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clear cell renal cell carcinoma
and serves as a predictor for
survival and Sunitinib response
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Background: Chromosomal instability (CIN) is a cancer hallmark and it is difficult

to directly measure its phenotype, while a CIN25 gene signature was established

to do so in several cancer types. However, it is currently unclear whether there

exists this signature in clear cell renal cell carcinoma (ccRCC), and if so, which

biological and clinical implications it has.

Methods: Transcriptomic profiling was performed on 10 ccRCC tumors and

matched renal non-tumorous tissues (NTs) for CIN25 signature analyses. TCGA

and E-MBAT1980 ccRCC cohorts were analyzed for the presence of CIN25

signature, CIN25 score-based ccRCC classification, and association with

molecular alterations and overall or progression-free survival (OS or PFS).

IMmotion150 and 151 cohorts of ccRCC patients treated with Sunitinib were

analyzed for the CIN25 impact on Sunitinib response and survival.

Results: The transcriptomic analysis of 10 patient samples showed robustly

upregulated expression of the CIN25 signature genes in ccRCC tumors, which

were further confirmed in TCGA and E-MBAT1980 ccRCC cohorts. Based on

their expression heterogeneity, ccRCC tumors were categorized into CIN25-C1

(low) and C2 (high) subtypes. The CIN25-C2 subtype was associated with

significantly shorter patient OS and PFS, and characterized by increased

telomerase activity, proliferation, stemness and EMT. The CIN25 signature

reflects not only a CIN phenotype, but also levels of the whole genomic

instability including mutation burden, microsatellite instability and homologous

recombination deficiency (HRD). Importantly, the CIN25 score was significantly

associated with Sunitinib response and survival. In IMmotion151 cohort, patients

in the CIN25-C1 group exhibited 2-fold higher remission rate than those in the

CIN25-C2 group (P = 0.0004) and median PFS in these two groups was 11.2 and

5.6 months, respectively (P = 7.78E-08). Similar results were obtained from the

IMmotion150 cohort analysis. Higher EZH2 expression and poor angiogenesis,
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well characterized factors leading to Sunitinib resistance, were enriched in the

CIN25-C2 tumors.

Conclusion: The CIN25 signature identified in ccRCC serves as a biomarker for

CIN and other genome instability phenotypes and predicts patient outcomes

and response to Sunitinib treatment. A PCR quantification is enough for the

CIN25-based ccRCC classification, which holds great promises in clinical

routine application.
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Introduction

Sporadic clear cell renal cell carcinoma (ccRCC) is the major

subtype of renal cell carcinoma (RCC) (up to 80% of all RCCs) and

originates from the epithelial cells in the nephron (1–3). Most

patients are diagnosed early when tumors are localized, and thus

successfully removed via nephrectomy, but the disease will

eventually recur in about 30% of them post-surgery (2, 4).

Clinical and pathological variables have been traditionally applied

to stratify recurrence risk and survival, however, there exist certain

limitations (4). To further improve the robustness of ccRCC

prognostication, molecular biomarkers, such as multigene

expression signature models, have recently been established to

make molecular classifications or to combine with clinic-

pathological factors for stratifications (5–11). Despite so, a

substantial gap remains between all the models currently applied

in the clinic and the prediction accuracy. Therefore, looking for

more reliable prognostic factors is an unmet demand.

Metastasis readily occurs in approximately 1/3 of ccRCC patients

at diagnosis, which requires adjuvant treatments (4, 12, 13). These

same interventions are also requisite for patients with recurrent

ccRCC or even patients with localized ccRCC (12, 14, 15).

