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Convolutional neural network
to predict IDH mutation status
in glioma from chemical
exchange saturation transfer
imaging at 7 Tesla

Yifan Yuan1,2,3,4,5,6†, Yang Yu2,5,6,7†, Jun Chang1,2,3,4,5†,
Ying-Hua Chu8, Wenwen Yu9, Yi-Cheng Hsu8,
Liebig Alexander Patrick10, Mianxin Liu11* and Qi Yue1,2,3,4,5,6*

1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,
Shanghai, China, 2National Center for Neurological Disorders, Shanghai, China, 3Neurosurgical
Institute of Fudan University, Shanghai, China, 4Shanghai Clinical Medical Center of Neurosurgery,
Shanghai, China, 5Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration,
Shanghai, China, 6Research Units of New Technologies of Micro-Endoscopy Combination in Skull
Base Surgery (2018RU008), Chinese Academy of Medical Sciences (CAMS), Shanghai, China,
7Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University,
Shanghai, China, 8Magnetic Resonance (MR) Collaboration, Siemens Healthineers Ltd.,
Shanghai, China, 9Institute of Science and Technology for Brain-Inspired Intelligence, Fudan
University, Shanghai, China, 10Siemens Healthcare GmbH, Erlangen, Germany, 11Shanghai Artificial
Intelligence Laboratory, Shanghai, China
Background and goal: Noninvasive prediction of isocitrate dehydrogenase (IDH)

mutation status in glioma guides surgical strategies and individualized

management. We explored the capability on preoperatively identifying IDH

status of combining a convolutional neural network (CNN) and a novel

imaging modality, ultra-high field 7.0 Tesla (T) chemical exchange saturation

transfer (CEST) imaging.

Method: We enrolled 84 glioma patients of different tumor grades in this

retrospective study. Amide proton transfer CEST and structural Magnetic

Resonance (MR) imaging at 7T were performed preoperatively, and the tumor

regions are manually segmented, leading to the “annotation”maps that offers the

location and shape information of the tumors. The tumor region slices in CEST

and T1 images were further cropped out as samples and combined with the

annotation maps, which were inputted to a 2D CNN model for generating IDH

predictions. Further comparison analysis to radiomics-based predictionmethods

was performed to demonstrate the crucial role of CNN for predicting IDH based

on CEST and T1 images.

Results: A fivefold cross-validation was performed on the 84 patients and 4090

slices. We observed a model based on only CEST achieved accuracy of 74.01% ±

1.15%, and the area under the curve (AUC) of 0.8022 ± 0.0147. When using T1

image only, the prediction performances dropped to accuracy of 72.52% ± 1.12%

and AUC of 0.7904 ± 0.0214, which indicates no superiority of CEST over T1.

However, when we combined CEST and T1 together with the annotation maps,

the performances of the CNN model were further boosted to accuracy of
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82.94% ± 1.23% and AUC of 0.8868 ± 0.0055, suggesting the importance of a

joint analysis of CEST and T1. Finally, using the same inputs, the CNN-based

predictions achieved significantly improved performances above those from

radiomics-based predictions (logistic regression and support vector machine)

by 10% to 20% in all metrics.

Conclusion: 7T CEST and structural MRI jointly offer improved sensitivity and

specificity of preoperative non-invasive imaging for the diagnosis of IDH

mutation status. As the first study of CNN model on imaging acquired at ultra-

high field MR, our results could demonstrate the potential of combining ultra-

high-field CEST and CNN for facilitating decision-making in clinical practice.

However, due to the limited cases and B1 inhomogeneities, the accuracy of this

model will be improved in our further study.
KEYWORDS

convolutional neural network, chemical exchange saturation transfer, ultra-high field
MR, radiomics, glioma
Introduction

Glioma is the most common primary intracranial tumor, with an

incidence of about five to six per 100,000 people (1). Molecular

pathology based on genetic testing has revolutionized the diagnosis of

glioma and re-categorized the subtypes, thus providing more precious

information for individualized therapy. Among various genetic markers,

isocitrate dehydrogenase (IDH) mutation emerges as the most

prominent one to predict chemosensitivity and influence overall

survival (2). The precise identification of IDH mutation in pre-

operative stage always leads to better diagnosis (3). Therefore, pre-

operative identification of IDH status is highly valuable for

neurosurgeons to formulate surgical strategy and decide the extent of

tumor removal, especially for gliomas located at the eloquent brain area.

In recent years, a growing number of studies have started to

investigate non-invasive prediction of IDH status by radiological

imaging, especially using magnetic resonance imaging (MRI).

Conventional T1-contrast imaging has been initially applied to

differentiate high-grade gliomas from low-grade ones according to

the appearance of enhanced signals, while later studies focusing on the

non-enhancing area that proposed a T2-FLAIR mismatch sign have

been applied to predict IDH mutation (3, 4). With diffusion-weighted

imaging (DWI) becoming a routine at most institutions, some evidence

has also emerged suggesting that DWI is promising for predicting

IDH-mutation (5). Besides, the combination of deep learning and DWI

for noninvasive classification of glioma genetic subtype was reported to

be 5%–8.8% more accurate than anatomical imaging alone (6).

