recurrence. We tested a method that operates

without user selection of locations or settings for individual

specimens, as needed for an unbiased, data-guided assessment of

biomarker associations.
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Materials and methods

Study approval and sample acquisition

The tissue samples were collected under a protocol approved by

the Institutional Review Board at Duke University Medical Center.

All subjects provided written, informed consent, and all methods

were performed in accordance with an assurance filed with and

approved by the U.S. Department of Health and Human Services.

The tissue samples were collected from surgical resections of

pancreatic ductal adenocarcinomas. Tissue from tumor resections

were formalin fixed and embedded into paraffin blocks according to

standard procedures. The tissue sections used for this study were

from extra material not needed for patient evaluation. The status,

procedures, and outcomes of the patients were recorded for at least

3 years.
Immunostaining and fluorescence imaging

We performed immunofluorescence on 5 mm thick sections cut

from formalin-fixed, paraffin-embedded blocks. Paraffin was

removed from 5 μm thick FFPE sections using CitriSolv Hybrid

(Decon Labs, King of Prussia, PA) containing d-limonene and

isopropyl cumene, and the tissue was rehydrated through an

ethanol gradient of 100%, 95%, and 70% followed by washing

with PBS. Following rehydration, antigen retrieval was achieved

through incubating slides in citrate buffer at 100°C for 20 minutes.

Slides were blocked in phosphate-buffered saline with 0.05%

Tween-20 (PBST0.05) and 3% bovine serum albumin (BSA) for 1

hour at RT. Primary antibodies against CA19-9 (clone 9L426, US

Biological Life Sciences) and TRA-1-60 (Novus Biologicals) were

labeled for immunofluorescent staining with Sulfo-Cyanine5 NHS

ester and Sulfo-Cyanine3 NHS ester respectively. After dialysis to

remove unreacted conjugate, the antibodies were diluted into the

same solution of PBST0.05 with 3% BSA to a final concentration of

10 μg/mL. Slides were incubated overnight with this solution at 4°C

in a humidified chamber.

The following day, the antibody-containing solutions were

decanted and the slides were washed twice in PBST0.05 and once

in 1X PBS, each time for 3 minutes. The slides were dried via

blotting and incubated with DAPI at 10 μg/mL in 1X PBS for 15

minutes at RT. Two five-minute washes were performed in 1X PBS,

and then slides were cover-slipped and scanned using a fluorescent

microscope (AxioScan.Z1, Zeiss, Oberkochen, Germany). The

microscope collected 3 images at each field-of-view, each image

corresponding to the emission maxima of Hoechst 33258, Cy3, and

Cy5. We next quenched the fluorescence using 6% H2O2 in 250 mM

sodium bicarbonate (pH 9.5-10) and performed another round of

immunofluorescence using two different antibodies. The

subsequent incubations and scanning steps were as described above.

Prior to the second round of detection with the TRA-1-60

antibody, we treated the slides with sialidase to remove terminal

sialic acids. The slides were incubated with a 1:200 dilution (from

a 50,000 U/mL stock) of a2-3,6,8 Neuraminidase in 5 mM
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CaCl2, 50mM pH 5.5 sodium acetate overnight at 37°C. The

subsequent incubations and scanning steps were as described

above. The hematoxylin and eosin (H&E) staining followed a

standard protocol.
Image processing and analysis

All image data were quantified using SignalFinder. For each

image, SignalFinder creates a map of the locations of pixels

containing signal and computes various values for the output

report, such as the percentage of tissue-containing pixels that

have signal. This analysis required major computational

resources, as each high-resolution image of the ~1.5 x 2.5 cm

tissue comprises about 9 billion pixels at ~3000 pixels/mm

resolution and ~500 GB file size. A 1-square-inch image at such

resolution would scale to about 4000 square feet if changed to 72

pixels per inch as used for display.
Software

We developed the SignalFinder software using MATLAB, Java,

and C++. We used Microsoft Excel and MATLAB for analyzing

numerical output; GraphPad Prism, the R language, and Microsoft

PowerPoint for the preparation of graphs; and Canvas X for the

preparation of figures
Results

Automated signal quantification reveals
diverse but non-predictive glycan patterns