However, ccRCC tumors are intrinsically insensitive to

conventional chemo- and radio-therapies (12, 14). Fortunately,

over the last decades, targeted therapies, immunotherapies, and

other multi-therapeutic modalities have been developed, which has

revolutionized ccRCC treatment landscapes (14). For instance,

immune checkpoint inhibitors (ICIs) are used to target immune

checkpoint proteins PD-1/PDL-1 and/or CTLA4, thereby boosting

anti-cancer immune response and showing a great efficacy in ccRCC

(14, 16). Targeted therapeutic drugs, which mainly includes tyrosine

kinase receptor inhibitors (TKRis), such as the small molecule

Sunitinib, have been approved for the first-line treatment of

metastatic ccRCC (13–15, 17). However, subsets of patients do not

respond or develop resistance to ICI and/or TKRi treatments (6, 13–

15, 17). Distinguishing responders from non-responders should be

clinically important for personalized interventions of ccRCC.

It has long been documented that aneuploidies, or somatic copy

number alterations (SCNAs), are associated with ccRCC outcomes,
02
including recurrence, and metastasis, survival and drug resistance

(4, 18–21). Therefore, aneuploidies and SCNAs have been used as

genomic prognostic biomarkers in ccRCC (19–21). Mechanistically,

aneuploidies or SCNAs are primarily driven by chromosomal

instability (CIN), the cancer hallmark event resulting from

persistent high-rates of chromosome mis-segregations during

mitosis (22–25). The direct assessment of the CIN phenotype is

difficult, and Carter et al. identified a 25 gene expression signature

of CIN, so-called CIN25, for the CIN measurement (22). The genes

included in the CIN25 are involved in spindle assembly checkpoint

signaling, proliferation, and DNA replication and repair

(Figure 1A) (22). By calculating their expression score, the

authors showed a strong correlation between the CIN25 score

and levels of CIN (22). The CIN25 was further observed to serve

as a prognostic factor in breast, lung and several other cancers (22,

26). It is currently unclear whether this CIN25 signature is present

in ccRCC, and if so, whether it has any clinical implications.

Moreover, because CIN plays an important part in the cancer

evolution, progression, and drug resistance (23), it is warranted to

elucidate the relationship between CIN25 and targeted therapies of

ccRCC. The present study is thus designed to address these issues.

To this end, we performed the transcriptomic profiling in ccRCC

tumors together with their matched renal tissues and analyzed

TCGA and other cohorts of ccRCC.
Materials and methods

Primary ccRCC tumor specimens and their
matched renal noncancerous tissues

Nineteen patients with ccRCC, diagnosed at Qilu Hospital of

Shandong University, were randomly recruited and their clinical

information was listed in Table S1. Tumors and their matched NT

specimens were collected from these patients who underwent

nephrectomy. All the samples were stored in nitrogen tanks until

use. The study was approved by the Institutional review board of

Qilu Hospital of Shandong University (#KYLL-2021(KS)-192) and

the signed informed consent was obtained from all patients.
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RNA extraction and RNA sequencing

RNA was extracted from primary tissues and cells using a

RNAfast2000 kit (Fastagen) and quality control was performed

using NanoDrop ND-1000 (Thermo Fisher Scientific). RNA

sequencing was performed on 10 paired specimens. Sequencing

libraries were generated using NEBNextR Ultra™ RNA Library
Frontiers in Oncology 03
Prep Kit (New England Biolabs) according to the manufacturer’s

recommendation. RNA sequencing was carried out using Illumina

HiSeq 4000 sequencer at Metware Biotechnology (Wuhan, China).

Paired-end reads were quality controlled by Q30 and Cutadapt

software (v 1.9.3) was used to remove low-quality reads and 3’

adaptor-trimming. Hisat2 (v 2.0.4) was further used to align clean

reads from sequencing, and sequencing depth and gene length were
A

B
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E

C

FIGURE 1

Upregulation of CIN25 genes in ccRCC tumors. (A) The CIN25 signature genes and their function. (B) Upregulated expression of 25 genes included
in the CIN25 signature in primary ccRCC tumors. Tumors and matched non-tumorous tissues (NTs) from 10 patients were analyzed for
transcriptomic profile and expression levels of CIN25 genes were expressed as Transcripts Per Million (TPM) counts. (C) The heatmap showing CIN25
ssGSEA scores between 10 ccRCC tumors and their matched NTs. (D) The qPCR validation of upregulated CIN25 gene expression in primary ccRCC
tumors. Paired specimens from 9 ccRCC patients were analyzed for mRNA levels of CIN25 genes. mRNA levels of target genes were based on 2
(−DDCT) values and normalized by b-actin expression. (E) Differences in expression of 25 CIN25 signature genes between 530 ccRCC tumors and
72 NTs in the TCGA cohort. TPM was used for expression level. *, **, *** and **** indicate P values <0.05, 0.01, 0.001 and 0.0001, respectively.
ns, Not significant.
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adjusted by Fragments Per Kilobase of transcript per Million (TPM)