However, studies based on structural Magnetic Resonance (MR)

sequences ignored the close relevance of IDH to glioma metabolism

and were not able to explain the underlying mechanism for prediction.

To this extent, metabolic Magnetic Resonance (MR) imaging might

play a more reasonable role in identifying IDH mutant glioma.

Chemical exchange saturation transfer (CEST) is a novel metabolic

sequence to trace mobile proton exchange among water and other
02
molecules. Triggering specific Magnetic Resonance (MR) signal at

different radiofrequency pulses, it is prospective for assessing

endogenous proteins and acidosis. Amide proton transfer (APT), a

classical CEST approach that yields high contrast at 3.5 ppm frequency

can theoretically detect elevated mobile peptides and proteins in

gliomas and thus aid in the diagnosis. Jiang et al. has explored the

APT-CEST manifestations of IDH mutant glioma and found that

APTw imaging hyperintensity could be a potential marker of active

malignant glioma and is able to distinguish between regions of

heterogeneous abnormality on anatomical brain MRI with 85.1%

sensitivity and 94.1% specificity (7). In addition, introduction of

ultra-high-field to CEST imaging recently is making its stratification

of glioma more sufficient (8). Our group previously reported that IDH

wild-type cases generated higher APT values than mutant cases,

indicating potential ability of CEST to differentiate IDH status (9).

With the rapid development of medical image analysis in the past

decade, image-based radiomics and deep learning are serving as

indispensable tools to determine genetic biomarkers using imaging

features. Among them, deep convolutional neural network (CNN) is a

representative method to automatically exploit high-dimensional

information from images by learning to identify predictive features

under supervisions, while image-based radiomics requires designs of

hand-crafted features. In addition, the deep-layer model could tackle

the potentially highly non-linear relationship between the extracted

feature and the tumor property to be predicted and, thus, could be

more proper tools to improve predictive accuracy and has been used to

identify molecular markers in glioma. However, CNN has not been

utilized in 7T CEST to predict IDH status in glioma. In this study, we,

for the first-time, study a CNNmodel based on ultra-high field T1 and

CEST combination to estimate the IDH-mutated status and compare it

with radiomics-based methods. We hypothesized that the multi-modal

based deep learning algorithm can achieve high accuracy in

noninvasively stratification of glioma than single-modal based deep

learning or conventional radiomics-based methods.
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Method and materials

Participants

This retrospective study was approved by the local institutional

review board, and the requirement to obtain informed consent was

waived. Patients were recruited from Huashan Hospital, Fudan

University between August 2020 and September 2022. All patients

were newly diagnosed as glioma and underwent subsequent

resection or biopsy. Pathologic diagnoses were determined

according to the 2021 World Health Organization (WHO)

classification of central nervous system (CNS) tumors, and

patients diagnosed with a non-glioma disease were excluded. The

study was registered in WHO ICTRP (registration No.

ChiCTR2000036816) and 84 patients were included.
MRI and IDH1 type acquisition

All patients underwent MRI scan within a week prior to surgery.

CEST MRI was performed on a 7T MRI scanner (MAGNETOM

Terra; Siemens Healthineers, Erlangen, Germany) with a prototype-

developed snapshot‐CEST sequence based on a 3D gradient spoiled

GRE readout (10) with a single-channel transmit/32-channel receive

head coil (NovaMedical,Wilmington,MA, USA). The snapshot‐CEST

sequence parameters were TR = 3.4 ms, TE = 1.59 ms, FA = 6°,

resolution = 1.6 mm × 1.6 mm × 5 mm, and GRAPPA acceleration

factor = 3 with amplitudes B1 = 0.6, 0.75, and 0.9 mT. Z-spectra were

sampled unevenly by 56 frequency offsets between -300 ppm and +300

ppm. The Z‐spectrum data were corrected for both B0 and B1

inhomogeneities using the WASABI method (11) and were fit pixel-

wise by a five-pool Lorentzian model (water, amide, amine, NOE, and

MT) using the Levenberg–Marquardt algorithm (12). For CEST data

co-registration, high-resolution T1 MP2RAGE (TR = 3800 ms, TI1 =

800 ms, TI2 = 2700 ms, TE = 2.29 ms, FA = 7°, and resolution =

0.7 mm isotropic) and 3D T2-SPACE (TR = 4000 ms, TE = 118 ms,

and resolution = 0.67 mm isotropic) were acquired at 7T. Routine-

clinical-sequence, contrast-enhanced T1-weighted images (TR = 6.49

ms, TE = 2.9ms, FA = 8°, spatial resolution = 0.833 mm × 0.833 mm ×

1 mm), were acquired at 3T on an Ingenia MRI scanner (Koninklijke

Philips N.V., Netherlands). The MRI data were processed by

experienced imaging engineers using MATLAB (R2020a, USA).

Tumor tissues obtained during operations were collected for

histological analysis. IDH mutation status was evaluated by next-

generation sequencing of IDH1 and IDH2 genes or by IHC (anti-

IDH1 ant ibody, ab172964, Abcam, American) us ing

standard techniques.
Data preprocessing

An experienced radiologist manually annotated the tumor regions.