We analyzed whole-block tumor sections from 22 patients who

underwent resection and adjuvant chemotherapy as curative

treatment for PDAC (Table 1). We immunostained each

specimen for the CA19-9 and STRA biomarkers and detected the

biomarkers using multicolor fluorescence imaging (Figure 1A). We

then analyzed the fluorescence images by automated signal

identification (24) to produce maps of the signal pixels

(Figure 1B), which we overlaid onto the brightfield images of the

stained slides (Figure 1B). This system enables a visualization of the

locations of biomarker staining and of the histomorphologies of the

cells producing the biomarkers (Figure 1B). But more importantly

for the investigations of biomarker features associated with

outcomes, the method provided automated, objective signal

identification and quantification for use in subsequent biomarker

analyses. This foundation allowed us to ask whether we could

achieve a fully data-guided method of ranking the likelihood of

recurrence, that is, a method of classifying the tumors that does not

involve user selections of locations or settings.

The amounts of each biomarker—as determined by the number

of signal pixels identified by SignalFinder normalized to the pixels

in the tissue—were highly variable among the 22 subjects and

between the biomarkers (Figure 1C). The subjects had widely
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varying outcomes, with some exhibiting no evidence of disease after

several years and others succumbing to recurrent disease after less

than one year (Table 1 and Supplementary Table 1). A group

between these extremes had extended survival but struggled with

recurrence and continued progression of the disease. The outcomes

did not associate with any demographic factors or type of systemic

therapy (Table 1). Neither the individual biomarkers (Figure 1D)

nor the combination of the two (not shown) was associated with

outcome. An alternative way to quantify the signal using average

intensities above a threshold gave different quantifications but also

produced no associations with outcome (Supplementary Figure 1).
Spatial clustering shows divergent types
and amounts of glycan clusters

To gain insights into the sources of variability between the

specimens, we examined the images of the whole-block sections

(Figure 2). At the microscopic level, we observed extreme diversity

within and between tumors in the biomarker locations and

amounts. The biomarker staining occurred primarily in epithelial

and glandular areas—a potentially useful trait for assessing

adenocarcinoma—but it also occurred in varying degrees among

both benign and cancerous glands and some non-epithelial area.

For example, specimen 17-213 showed CA19-9 staining in

ampullary glands and low-grade PanIN and STRA staining in

poorly differentiated carcinoma and focally in PanIN, but in

another section (16–570), both STRA and CA19-9 were together
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in varying relative amounts in cancer glands. STRA staining

appeared in some small-intestinal mucosa that was at the edge of

the section. STRA also appeared alone or together with CA19-9 in

cancer glands in a specimen (18–371). We also observed occasional

CA19-9 staining of macrophages (16-570a) and red blood cells (18-

371a) and STRA staining of stroma (17-213a). Such diversity

appeared in the remainder of the specimens (Supplementary

Figure 2). The above observations indicated that simple

quantifications of signal amount or intensity across entire sections

would include large areas with low or zero biomarker production, as

well as signals from both benign and cancerous glands.

To quantify features that potentially are more specific to tumor

assessment, we tallied the signal only where it is part of a cluster of

biomarker production (Figure 3A). Starting with the pixel maps of

signal from the SignalFinder output, we produced a sum of signal

abundance within a pixel-by-pixel moving box (Figure 3B). The

number of regions with spatial concentrations above various

thresholds provided the amount of clustering for each

biomarker (Figure 3B).

We first asked whether this mode of quantification provides

distinct information, or alternative whether it simply reflects

random clustering that correlates with total signal amount. A

view of cluster amounts with respect to signal amounts or

intensities showed only weak correlation (Figure 3C). In some

cases, the signals were highly clustered, such as the CA19-9 data

in patient 15-658, and in other cases, the signals were more evenly

distributed, as with the CA19-9 data in patient 19-296 (Figure 3D).

This finding indicates that the level of clustering is distinct from
TABLE 1 Cohort information.