fragments mapped. The sequencing data were deposited in the GEO

database (GSE217386).
Reverse transcription and qPCR analysis

The qPCR evaluation of CIN25 gene expression was performed

on paired specimens from 9 patients with ccRCC. cDNA was

synthesized using a PrimeScript™ RT reagent Kit (TAKARA).

qPCR was carried out using SYBR Green of RT Master Mix

(TAKARA) to assess mRNA levels of target genes based on 2

(−DDCT) values. b-actin mRNA levels were used as the internal

control for normalization of target gene expression. All the primers

were synthesized at Wuhan Genecreate Biotech (Wuhan, China)

and primer sequences are listed in Table S2.
Data collection and processing of
ccRCC tumors

The TCGA cohort of ccRCCs included 530 tumor samples with

survival information available and 72 renal NTs. Patient clinical

data were summarized in Table S3 (27). Transcriptome, mutation,

copy number variations (CNAs) and clinical-pathological data were

downloaded from https://gdc.cancer.gov/. One hundred and one

patients with ccRCC were in the E-MTAB-1980 cohort (28), and

RNA array and clinical information were downloaded from http://

www.ebi.ac.uk. Patient clinical characteristics were listed in Table

S4. For RNA sequencing data, mRNA abundances were expressed

as TPM. For array results (determined by 4×44K v2 microarray kit)

from the E-MTAB-1980 cohort, probe-set values were used to

quantify mRNA levels. ccRCC patients receiving Sunitinib

treatments were contained in IMmotion150 (Table S5) (29, 30)

and IMmotion151 (Table S6) trials (31, 32). Expression differences

in CIN25-containing 25 genes were compared between ccRCC

tumors and NTs in the TCGA cohort. For RNA expression, log2

(TPM+1) based on RNA sequencing data was from https://

gdc.cancer.gov/ as stated above. Protein expression data was

obtained from Clinical Proteomic Tumor Analysis Consortium

(http://ualcan.path.uab.edu/index.html).
CIN25 signature

The CIN25 gene signature includes the following genes

responsible for spindle assembling/checkpoint, DNA damage

checkpoint and cell cycle regulation: NCAPD2, ESPL1, CDK1,

MELK, PRC1, KIF20A, TOP2A, TTK, TPX2, UBE2C, MCM7,

MCM2, RFC4, FEN1, CDC45, FOXM1, RAD51AP1, H2AFZ,

MAD2L1, PCNA, RNASEH2A, TGIF2, CCT5, TRIP13 and

CCNB2 (22) (Figure 1A). The CIN25 score for each sample were

expressed as mean Z-scores based on the Z-normalized mRNA level

of 25 CIN-related genes above. We also calculated the CIN25 score

based on single sample gene set enrichment analysis (ssGSEA) to

confirm the accuracy of the Z-score method and other purposes.
Frontiers in Oncology 04
Copy number alterations and aneuploidy
score analysis

Somatic CNAs were downloaded from https://xenabrowser.net/.