The annotation was delineated based on the CE images (high grade

gliomas) and T2 images (low grade gliomas). Then, annotation was co-

registered to the T1 structure images and CEST images required at 7T.
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The intensity of each participant’s CEST and T1 image was a z-score

normalized over the whole volume. Each selected CEST or T1 slice

included more than 100 pixels of tumor regions. All slices were further

cropped according to the tumor region bounding box and re-sized into

100 × 100 pixels. Each pair consisted of one CEST slice, one T1 slice,

and one tumor-annotated mask slice with an IDH label, and a total of

4093 pairs were selected as our training and testing datasets.
Convolutional neural network

A 2D convolutional neural network (CNN) was designed to

generate IDH mutation predictions. The preprocessed CEST, T1,

and tumor annotation slices were combined as three channels and

input into the CNN. Under this setting, our model combined the

metabolism information from CEST, the anatomical information

from T1, and the enhanced shape information from the tumor

annotation for the IDH prediction. The architecture and the

parameter settings are depicted in Figure 1.

We train the CNN with training epoch = 35, learning rate = 0.01

for first 10 epochs, and 0.001 for the 10th to 20th epochs and 0.0001

for the remaining epochs, and batch size = 32. The “Adam”

algorithm (13) was used to automatically optimize the trainable

parameters with a weight decay of 0.001. In Figure S1, it can be

observed that the loss function value and accuracy in the training set

of our CNN model can quickly converge to a static level near 0.5

after 15–20 training epochs, suggesting our model can fast-extract

the informative feature from the Magnetic Resonance (MR) data

and our training epoch length (i.e. epoch = 35) can guarantee the

final prediction is from a set of relatively stable parameters.

We adopted a standard hierarchical design of the CNN. In the first

three convolutional layers, we implemented a convolution kernel with

2×2 pixel2 to extract local features and max pool to refine the spatial

information. Along with the reduction of image spatial size, we increase

the size of feature channels to maintain (or increase) the amount of

information. In the fourth layer, the elements in the feature map have

become representatives of each local region. At this stage, we

implemented a larger kernel (4×4 pixel2) to allow cross-talks of

information in a larger spatial scale, without changing in the channel

size. All elements in the feature map will be integrated by a global

average pooling. The global feature will then be sent into three layers of

full-connected layers (attached with non-linear activation function

“ReLU”, batch normalization and dropout) for generating the

final prediction.

Since the sample size was slightly imbalanced in different groups,

the weighted cross-entropy was employed as the loss function, with

weights adaptively configured according to the ratio in sample sizes

between wild-type and mutant groups. Other parameters of the neural

network models are initialized with random weights. The training is

accelerated with an Nvidia GTX 3080 GPU.
Radiomics

The open-source toolbox “Pyradiomics” [ht tps : / /

pyradiomics.readthedocs.io/en/latest/ (14)] was implemented to
frontiersin.org
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compute radiomics features from the T1, CEST, and annotation

slices. The extracted radiomics features included 2D shapes, first

order statistics, gray level co-occurrence matrix, gray level run

length matrix, gray level size zone matrix, neighboring gray tone

difference matrix, and gray level dependence matrix. By design, the

annotation mask was required to compute 2D shapes and first order

statistics and thus in all radiomics-based predictions the annotation

mask was used as inputs. In total, 95 features were computed from

each slice when using “T1 + annotation” or “CEST + annotation” as

inputs and 188 features when using “T1 + CEST + annotation” as

inputs. The resulted features were then fed into a conventional

machine learning classifier. Results from two methods were

presented in the main text: 1) a linear logistic regression (LR)

model with L1-penalty for classification, which hypothesizes the

sparsity in the features; and 2) a non-linear support vector machine

(SVM) with radial basis function (RBF) kernel. The LR and SVM

methods were implemented with the open-source “scikit-learn”

toolbox. Results from LR and SVM under other configurations,

such as applying L2-penalty for LR and other kernels for SVM,

can be found in Tables S1 and S2. To address the imbalance of

the sample size in the two classes, weights were automatically set

on the classes according to the inverse proportion of class

frequencies in the training data. Other parameters were set to be

default configurations.
Validation scheme

A five-fold cross-validation was performed to assess the

predictability of our method. The 4693 slices were randomly split

into five equal folds, with four folds being the training set and the

remaining one being the testing set. Five rounds of validations were

performed so that each fold behaved as testing set once. For

predictions from each round, we computed four metrics from

different aspects to evaluate the performance, i.e., the accuracy

(ACC), sensitivity (SEN), specificity (SPE), and area under the

receiver operating characteristic curve (AUC).
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Statistical analysis

The means, standard deviation (STD) and 95% confidence

interval (CI) of the performance metrics from cross-validation

were calculated and reported. The comparisons on the

performance metrics of different methods from cross-validation

were performed using one-sided paired t-test.