Group Total Recurrence No Recurrence

Total Samples 21 13 8

Avg. Age 68.2 65.5 68.3

Percent Male 42.9% 38.5% 50.0%

Outlook/Outcome

Recurrence < 1 year, N (%) 7 (33.3) 7 (33.3) –

Recurrence < 2 years, N (%) 11 (52.4) 11 (52.4) –

Recurrence < 3 years, N (%) 12 (57.1) 12 (57.1) –

Survival < 1 year, N (%) 3 (14.3) 3 (14.3) –

Survival < 2 years, N (%) 5 (23.8) 5 (23.8) –

Survival < 3 years, N (%) 6 (28.6) 6 (28.6) –

Treatments

Gem, N (%) 14 (66.7) 12 (92.3) 2 (25.0)

FOLFIRINOX, N (%) 11 (52.4) 6 (46.2) 5 (62.5)

Abraxane, N (%) 8 (38.1) 8 (61.5) –

FOLFOX, N (%) 2 (9.5) 2 (15.4) –

Xeloda, N (%) 6 (28.6) 6 (46.2) 2 (25.0)

Olaparib, N (%) 1 (4.8) 1 (7.7) –

Radiation, N (%) 4 (19.0) 2 (15.4) 2 (25.0)
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total biomarker amount and that specimens have diversity between

them in the amount of biomarker clustering.

The quantifications of clustered signal, however, did not associate

with recurrence to a greater degree than signal amount (Figure 3E). A

survey of the histological features of regions with high or low spatial

concentrations gave insights into the tumor characteristics identified

by this method of quantification (Figure 3F). The areas with higher

spatial concentrations aligned with greater cellularity, and the areas

with very low spatial concentrations were frequently free of epithelia,

but areas with both high and low spatial concentration contained

various levels of cancer and benign cells. These observations indicated

that spatial concentration specifically quantifies the glandular-

epithelial biomarker production but does not, by itself, distinguish

types of histomorphology.
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Given the varied relationship between the glycans (Figure 2), we

next asked whether the combined CA19-9 and STRA provide

unique information about the biomarker clusters. We used the

maps of the individual biomarker clusters to define the overlap

between the glycan-defined clusters and to identify the regions that

were exclusively STRA, exclusively CA19-9, or both (Figure 4A,

referred to as STRA-only, CA199-only, and dual). We then

separately quantified the amount of each type of cluster to

examine whether the overlap was simply a random event

correlated with total signal amounts. Some of the tumors just had

the STRA-only or the CA199-only clusters (Figure 4B and

Supplementary Figure 3), and the amounts of clusters containing

both markers were not correlated with the sums of the signal

amounts (Figure 4B). For example, subject 15-658 had a low
B

C D

A

FIGURE 1

Automated quantification of multiplexed immunofluorescence in whole-block tumor sections. (A) Method of data acquisition. CA19-9 is detected in
the first round of staining, and STRA is detected in the second round using the TRA-1-60 antibody post-sialidase. (B) Data processing. The raw
fluorescence (left) is processed by SignalFinder to identify signal pixels (middle), which are then assigned colors and overlaid on the H&E brightfield
image (right). The percentages are the amount of each signal relative to tissue area. (C) STRA signal amount with respect to CA19-9 amount. Each
point is a whole-block tissue specimen. (D) Kaplan-Meier associations of CA19-9 and STRA with time to recurrence. The median value of each
defined the cutoff between high and low.
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amount of the biomarkers but proportionally high clusters; subject

17-213 largely had the STRA-only clusters, and 18-137 had high

amounts and clusters (Figure 4B). Maps of the three cluster types

confirm such various levels of heterogeneity and showed that the

different types of clusters can either appear near each other or

occupy separate regions (Figure 4D).

Given that the dual clusters were not resulting just from a mass-

driven overlap of unrelated signals, we concluded that the combined

glycans provide distinct information about the biomarker clusters.