CNA plots were made using R package ‘oncoPrint ’ in

‘ComplexHeatmap’. Aneuploidy scores were the sum total of

altered (amplified or deleted) chromosome arms. TMB is defined

as the number of non-silent mutations per million bases and the data

were downloaded from https://xenabrowser.net/.
Analyses for proliferation, cancer stemness,
Epithelial–mesenchymal transition,
angiogenesis and telomerase score

Proliferation statuses were estimated using expression levels of

Ki-67 mRNA and cell cycle scores, respectively. ccRCC cell cycle,

stemness, EMT and angiogenesis signature scores were calculated

based on ssGSEA or as the median z-score of genes included in each

signature for each sample. These signatures are as follow:

Angiogenesis: VEGFA, KDR, ESM1, PECAM1, ANGPTL4 and

CD34 (33). Cell Cycle: CDK2, CDK4, CDK6, BUB1B, CCNE1,

POLQ, AURKA, KI-67 and CCNB2 (34, 35). EMT: VIM, CDH2,

FOXC2, SNAI1, SNAI2, TWIST1, FN1, ITGB6, MMP2, MMP3,

MMP9, SOX10, GCS, CDH1, DSP and OCLN (36).
Telomere length and telomerase
activity assessments

Telomere length data in the TCGA cohort of ccRCCs were from

Bartheal et al. (37). Telomerase activity was evaluated using the

telomerase score based on expression levels of the following 10

telomerase factors: TERT, TERC, DKC1, NHP2, NOP10, TCAB1,

GAR1, NVL, RUVBL1 and RUVBL2 (38).
GSEA analysis

GSEA (http://www.gsea-msigdb.org/) analyses were performed

to enrich KEGG pathways and hallmarks in two CIN25 subtypes of

ccRCC tumors. P <0.05 and False discovery rate (FDR) <0.05 was

considered statistically significant.
Nomograms for survival prediction

Cox regression analysis was conducted to assess the effect of the

CIN25 cluster and clinical variables on survival. Then according to

multivariate Cox regression analysis results, we constructed

predictive nomograms including CIN25 and stage to predict 1-,

3-, and 5-year OS and/or PFS). Predicted survival of the nomogram

against observed ones was plotted using the calibration curve. All

nomograms and assessments of their predicative powers were made

using R package regplot. Time-dependent Receiver Operator

Characteristic (ROC) curves were used to determine sensitivity
frontiersin.org
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and specificity of OS and PFS predictions. Time-dependent ROCs

and AUCs were made using Rpackage timeROC.
Statistical analysis

All statistical analyses were carried out using R package version

4.0.5. Wilcox and K-W sum tests were used for analysis of differences

between two groups and among multi groups, respectively.

Spearman’s Rank-Order Correlation coefficient was applied to

determine correlation coefficients r between two variables. Survival

analyses were made using log-rank test. The Survival and Survminer

packages were employed to draw Kaplan–Meier survival curves for

visualization of OS and PFS. Univariate and multivariate Cox

regression analyses were used to determine the effect (HR and 95%

CI) of various quantitative predictor variables on OS and PFS. P <

0.05 were considered as statistically significant.
Results

Robust upregulation of the CIN25
signature genes in primary ccRCC tumors

Although aneuploidies and SCNAs have been well documented

in ccRCCs, it remains unclear whether there exists the CIN25

signature as identified in other tumor types. We thus probed this

issue first. RNA sequencing was performed on primary ccRCC

tumors and their matched NTs from 10 patients who underwent

nephrectomy. Expression levels of 25 genes in the CIN25 signature

were evaluated in both tumors and NTs. As shown in Figure 1B,

tumors exhibited significantly upregulated expression of 21/25

genes. The analysis of CIN25 ssGSEA in these samples further

unraveled enhanced CIN25 levels in tumors (Figure 1C). For

validation, we did qPCR-based expression analyses of these 25

genes in paired tumors and NTs from 9 patients, and largely similar

results were obtained (Figure 1D). To confirm this finding obtained

from our small patient cohorts, we analyzed the TCGA ccRCC

sequencing data for their CIN25 signature expression. The

comparison between 530 tumors and 72 NTs revealed

significantly higher mRNA levels of 22/25 genes in tumors than

in NTs (Figure 1E). Protein information was available in 20 of 25

genes, and protein levels were similarly higher in tumors, which is

consistent with the transcriptomic analysis data (Figure S1).
CIN25 expression-based classification
of ccRCCs