In addition, we also integrated the predictions from each fold to

compute the metrics on predictions for all the participants. The

significance of this integrated result was estimated by a permutation

test. The performance metrics were re-calculated using the CNN

model predictions and randomly permutated ground truth labels.

Such setting mimics the performances of null models under chance

level. With 1000 times of permutation, the distribution of the

performance metrics under chance level was constructed. The p-

values were obtained by the probability of finding a metrics value

that was larger than the real metrics value from CNN in the chance

level distribution.

We also constructed the AUCs based on the integrated

prediction from different experimental conditions and use the

Delong’s test to verify the differences among the AUCs (15).

All statistical analyses were performed in Matlab (R2022b).
Results

Characteristics of the studied population

The patient demographics were summarized in Table 1. Eighty-

four patients were enrolled in the study, including 22

oligodendrocytomas, 28 astrocytomas, 30 glioblastomas, one

diffuse midline glioma, one ganglioglioma, and two pediatric

high-grade gliomas. Almost half of the tumors were located in the

frontal lobe, followed by the temporal and insular lobes. The

detailed distribution is visualized in Figure S2. Among them, 44

were IDH wild-type. Patients of WHO grade 2 and grade 3 were all

IDH mutant; while two grade 4 patients were IDH mutant. There
FIGURE 1

The architecture of the implemented CNN model using T1, CEST and annotation mask as inputs.
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was no significant difference between IDH wild-type and mutant

groups in gender and handedness. However, the mean age was

significantly lower in the mutant group (p = 0.0026). Interestingly,

five IDH wild-type gliomas, which tended to be WHO grade 3 in

morphology, were categorized as WHO grade 4 based on the 2021

WHO neuro-oncology classification.

In Figure 2, we visualize the typical appearances for IDH

mutant and wild-type gliomas in conventional Magnetic

Resonance (MR) and CEST. Figure 2A was derived from a 40-

year-old female patient who suffered from intermediate headache

and post-surgical pathology indicated that the right fontal lesion

was an IDH wild-type GBM (glioblastoma, WHO grade 4). On the

other hand, lesion in Figure 2B was a left temporal low-grade glioma

from a 42-year-old female and she was diagnosed as IDH mutant

astrocytoma (WHO grade 2). It can be observed that the APT% in

the lesion of IDH wild-type (Figure 2A) is much higher than which

of IDH mutant lesion (Figure 2B). These visualizable differences in

the APT-CEST imaging data provide the basis for our further deep

learning method building for accurate IDH predictions.
IDH predictions using CNN based on T1,
T2, and CEST

In the cross-validations, our full method using T1, CEST, and

annotation mask as inputs (Table 2 and Figure 3, “T1+CEST

+annotation”) obtained ACC = 82.94% (CI = [81.24%, 84.65%]),
Frontiers in Oncology 05
SEN = 82.35% (CI = [79.76%, 84.94%]), SPE = 83.45 (CI = [79.98%,

86.92%]), and AUC = 0.8868 (CI = [0.8792, 0.8944]). When

integrating the predictions, the metrics values were ACC =

82.94% (p < 0.001), SEN = 82.39% (p < 0.001), SPE = 83.45 (p <

0.001), and AUC = 0.8849 (p < 0.001), all of which showed

significance when comparing to the chance levels (Figure 4).
Ablation study

The ablation analysis in the inputs for our method was

conducted to address the contributions of each modality. We

trained the CNN using only CEST image (Table 2 and Figure 3,

“CEST”). When using CEST only, the prediction performances

dropped to ACC = 74.01% (CI = [72.41%, 75.61%]), SEN = 75.70%

(CI = [71.54%, 79.86%]), SPE = 72.50% (CI = [70.91%, 74.09%]),

and AUC = 0.8022 (CI = [0.7818, 0.8227]). Besides, we built another

model based on T1 image data only (Table 2 and Figure 3, “T1”). It

can be observed that the performance metrics from the model based

on T1 image were ACC = 72.52% (CI = [70.96%, 74.07%]), SEN =

73.10% (CI = [70.60%, 75.60%), SPE = 72.03% (CI = [69.64%,

74.42%]), and AUC = 0.7904 (CI = [0.7607, 0.8201]), which were

slightly lower than those based on CEST (Table 2 and Figure 3. p =

0.1136 for ACC, p = 0.1502 for SEN, p = 0.2162 for SPE, p = 0.2316

for AUC; one-sided paired t-test). Note that these metrics were both

higher than the chance level (see null model distributions in

Figure 4). It suggested that using CEST and T1 image only can
TABLE 1 The demographic and tumor-related characteristics of the included patients.

All Patients WHO WHO WHO WHO

Grade 1 Grade 2 Grade 3 Grade 4

No. of patients

84 1 27 11 45

Age (yr)

Mean 48.8 72 42.1 45.1 57.4

Range 25-75 / 25-65 29-67 36-75

Gender

Male 45 0 12 7 26

Female 39 1 15 4 19

Positon

Frontal Lobe 34 0 16 5 13

Parietial Lobe 6 0 2 0 4

Occipital Lobe 4 0 0 0 4

Temporal & Insular Lobe 32 0 8 6 18

Others 8 1 1 0 6

IDH status

Wild-type 44 1 0 0 43

Mutant 40 0 27 11 2
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still provide satisfactory predictability on the IDH1 mutation.