Furthermore, the specimens vary greatly in the types of clusters they

exhibit. Specimens exist that are either relatively homogeneous in

the types of clusters they contain or are heterogeneous with various

relative proportions of the STRA-only, CA19-9-only, or dual

clusters (Figure 4C).
Heterogeneity in cluster types is associated
with outcome

The above findings suggested that a combined evaluation of the

distinct cluster types may provide value for tumor assessment.
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An alignment of the individual biomarker amounts and clusters

by subject showed the diversity between subjects (Figure 5A), both

for subjects with and without recurrence of disease after 3 years. It

also showed the lack of correspondence between the two methods of

quantification, as with subject 19-296, who had a high amount but

low clusters of CA19-9. None of the individual biomarker clusters

was significantly associated with outcome (Figure 5B), prompting

us to ask whether certain combinations of clusters have stronger

associations with outcome than others. To categorize the subjects

based on combined biomarker amounts or clusters, we

dichotomized the presence or absence of each biomarker using

cutoffs determined from receiver-operator-characteristic analysis

(Supplementary Table 2). The resulting values illustrated the

prominence of only one cluster type in certain tumors and two or

more in others (Figure 5C). Furthermore, it was evident that the co-

occurrence of multiple cluster types was a dominant feature of the

recurrent specimens. Accordingly, the occurrence of more than one

type of cluster was significantly greater in the cases than in controls

(11/13 cases vs. 2/8 controls, c2 = 7.5, p = 0.006). The improved

classification accuracy resulted from the identification of

heterogeneity in biomarker clusters in cases where biomarker
FIGURE 2

Within-tumor and between-tumor diversity. Medium and tight zoomed regions are shown. The histomorphology shows low grade PanINs (17-213, b
and d); benign pancreas (18-371, A); invasive carcinoma (17-213, C; 16-570, A–D; 18-371, B–D); and ampullary glands (17-213, A).
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amounts were not heterogeneous. For example, subject 18-371 had

high biomarker amounts only of CA19-9 but high clusters of all

three types (Figure 5C). An equivalent approach applied to the

marker amounts resulted in no significant difference (5/13 cases vs.

2/8 controls, c2 = 2.5, p = NS) (Figure 5D).

We further tested this relationship using Cox Proportional

Hazards models for continuous analysis of survival with respect

to spatial cluster abundance (Figure 5E). Because p values are

unstable for survival analysis using small sample sizes, we utilized

explained randomness in proportional hazard models according to

the method of Xu and O’Quigley (r2
XOQ) (25). The explained

randomness of survival probability was higher using the

combination of the cluster types than using the individual clusters

( r2
XOQ   0.52 compared to 0.10, 0.04, and 0.38 for STRA, CA19-9

and Dual, respectively) or using the combination of the biomarker

amounts (r2XOQ  0.16) or the average intensities of 90th percentile

(r2XOQ  0.10). These quantifications – the amounts and the clusters –

are from the same SignalFinder output. Therefore, the increased

association with recurrence suggests that biomarker clusters are

more informative for outcomes than biomarker amounts. Further,

it suggests that heterogeneity in biomarker clusters is more

informative than individual biomarker clusters.
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We tested the reproducibility of these results for 5 new tissue

specimens that were cut from the same blocks as used in the above

analysis but separated in the block by 10-20 mm. The

quantifications of clusters correlated positively between the first

and second runs, and after applying thresholds to classify each case,

the classifications matched exactly (Supplementary Figure 4). We

concluded that for these sections, the types of biomarker clusters are

consistent between different sections of a tumor block within

moderate variation. We concluded also that the analytical

variability of the assay is low, although in this assay we cannot

disentangle variability in the tissue from variability in the assay.

We also investigated the associations between heterogeneity

and other tumor characteristics. The intensities of the biomarker

signals (Supplementary Figure 1) were positively but non-

significantly correlated with cluster amounts (not shown),

suggesting a higher per-cell production of the biomarkers in areas

where cells are clustered, although intensity by itself is not

informative of outcome. The total cellularity of the tumors,

referring to amount of tumor filled by cells instead of

extracellular matrix, varies greatly between PDACs. Using a

quantification of the DAPI nuclear staining as a measure of

cellularity, cellularity was higher, but not significantly, in the
B

C D E

F

A

FIGURE 3

Identification of spatial clusters. (A) Types of relationships between signal amount and clusters. (B) Method of analysis. (C) Relationship between
CA19-9 clusters and amounts. Each point represents a specimen. (D) Examples of punctate (19-296) and broad (15-658) clusters. (E) Kaplan-Meier
associations of CA19-9 and STRA clusters with time to recurrence. The median value of each defined the cutoff between high and low.
(F) Histomorphology in regions defined by spatial concentrations. The left image shows the spatial concentrations of CA19-9. The right panels are
corresponding H&E images for the indicated regions, showing invasive carcinoma (panels 1, 3, 5), invasive carcinoma with abundant necrosis (panel
2), benign pancreas (panels 4 and 5), and stroma (panel 6).
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heterogeneous tumors. This result suggests that tumors with clonal