The results above demonstrate highly upregulated expression of

almost all CIN25 genes in ccRCC tumors, however, a significant

heterogeneity was observed among them. To determine whether

ccRCC tumors could be classified based on the CIN25 expression

score, we performed consensus cluster analyses of the TCGA

cohort. Nonnegative matrix factorization clustering of CIN25

mRNA data showed consistency K = 2, indicating that a two-
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cluster classification was optimal (Figure 2A). In a total of 530

tumors, CIN25-cluster 1 (CIN25-C1, low CIN level) and cluster 2

(CIN25-C2, high CIN level) were 350 (66%) and 180 (34%),

respectively (Figure 2B). Because the CIN phenotype is

characterized by the presence of aneuploidy, we further compared

global CNAs, and calculated aneuploidy, amplified and deleted

scores between two CIN25 clusters (Figures 2C, D). Indeed, the

aneuploidy score was significantly higher in CIN25-C2 tumors

(CIN25-C1 vs CIN25-C2, P = 1.78E-04) (Figures 2C, D).

Interestingly, the amplified score was more robustly higher in the

CIN25-C2 tumors than in CIN25-C1 ones (CIN25-C1 vs CIN25-

C2, the amplified and deleted scores, P = 2.86E-18 and 4.95E-02,

respectively) (Figure 2D). Moreover, we also calculated CIN25

ssGSEA score of each tumor based on the expression of 25 genes

and observed a drastically higher CIN25 ssGSEA score in CIN25-

C2 tumors (Figure 2E). To validate the CIN25 clustering

classification of ccRCC tumors, we carried out the same analysis

of the E-MTAB1980 ccRCC cohort, and tumors were readily

categorized into two distinct CIN25 clusters, with higher CIN25

ssGSEA scores in CIN25-C2 tumors (Figures 2F, G).
Association between CIN25 subtypes and
clinic-pathological variables

We next determined the potential association between CIN25

subtypes and clinic-pathological variables in ccRCC tumors. We

first examined the distribution of two clusters between two genders

and different age groups (≥60 and <60 years) in the TCGA cohort

and did not observe significant differences, although male patients

had a slightly higher frequency of CIN25-C2 than did females

(38.6% vs 29.4%, P = 0.055) (Figure 3A). CIN25-C2 was more

frequently observed in higher-stage (P = 5E-06) and higher-grade

tumors (P = 0.007) (Figure 3B). Very similar results were obtained

from the analysis of the E-MTAB1980 cohort (Figures 3C, D).

We further performed the same analysis of 10 ccRCC patients

whose tumors were with transcriptomic profiling. Because 10

tumors were too few to make a CIN classification, we calculated

ssGSEA score to express CIN25 levels in each tumor. The CIN25

ssGSEA score was significantly increased in higher-stage (III/IV vs

I/II, P = 0.019) and grade (III/IV vs I/II, P = 0.032) tumors

(Figure 3E), which was consistent with the result obtained from

the TCGA patient analysis.
Telomere length, telomerase and
genomic aberrations in CIN25
subtypes of ccRCC tumors

It is well established that telomere dysfunction drives CIN in

oncogenesis (39). We thus sought to determine whether telomere

length was altered in the TCGA ccRCC cohort. Telomeres were

significantly shorter in tumors than in matched NTs (Figure 4A),

but there was no statistically significant difference in telomere

length between CIN25-C1 and C2 subtypes (Figure 4A). Because

telomeric DNA is synthesized by telomerase, while telomerase
frontiersin.org
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activity is primarily governed by its catalytic component telomerase

reverse transcriptase (TERT) (40), we further compared TERT

expression and telomerase activity between CIN-C1 and C2

tumors. As shown in Figure 4B, TERT mRNA levels were

significantly higher coupled with the increased frequency of
Frontiers in Oncology 06
TERT copy number gain in CIN25-C2 tumors (C2 vs C1 for

TERT mRNA and copies: P = 1.84E-08, and 0.018, respectively).