Besides, CEST image exhibited a slight advantage over T1 image

(no statistical significance is identified).

Similarly, we tried models based on T1 and T2 (standard T2,

due to data availability) and compared it with the models based on

T1 and CEST. If there is no significant difference, the improvements

of adding CEST indeed originates from T2 weighting. After aligning

the data, we selected 74 subjects and obtained 4096 slices to perform

the experiment and comparison. In the results of Table 3, we

observed that with or without the annotation, the models based

on T1 + CEST can both significantly outperform the models based

on T1 + T2. Therefore, the metabolism information from CEST,

besides the T2-weighting information, is providing additional

assistance to the prediction.

Besides CNN developed from single modality, the efficacy of

multi-modal combination was further tested. When using both

modalities as inputs (without the annotation mask, “T1 + CEST”),

the CNN model achieved ACC = 81.75% (CI = [79.00%, 84.50%]),

SEN = 79.64% (CI = [75.02%, 84.26%]), SPE = 83.68% (CI =

[79.47%, 87.89%]) and AUC = 0.8689 (CI = [0.8487, 0.8891]),
Frontiers in Oncology 06
which were significantly higher than the corresponding results from

both single-modal-based predictions (Table 2 and Figure 3, “T1”

and “CEST”). When comparing “T1” and “T1 + CEST”, one-sided

t-test yielded p = 0.0002 for ACC, p = 0.0048 for SEN, p = 0.0005 for

SPE and p = 0.0002 for AUC. When comparing “CEST” and “T1

+CEST”, one-sided t-test yielded p = 0.0011 for ACC, p = 0.1319 for

SEN, p = 0.0010 for SPE, and p = 0.0005 for AUC. These results

supported the advantage of multi-modal information fusion.

In addition to T1 and CEST modalities, the geometrical

information (i.e. shape of the tumor) from the annotation mask

could be optimally utilized by the CNN.When adding the annotation

mask as one of the inputs (Table 2 and Figure 3, “T1 + annotation”,

“CEST + annotation”, “T1 + CEST + annotation”), the model

provided higher performances than their corresponding versions

that without the annotation mask (Table 2, “T1”, “CEST”, “T1 +

CEST”). When comparing “T1” and “T1 + annotation”, one-sided t-

test yielded p = 0.0180 for ACC, p = 0.2297 for SEN, p = 0.0301 for

SPE and p = 0.0287 for AUC.When comparing “CEST” and “CEST +

annotation”, one-sided t-test yielded p = 0.3180 for ACC, p = 0.6378

for SEN, p = 0.0291 for SPE, and p = 0.1565 for AUC. When
TABLE 2 CNN-based prediction performances under models using different inputs.

Input ACC (%) SEN (%) SPE (%) AUC

T1 72.52 ± 1.12*** 73.10 ± 1.80** 72.03 ± 1.72*** 0.7904 ± 0.0214***

CEST 74.01 ± 1.15*** 75.70 ± 3.00* 72.50 ± 1.14*** 0.8022 ± 0.0147***

T1 + CEST 81.75 ± 1.98 79.64 ± 3.33 83.68 ± 3.03 0.8689 ± 0.0145*

T1 + annotation 75.76 ± 2.02** 74.47 ± 3.05** 76.70 ± 3.74* 0.8293 ± 0.0221**

CEST + annotation 74.88 ± 2.58** 74.37 ± 4.24** 75.28 ± 2.27* 0.8192 ± 0.0216**

T1 + CEST + annotation 82.94 ± 1.23 82.35 ± 1.87 83.45 ± 2.50 0.8868 ± 0.0055
The data are reported in form of “Mean ± STD”. * “CEST + T1 + annotation” is significantly higher than the indicated method at p < 0.05 level. ** p < 0.01. *** p < 0.001.
FIGURE 2

The typical MR appearances of an IDH wild-type (A) and an IDH mutant (B) glioma (from left to right, T1WI, T2WI, Gadolinium Enhanced T1WI and
APT). (A) A 40-year-old female patient with IDH wild-type glioblastoma, WHO grade 4; (B) a 42-year-old female patient with IDH mutant
astrocytoma, WHO grade 2.
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comparing “T1 + CEST” and “T1 + CEST + annotation”, one-sided t-

test yielded p = 0.1300 for ACC, p = 0.0618 for SEN, p = 0.5631 for

SPE, and p = 0.0120 for AUC. These observations highlighted the

annotation mask could enhance the tumor region to assist other

modality for better predictions.