heterogeneity proliferate and spread more than others, and it also

could provide a basis for a previous observation that high cellularity

in PDAC is moderately associated with short survival (26). Thus,

heterogeneity is an independent factor of clinical significance that is

moderately associated with signal intensity and total cellularity.
Regional cluster heterogeneity aligns
with pathology-confirmed cancer in
recurrent tumors

The association of cluster heterogeneity with recurrence suggests

that the co-occurrence of divergent clusters identifies a subset of

cancer cells. We therefore investigated whether areas with biomarker

cluster heterogeneity are more associated with the presence of cancer

cells than areas without cluster heterogeneity. We performed intra-

tumoral comparisons of histomorphology in 4 specimens with

heterogeneity in clusters but not in amounts and in 1 specimen

with heterogeneity in both clusters and amounts (Figure 6). For each,

we identified regions containing more than one cluster type and

regions containing just one cluster type within regions-of-interest (~3

mm) three times the size of the region used in calculating spatial

concentrations (~1 mm, Figure 3B). We then identified by surgical

pathology review the regions containing cancer glands and compared

the overlap with the clusters. At the macroscopic level, the areas with
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heterogeneous clusters corresponded well with the locations

identified by surgical pathology as containing cancer cells

(Figure 6A). In three subjects (16-250, 15-658, and 18-371), the

identifications were equivalent, but in the others, cluster

heterogeneity occurred in some regions not identified by surgical

pathology. In all, cluster heterogeneity identified areas containing

cancer cells in 28 out of 32 (88%) instances. The matched regions-of-

interest taken from areas containing only 1 cluster type overlapped

with cancer-cell-containing regions in 2 of 17 (11.7%) instances. This

result indicates that heterogeneity in biomarker clusters preferentially

identifies regions containing cancer cells, in contrast with the

individual biomarkers.

Given that cluster heterogeneity associated with recurrence, we

further examined the histological differences between the recurrent

and non-recurrent specimens. By surgical pathology, no systematic

differences were evident between the patients with recurrence and

without recurrence, nor between the patients with cluster

heterogeneity and without cluster heterogeneity (Table 2). A

feature present in 5 of the recurrent cases and 0 of the non-

recurrent cases was positive surgical margins (typically an sign of

poor prognosis in any cancer). Of the 8 cases with recurrence and

negative margins, 7 were positive cluster heterogeneity. We

concluded therefore that heterogeneity in biomarker clusters

provides information about cancer-containing regions that is not

discernable from histopathological review, in particular as a

quantifiable feature of tumors with high likelihood of recurrence.
B

C
D

A

FIGURE 4

Spatial clusters with distinct biomarker production. (A) Method of identification. The maps of clusters for the two biomarkers were compared to
identify the ones high in only one biomarker or in both. (B) Quantification of CA199-only clusters relative to STRA-only clusters (left) and dual
clusters relative to sum of signal amount from STRA and CA19-9 (right). (C) Types of cluster compositions in tissue. (D) Visualization of moderate
(15-658), high (18-137), and low (17-213) heterogeneity in cluster types.
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B

A

FIGURE 6

Comparison to histopathology. (A) General localization of cancer-container areas. The white boxes indicate regions of tissue with >1 cluster type
within areas of pathology-confirmed cancer; the red boxes indicate similar areas outside of pathology-confirmed cancer; and the dashed boxes
indicate regions with <2 cluster types. The yellow lines indicate regions as broadly containing cancer cells. (B) Microscopic-level comparison of
regions identified by cluster heterogeneity and histopathological review.
B C