Telomerase activity, as determined using telomerase score (38),

increased markedly in the CIN25-C2 tumors compared with that in

CIN25-C1 tumors (P = 2.15E-05) (Figure 4C). Moreover, there was
A

B

D E

F G

C

FIGURE 2

CIN25 signature-based classification of ccRCCs. (A) Consensus clustering of ccRCC tumors according to expression of CIN25 genes. A two-cluster
classification of ccRCC tumors was optimal CIN25 signature-based clustering based on the K value from nonnegative matrix factorization. CDF:
Cumulative distribution function. (B) TCGA ccRCC tumor clustering. Tumors were categorized into two clusters: CIN25-C1 (low) and CIN25-C2
(high). (C) Global copy number alterations (CNAs) in CIN25-C1 and CIN25-C2 tumors. The plots show frequencies of gain/amplification (Red) and
deletion (Green) in 22 chromosomes. Top and bottom: CIN25-C1 and CIN25-C2, respectively. (D) Differences in the total aneuploidy score, and
amplified and deleted scores between CIN25-C1 and CIN25-C2 tumors. (E) Differences in CIN25 ssGSEA score between CIN25-C1 and CIN25-C2
tumors. (F) CIN25 signature-based clustering of ccRCC tumors in the E-MTAB1980 cohort. (G) Differences in CIN25 ssGSEA score between CIN25-
C1 and CIN25-C2 tumors in the E-MTAB1980 cohort.
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a significantly positive correlation between telomerase and CIN25

ssGSEA scores (R = 0.43, P <2.22E-16) (Figure 4C).

CIN is one subtype of genomic instability, whereas the later also

includes several other forms of genomic aberrations such as

nucleotide instability (NIN), microsatellite instability (MSI),

homologous recombination deficiency (HRD), etc. (41). Thus, we

further addressed the association of CIN25 clusters with the following

important alterations: (i) Tumor mutation burden (TMB) (P = 0.034)
Frontiers in Oncology 07
(Figure 4D). Moreover, we compared the top 10 mutated genes

between two subtypes. As expected, VHL, PBRM1, BAP1, MTOR

and SETD2 are among the top mutated genes in both subtypes,

however, significantly higher mutated frequencies of BAP1 and

SETD2 were observed in the CIN25-C2 tumors (BAP1 and SETD2:

P = 0.0003 and 0.018, respectively (Figure S3). In addition, KDM5C
A
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FIGURE 4

Association between CIN25 subtypes and telomere length,
telomerase and other genomic alterations in ccRCCs. The TCGA
cohort of ccRCCs were analyzed. Telomere length data were from
reference 33. (A) Telomere shortening occurred in ccRCC tumors
independently of CIN25 subtypes. Left panel: ccRCC tumors had
significantly shorter telomeres than did renal nontumorous tissues
(NTs). Right panel: Both CIN25-C1 and C2 tumors had similar
telomere length, shorter than NTs. (B) Robustly higher TERT
expression (left) and increased TERT copy numbers (right) in CIN25-
C2 tumors. (C) Left panel: Significantly higher levels of telomerase
activity, as assessed using the telomerase score in CIN25-C2
tumors. Right panel: The strong correlation between telomerase
score and CIN25 ssGSEA score in ccRCC tumors. (D–G) CIN25-C2
tumors coupled with higher levels of other types of genomic
instability. Higher tumor mutation burden (TMB) (D), intratumoral
heterogeneity (ITH) (E), homologous recombination deficiency
(HRD) (F) and microsatellite instability (MSI) (G) in CIN25-C2 tumors.
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FIGURE 3

Association between CIN25 subtypes and clinic-pathological
characteristics in ccRCCs. (A, B) The TCGA cohort. CIN25
subtypes were associated with stages and grades, but not age and
gender. (C, D) The E-MTAB1980 cohort. CIN25 subtypes were
associated with stages and grades but not age. More female
patients were in the CIN25-C1 group. (E) The present cohort of 10
patients. Advanced stages and grades of ccRCC tumors exhibited
significantly higher CIN25 ssGSEA scores. The CIN25 ssGSEA score
was calculated as described in the Method.
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mutation was more frequent in the CIN25-C1 tumors (P = 0.04). (ii)

Intratumor genetic heterogeneity (P = 0.01) (Figure 4E). (iii) HRD (P

= 0.0002) (Figure 4F). (iv) MSI (P = 0.00004) (Figure 4G). CIN25-C2

tumors exhibited significantly higher levels or frequencies of all the

aberrations analyzed above.