In Figure 5, we analyzed the receiver-operating characteristic

(ROC) curves from models with different inputs. In general, the

results were consistent to the observations in Table 2. Our full

method also showed strong significances over all compared settings

in terms of the ROC curve evidenced by the Delong’s tests.
Comparison between CNN and radiomics

Considering widely application of radiomics in gene prediction,

further analysis was performed to compare the CNN-based prediction

methods and radiomics-based prediction methods. In Tables 3, S1,
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and S2, we firstly investigated the results by applying different

machine-learning based classification methods on the radiomics

features under different configurations. Overall, it can be found that

the predictability of radiomics-based methods varies remarkably

across different methodological settings. Taking the “T1 + CEST +

annotation” in Table 3 for example, logistic regression based radiomics

achieved ACC = 76.35%, SEN = 77.95%, SPE = 74.89%, and AUC =

0.7641, while SVM based radiomics achieved ACC = 64.13%, SEN =

66.30%, SPE = 62.11%, and AUC = 0.6420. Therefore, the

performances of radiomics-based predictions can be strongly

depending on and restricted by the method selections. Secondly, in

all the methods (Tables 4 and S1, S2), it can be consistently observed

that using CEST as inputs can lead to better performances than using

T1; and using both CEST and T1 as inputs results in higher

predictability than using a single modality. In addition, in Table S1,

the L1-penalty optimizes the prediction results under LR method,

which suggests the sparsity of the predictive radiomics features. In

parallel, within SVM methods, the non-linear kernels generally

improve the performances, indicating the non-linearity of the

relationship between the radiomics feature and the IDH mutation.

However, none of the SVM achieves performances being higher than

results from LR, which may be due to the limited classification

capacity of the SVM model.

We further compare the radiomics-based methods with CNN.

In the results in Table 3 and Figure 6, we observed that in all three

input settings, the CNN-based predictions achieved remarkably

improved performances above those from radiomics-based

predictions by 10% to 20% in all metrics, with strong statistical

significance indicated. For logistic regression, the performances

range from 67% to 76% while the SVM never achieves results
FIGURE 4

The comparison of prediction metric values from our method and those from null models (permutation tests with 1000 times of realizations).
FIGURE 3

Boxplots for the distributions of performance metrics from the cross-
validations out of models using different inputs. The lower and upper
ends of the box body indicate the first and the third quantiles, and the
lower and upper ends of the whiskers indicate the minimum and
maximum values. The black dot with circle suggested the median.
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above 65%. In comparison, the CNN yielded strikingly superior

metrics, with accuracy from 74.88% to 82.94% and AUC from

0.8192 to 0.8868. These results directly suggested the advantage of

CNN based methods over radiomics-based methods.
Discussion

IDH mutation is by far the most critical gene mutation in the

diagnosis of glioma, suggesting good chemosensitivity and better

prognosis, and therefore in turn can influence surgical decisions.

With the thriving development of radiogenomics, a growing number

of studies are being conducted to reveal the imaging features of IDH-

mutant gliomas and thus enable noninvasive prediction. In this study,

we innovated from ultra-high-field MRI, CEST metabolic sequences,

and multimodal combination to construct a novel CNN prediction

model. The model predicts IDH mutation in glioma with an accuracy

of 82.94% and outperforms a radiomics approach, offering promise for

preoperative noninvasive molecular diagnosis and even surgical

decision-making.

The vigorous development of gene sequencing technology in

the past decade has promoted the understanding of the molecular

mechanism of glioma at multiple levels such as DNA, RNA, and

epigenetics. These genetic characteristics such as IDH mutation

correspond to distinct prognosis and individualized therapy, and
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therefore were enrolled in the WHO 2021 version of the central

nervous system oncology classification. However, there still remain

several drawbacks in clinical practice for molecular stratification.

First, the procedure to obtain samples for gene testing was invasive

via stereotaxic biopsy or tumor resection. Second, since the tested

specimens can only be taken from a portion of the tumor, sampling

bias is almost inevitable given the spatial heterogeneity of the genes.

Third, considering the huge gap of technical level and economic

development among different centers, the cost for gene sequencing

is still high and not covered by most insurance. Thus, a new method

which may cover the “invasiveness”, “sampling bias”, and “high

cost” can further promote the precise diagnosis and treatment of

glioma. Empowering imaging, especially MRI, to predict molecular

features of tumors through more advanced techniques or

algorithms is the most promising means to address these issues.

On the one hand, it can enable non-invasive preoperative diagnosis,

and on the other hand, it is prospered to portray the full genetic

picture of tumors in three dimensions.

Unlike the majority of previous studies focused on structural

imaging, this study attempted to implement the metabolic sequence

CEST for IDH prediction. APT-CEST can indirectly reflect the

content of mobile peptides and endogenous proteins through semi-

quantitative measurement of amide bonds, and therefore exhibit

high signal in malignant tumors. It has been demonstrated that it

traces glioma hypermetabolic regions at good agreement with

amino acid PET. Given the correlation between IDH mutation

and tumor malignancy, we hypothesized that CEST might

implicitly suggest IDH status by monitoring the degree of tumor

metabolism. To this end, we preliminarily investigated the role of

CEST in discriminating gliomas with different IDH status and

identified a lower signal in the IDH mutant subgroup. Similar

findings have been reported by other research groups. However,

there is a lack of IDH prediction models constructed directly based

on CEST. In this paper, we constructed CNN models from different

modalities and revealed that the sensitivity and specificity of CEST

alone were slightly better than T1, and the efficacy was significantly

improved after combining the two. Such observation was confirmed

with the radiomics-based analyses. This result confirmed that

CEST, as a novel metabolic sequence, may have superiority over

conventional structural images for metabolic characterization such

as IDH mutation. Nevertheless, whether IDH mutation can

mechanically cause the distinctive manifestation on CEST

remains to be further investigated.