D E

A

FIGURE 5

Associations with outcome. (A) Alignments of signal amounts and clusters of each biomarker and cluster type. (B) Associations of single cluster
types. (C) Thresholded values and assignment of case status based on >1 biomarker or cluster type. (D) Assignment accuracy using clusters or
amounts. (E) Recurrence and survival comparison of subjects with ≥ 2 cluster types to patients with ≤ 1 cluster type.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2023.1135405
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wisniewski et al. 10.3389/fonc.2023.1135405
Discussion

The keys to uncovering accurate predictors of outcome are

markers of the individual, relevant subpopulations and a method to

quantify the relationships within a tumor that are informative of

tumor behavior. Here we demonstrate that two glycan biomarkers –
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CA19-9 and STRA – are predictive of outcome when detected in a

particular intra-tumoral relationship. Using a new approach to

analyze and quantify biomarker patterns in multiplexed

immunofluorescence data, we found that simple quantifications of

biomarker amounts were not sufficiently informative of recurrence.

But by quantifying the spatial clusters of the combined biomarkers,
TABLE 2 Comparison with surgical pathology.

ID Outcome Cluster types* Site Grade Margins Invasion Lymph nodes Perineural T N M

17213 Recurrence 1 Head Poorly Differentiated Positive Positive Positive ND 3 1 1

20272 Recurrence 3 Tail
Moderately
Differentiated

Negative Positive Negative Positive 2 0 X

18760 Recurrence 3 Head
Moderately
Differentiated

Negative Positive Positive Positive 2 2 X

16496 Recurrence 1 Head
Moderately
Differentiated

Negative Positive Positive Positive 3 1 X

18137 Recurrence 3 Tail
Moderately
Differentiated

Positive Positive Negative Positive 3 0 X

19167 Recurrence 2 Tail
Moderately
Differentiated

Positive Positive Positive Positive 2 1 X

18371 Recurrence 3 Tail
Moderately
Differentiated

Negative Negative Negative Positive 1 0 X

1596 Recurrence 3 Tail
Moderately
Differentiated

Negative Positive Negative Positive 2 0 X

20333 Recurrence 3 Head
Moderately
Differentiated

Negative Positive Negative Positive 2 0 X

19451 Recurrence 2 Head
Moderately
Differentiated

Negative Positive Positive Positive 3 2 X

16250 Recurrence 2 Head
Moderately
Differentiated

Positive Positive Negative Negative 3 1 X

17543 Recurrence 3 Head
Moderately
Differentiated

Negative Positive Positive Positive 3 1 X

15658 Recurrence 3 Head
Moderately
Differentiated

Positive Positive Positive Negative 3 1 X

20281
No

Recurrence
3 Head Well Differentiated Negative Positive Positive Positive 2 1 X

19637
No

Recurrence
1 Head Poorly Differentiated Negative Negative Positive Positive 2 1 X

19296
No

Recurrence
0 Tail

Moderately
Differentiated

Negative Positive Positive Positive 2 1 X

19115
No

Recurrence
1 Head

Moderately
Differentiated

Negative Negative Negative Positive 2 0 X

18460
No

Recurrence
0 Tail

Moderately
Differentiated

Negative Negative Negative Negative 2 0 X

16763
No

Recurrence
1 Tail

Moderately
Differentiated

Negative Positive Positive Negative 3 0 X

14767
No

Recurrence
1 Head

Moderately
Differentiated

Negative Positive Positive Positive 3 1 X

16570
No

Recurrence
3 Head

Moderately
Differentiated

Negative Positive Positive Positive 3 1 X

20282 Unknown 2 Head
Moderately
Differentiated

Positive Positive Positive Positive 1 2 X
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we found that the co-occurrence of more than one type of

biomarker cluster within a tumor associated with recurrence, in

contrast to the individual biomarker clusters or glycan levels. These

results demonstrate the value of the CA19-9 and STRA glycans for

assessing tumors, and they present a new method for quantifying

features within tumors that are indicative of tumor behavior.