CIN25 clusters for prediction of ccRCC
patient survival

We then wanted to assess whether this CIN25 classification

system could predict patient survival. The TCGA cohort of 530

ccRCC patients was first evaluated as the discovery set. Log-rank

test analysis unravelled that those patients in the CIN25-C2 group

had significantly shorter OS and PFS, as shown by Kaplan–Meier

survival curves (P = 7.57E-06 and 4.83-07 for OS and PS,

respectively) (Figure 5A). We further performed univariate COX

regression analyses by including patient age, gender, stage, and

grade together with the CIN25 clustering system. Advanced Stages,

higher grades and CIN25-C2 were all associated with shorter OS

and PFS (Figures 5B, C). Multivariate COX regression analyses

showed that all three of them were independent prognostic factors

for shorter OS and PFS (Figures 5B, C).

The E-MTAB-1980 ccRCC cohort as the validation set were

further analyzed in the same manner. There was no PFS information

available, and we only evaluated OS. Kaplan–Meier survival analysis

showed that CIN25-C2 was associated with significantly shorter OS

(P = 0.0003) (Figure 5D), and the CIN25 subtype and stages were

independent OS predictors, as assessed using univariate (Figure 5E)

and multivariate COX regression analyses (Figure 5F).

The data above consistently show that CIN25-C2 subtype and

advanced stages are independent prognostic variables for OS and/or

PFS in both TCGA and E-MTAB-1980 cohorts. We thus established

a prognostic nomogram composed of CIN25 subtypes and stages.

For the TCGA cohort, the nomograms exhibited a highly accurate

estimation of OS and PFS possibilities at 1-, 3- and 5-years (Figures

S2A, B). Similar results were obtained for OS prediction in the E-

MTAB-1980 cohort (Figure S2C). To further evaluate the sensitivity

and specificity of their prediction, we did time-dependent ROC

analyses. In the TCGA cohort, Area under ROC curves (AUCs) for

1-, 3- and 5-year OS were 0.799, 0.767 and 0.740, respectively, while

the AUCs for 1-, 3- and 5-year PFS were 0.825, 0.797 and 0.798,

respectively (Figures S2D, E). For 1-, 3- and 5-year OS in the E-

MTAB-1980 cohort, AUCs were 0.886, 0.871 and 0.838, respectively

(Figure S2F). Separate analyses of these two variables showed that

AUCs were largely between 0.6 and 0.7, between 0.7 and 0.8 for all

CIN25- and stage-based predictions of 1-, 3- and 5-year survival

(Figures S2G, H). AUCs obtained from stage-prediction were bigger

in all the estimations.
The CIN25 cluster as a predictor for patient
response to Sunitinib treatment

Sunitinib has long been applied for advanced ccRCC treatment

as the first line drug (14), however, reliable biomarkers to predict its

efficacy or patient response are few (6, 8). We thus determined
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whether the CIN25 cluster classification could help distinguish

responders from non-responders in patients treated with Sunitinib.

Toward this end, the IMmotion151 cohort of 416 ccRCC patients

treated with Sunitinib was first analyzed as the discovery set (31, 32).