All imaging data in this study were acquired from 7T ultra-high

field. On T1 structural images, 7T will provide higher spatial

resolution, more detailed intracranial anatomy and clearer lesion
FIGURE 5

Comparisons of the receiver operating characteristic curves from
different experimental conditions. The p-values are from comparison
between the indicated method with the full method (“T1 + CEST +
annotation”) using Delong’s test.
TABLE 3 The prediction performances of models based on T1 + T2 and T1 + CEST.

Input ACC (%) SEN (%) SPE (%) AUC

T1 + CEST 80.03 ± 0.18** 82.45 ± 2.55*** 77.65 ± 4.97 0.8553 ± 0.0152*

T1 + T2 75.59 ± 1.82 74.77 ± 2.21 76.38 ± 3.48 0.8193 ± 0.0218

T1 + CEST + annotation 82.25 ± 1.57** 83.36 ± 4.05* 81.15 ± 4.08 0.8839 ± 0.0181*

T1 + T2 + annotation 77.30 ± 2.40 75.89 ± 5.48 78.53 ± 4.48 0.8496 ± 0.0219
“*” indicates significant improvements of the models based on T1 + CEST over T1 + T2 at p < 0.05 level, based on one-sided paired t-test. **p<0.01; ***p<0.001.
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features compared to 3T. For CEST imaging, the advantages of

ultra-high field strength are even more pronounced in terms of

higher chemical transfer separation, better signal-to-noise ratio, and

3D multilayer scanning. In addition, some low concentrations of

amide protons which cannot be captured at 3T will be properly

detected at 7T. For these reasons, 7T should theoretically predict

IDH mutations better than 3T. Paech et al. used relaxation–

compensated multipool CEST at 7T and found that the AUC for

predicting IDH mutation was as high as 91.84% (8). However,

considering that only 31 patients were included, the generalizability

of their findings needs to be evaluated with caution. Our study also

did not set up a control group at 3T, so the pros and cons of the two

could not be directly compared. Previous studies using 7T to predict

IDH mutation have mostly relied on MRS (MR spectroscopy) to

detect its metabolite 2-hydroxyglutarate (2-HG). Berrington et al.

compared the effect of using MRS to detect 2-HG in phantoms and

patients at different field strengths and confirmed that 7T

significantly enhanced the sensitivity for 2-HG detection (16).

More solid data are needed in the future to corroborate the

advantage of 7T for predicting IDH mutation in other sequences

such as CEST.
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Finally, we highlight that the achieved best prediction results in

both single-modal and multi-modal Magnetic Resonance (MR) data

are attributed to the advances of CNN model. Our CNN model,

rather than radiomics-based methods, optimally utilizes the

information from either CEST or T1 and further properly

combines the information. From the methodological view point,

the classical radiomics-based methods extract a set of handcrafted

features from the tumor region and generate predictions based on

the manually extracted feature and selected the conventional

machine learning methods (logistic regression and SVM are used

in this work). Such framework with separated feature extraction and

model building could lead to limitation in either of the stages,

indicated by the large variations under selections of different

machine learning methods and their settings. On the other hand,

the CNN automatically learns to extract abstract features from the

data, where the feature extraction and classifier building are

integrated and jointly optimizable (17). In addition, the CNN

learns to get rid of redundant information and highlights different

features among different imaging data at starting feature extraction

stage, which greatly benefits multi-modal information fusion. The

radiomics-based method extracts same set of features and then
FIGURE 6

Boxplots for the distributions of performance metrics from the cross-validations out of CNN-based prediction method and radiomics-based
prediction method (with logistic regression as classifier) using different inputs.
TABLE 4 Comparison between CNN-based predictions and radiomics-based predictions with different inputs (Mean ± STD).

Method Input ACC (%) SEN (%) SPE (%) AUC

T1 + annotation 75.76 ± 2.02 74.47 ± 3.05 76.70 ± 3.74 0.8293 ± 0.0221

CNN CEST + annotation 74.88 ± 2.58 74.37 ± 4.24 75.28 ± 2.27 0.8192 ± 0.0216

CEST + T1 + annotation 82.94 ± 1.23 82.34 ± 1.87 83.45 ± 2.50 0.8868 ± 0.0055

Rad
+LR
+L1

T1 + annotation 67.36 ± 1.70*** 67.16 ± 2.35** 67.57 ± 1.81** 0.6736 ± 0.0170***

CEST + annotation 72.03 ± 1.37* 77.51 ± 3.82 66.89 ± 2.68** 0.7220 ± 0.0151***

CEST + T1 + annotation 76.35 ± 1.98** 77.95 ± 3.04* 74.89 ± 1.92** 0.7641 ± 0.0204***