A plausible interpretation of the relationship found here is that

CA19-9 and STRA in combination are markers of clonal

heterogeneity of cancer cells. This interpretation concords with

previous findings that the two glycans could identify both a stem-

like founder population (marked by STRA) and another more-

differentiated population (marked by CA19-9) (27). This link also

concords with previous studies demonstrating the aggressive nature

of clonal heterogeneity in tumors. Heterogeneity in cancer cells,

which potentially reflects the plasticity and outgrowth of stem-like

cancer cells (12, 28), likely provides cells greater ability to adapt,

produce diverse subpopulations, and survive. Consistent with these

concepts, mouse pancreatic cancer cells gaining plasticity through

GATA6 loss increased their chemoresistance and ability to escape

immune elimination (29), and tumors able to switch subtypes

through the expression of the GLI2 transcription factor have

shorter survival and higher tumor growth rates (30). Cancer

progression could be further aided not just by heterogeneity in

the cancer cells, but also in the tissue microenvironment as defined

by fibroblast differentiation, immune activation, and cancer-cell

markers (31).

Additional markers could potentially provide new biological

information or predictive capability, such as markers of cancer

subtypes. For example, GATA6 expression marks the classical type

(32, 33) and is suppressed in the basal type (29), and a TP63 isoform

called deltaN-P63 is suppressed in the classical PDAC

transcriptional program (34, 35) and could mark a subset of

basal-like cancer cells. Neutrophil infiltration (36), epigenetics

traits, and metabolites (9, 29, 37, 38) also mark subtypes of

cancer. Greater value could be derived through linking with

spatial transcriptomics methods. Such methods are powerful for

uncovering biological functions and biomarkers (39, 40) and, if

coupled with the precision and resolution of immunofluorescence,

would provide more information about the cells that produce

each biomarker.

The current study has several limitations and areas for further

development. In the first place, the sample set is small. It is difficult

to make generalizations from a limited number of samples. In this

case, we were directly comparing two modes of analyzing the data

for just two biomarkers, rather than comparing many biomarkers,

and we did not do an exhaustive test of image-analysis method.

These considerations mitigate the chances of overfitting or false

discovery. Nevertheless, full validation studies must be done with

larger cohorts and blinded outcomes that are revealed after analyses

are complete. A second limitation and goal for future research is

that we did not account for microenvironment. Future studies

should include immune cell and fibroblast markers that

potentially mark the sub-TMEs (31) or subtypes of stroma found
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by gene-expression profiling (10). Third, we did not perform a full

exploration of the algorithms and parameter space for defining

spatial clusters and heterogeneity, owing to the scale of such an

undertaking. Here we demonstrated one method that showed the

value of the approach, and several of the parameters should be

further optimized. In addition, other software programs potentially

could examine these questions from other angles, especially those

that offer segmentation for the counting of cells. Certain

morphological features of PDAC cells associated with subtypes

and outcomes (41), suggesting that segmentation methods to

identify such feature could augment biomarker discovery

algorithms. Many other spatial clustering approaches are available

to examine aggregation of particular cell types (42). Such

approaches would provide additional layers of interpretation.

Another goal for future work is to broaden the application

beyond patients who had resection specimens available. Samples

that are available before surgery include biopsy material and

peripheral blood. Both types of samples could be amenable to the

methods demonstrated here. Biopsy specimens likely would contain

the heterogeneous biomarker types within one or more samples,

considering that the distinct types of biomarker clusters appeared

together within common regions of the tissue (Figure 6). Blood

specimens also could contain the information of cluster

heterogeneity, as PDAC cells secrete multiple types of biomarkers

into the blood, such as genomic DNA, extracellular vesicles,

proteins, metabolites, and others. Glycans in particular have value

as markers of cell type that appear both on cell surfaces and in

secretions (43, 44). In future research, the tissue analysis method

demonstrated here could identify the biomarker combinations that

are useful for patient evaluation and that could constitute clinical

assays using either biopsy or blood specimens. If validated, the

method and findings presented here could help to stratify patients

by likelihood of recurrence. The tumors in such subtypes could be

analyzed for differential responses to the great range in drug options

now available or used in the development of patient-derived

organoids to identify effective treatments through high-

throughput screening (12, 45).
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