Rad
+SVM
+RBF

T1 + annotation 54.80 ± 1.23*** 68.83 ± 4.04*** 41.92 ± 1.53*** 0.5537 ± 0.0156***

CEST + annotation 58.08 ± 10.1*** 83.30 ± 3.00*** 34.68 ± 2.6*** 0.5899 ± 0.0082***

CEST + T1 + annotation 64.13 ± 1.91*** 66.30 ± 2.61*** 62.11 ± 1.73*** 0.6420 ± 0.0194***
*DL-based model is significantly better than the radiomics-based method using same inputs at p < 0.05 level. **]p < 0.01. ***]p < 0.001. Rad, Radiomics; LR, logistic regression; SVM, support
vector machine; L1, L1-penalty; RBF, radial basis function kernel.
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starts to reduce the redundant information at later classifier

building stage, potentially bottlenecking the prediction

performances. Using L1-penalty to select sparse features indeed

significantly improved the prediction capacity of logistic regression,

but still the final performance is not close to results from CNN. And

from another perspective, the success of sparsity constraint on the

radiomics features also indicates that a large part of the radiomics

features extracted first stage is not beneficial to the prediction.

Finally, the deep layer CNN has strong capacity of representation

and could tackle complex non-linear mapping between the features

and the prediction goals (18–20). The SVM model with non-linear

kernels only fixes part of the issues but is still restricted by its simple

mathematical form of the model. These advantages of CNN

theoretically guarantee the improvements in the prediction.

When comparing and interpreting the prediction performances

of the existing studies, a complication is raised by the differences of

the definition of samples and validation schemes. For example,

Calabrese et al. used multi-modal structural Magnetic Resonance

(MR) data from each patient as an investigated sample and reported

an AUC of 0.96 (21), while Chow et al. and Chang et al. used each

axial slices from multi-modal structural Magnetic Resonance (MR)

data as a sample and respectively reported AUCs of 0.86–0.96 and

0.93–0.95 (3, 22). However, it can be noted that the methods of

Chow et al. and Chang et al. worked on the whole axial slice

including the non-tumor regions, which could provide additional

information. Indeed, when Chow et al. removed the non-tumor

regions from the inputs, the performances of their method dropped

to 0.81–0.88. Fukuma et al. conducted experiments using tumor

region slices from T1 image and obtained AUC of 0.699 (23).

Overall, we expect the performance of our method could be

comparable and competitive to these when all conditions are

aligned. As the first work studying CEST with CNN, our CNN

model could be conventional and thus conservative when

comparing our CNN design to other CNN-based studies (3, 21–

23) In our design, the annotation mask from T1 image is utilized to

enhance the predictive information and improves the prediction

capacity, which is in line with the design in (3), which utilized

ResNet as the CNN building blocks Aand combined CNN and

radiomics. These advanced designs are expected to be adopted to

our work and lead to potential improvements in future works.

There still exist several limitations of this study. Firstly,

although the number of glioma cases included in this study is

already the largest in the field of ultra-high field Magnetic

Resonance (MR), it is still far from adequate for deep learning.

Here we restricted the CNN to work on 2D slices to increase the

sample size. We are still recruiting patients in our undergoing study,

and the prospective clinical trial is conducted to further verify the

model. Second, the present study failed to consider the spatially

heterogeneous distribution of IDH mutation and instead treated

each case as a whole as mutated or wild type. We are currently

collecting multi-point biopsies to predict the spatial distribution of

IDH mutation by point-to-point imaging analysis. Third, tumor

grade between the two study groups may be a confounding factor to

result (high grade glioma tends to a higher APT%), thus in the

further study patients diagnosed as astrocytoma, aWHO grade 4,

IDH mutant should be recruited to solidate the result. Fourth, a five
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pool Lorentzian model for Z-spectrum acquisition scheme and data

evaluation protocol was used for CEST MRI, however in this article,

we focused on APT-CEST as it has been shown to be the most

sensitive contrast in detecting glioma histopathological

characteristics. Nevertheless, we acknowledge that investigating

other parameters can help confirm the value of metabolic

information in glioma detection. In future research, we plan to

evaluate other CEST parameters to gain a more comprehensive

understanding of their potential clinical utility. Fifth, the automatic

tumor segmentation from T1 image to generate the annotation

mask was not integrated into the CNN framework, which may

hinder the ease of its clinical application. Besides, since our CNN

model was developed from T1 + CEST + annotations, other

modalities such as DWI may be introduced to improve the

reliability of the model in the future.
Conclusions

We developed a deep learning model that can reliably predict

the IDH status of gliomas based on conventional Magnetic

Resonance (MR) and CEST imaging at 7.0 Tesla. 7T CEST and

sMRI jointly offer improved sensitivity and specificity of

preoperative non-invasive imaging for the diagnosis of IDH

mutation status. As the first study of CNN model on imaging

acquired at ultra-high field MR, our results could demonstrate the

potential of combining ultra-high field CEST and CNN for

developing an effective practical tool for the noninvasive

characterization of gliomas to support individualized

treatment planning.
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