Patient response to Sunitinib was categorized into complete

remission (CR), partial remission (PR), stable disease (SD) and

progressive disease (PD), respectively. A total of 416 patients were

classified into CIN25-C1 (273 patients) and C2 (143 patients)

groups. The CR and PR (CRPR) rate was 42% and 26% in CIN25-

C1 and C2 groups, respectively (P = 0.0004) (Figure 6A). The disease

progression during the Sunitinib treatment occurred in 14.9% and

30.9% for CIN25-C1 and C2 patients, respectively. The median PFS

for C1 and C2 patients was 5.6 and 11.2 months, respectively (P =

7.78E-08; HR, 1.90 (95% CI: 1.45 – 2.47) (Figure 6B). We then

analyzed the IMmotion150 cohort (29, 30) to validate the findings

obtained from IMmotion151 cohort. In a total of 85 available

patients, CIN25-C1 and C2 were 58 and 27, respectively. The total

CRPR rate was 41.4% and 14.8% in CIN25-C1 and C2 groups,

respectively (P = 0.002) (Figure 6C). Almost the half of CIN25-C2

patients (48.1%) underwent progression during the treatment, while

only 13.8% of CIN25-C1 patients did so (Figure 6C). Higher CRPR

rates in CIN25-C1 group led to longer PFS, and the median PFS for

C1 and C2 patients was 4.4 and 9.8 months, respectively (P = 0.002;

HR, 2.13 (95% CI: 1.18 – 3.84) (Figure 6D).
Signaling pathways enriched in CIN25-C2
tumors and phenotypic association

We next performed the GSEA analysis to probe differences in

signaling pathways between two tumor groups. Figures 7A, B

showed significantly enriched KEGG and hallmark pathways in

CIN25-C2 tumors, and almost all of them are oncogenic and play

key parts in ccRCC development and progression, such as G2/M

checkpoint, E2F and MYC targets, IL6-JAK-STAT3, glycolysis,

EMT and others (Figure 7C). Consistent with these enriched

pathways, CIN25-C2 tumors had robustly strong proliferation

activity compared to CIN25-C1 tumors, as assessed using

proliferation marker Ki-67 and cell cycle score, and stemness

score (Figure 7D); furthermore, an established EMT 16 gene

signature (36) was further used to evaluate EMT between CIN25-

C1 and C2 tumors and significantly increased EMT scores were

observed in the CIN25-C2 group (Figure 7D) (P = 0.035).
Increased EZH2 expression and diminished
angiogenesis in CIN25-C2 tumors

EZH2, a histone methyltransferase catalyzing H3K27

trimethylation (H3K27me3), has been shown to promote

stemness, EMT and Sunitinib resistance in ccRCC and other

tumors (42–44). Given the results above, we set out to determine

whether EZH2 expression differed between CIN25-C1 and C2

tumors. The analysis of both TCGA and E-MTAB1980 ccRCC

cohorts showed robustly higher EZH mRNA levels in CIN25-C2

than in C1 tumors (CIN25-C1 vs C2: P = 2.21E-38 and 3.12E-06,
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respectively) (Figure 8A). In the Sunitinib-treated IMmotion150

and IMmotion151 cohorts, similar results were obtained (CIN25-

C1 vs C2: P = 9.40E-08 and 1.71E-27 for IMmotion150 and 151,

respectively) (Figure 8B). We further compared differences in EZH2
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expression between responders and non-responders to Sunitinib.

As expected, tumors from resistant patients expressed significantly

higher levels of EZH2 than did those from responders (P = 0.021

and 0.004, respectively) (Figure 8C).
A

B

D

E F

C

FIGURE 5

The CIN25 subtypes for survival prediction in ccRCCs. (A–C) The TCGA cohort analysis and (D, E) The E-MTAB1980 cohort analysis. (A) Significantly
shorter overall and progression-free survival (OS and PFS) in the CIN25-C2 group. Left and right panel: OS and PFS, respectively. (B) Univariate and
multivariate COX regression analyses of OS for the TCGA ccRCCs. (C) Univariate and multivariate COX regression analyses of PFS for the TCGA
ccRCCs. (D) Significantly shorter OS in the CIN25-C2 group in the E-MTAB1980 cohort. (E, F) Univariate and multivariate COX regression analyses of
OS for the E-MTAB1980 cohort.
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In addition to higher EZH2 expression, poor angiogenesis is

also a well characterized predictor for Sunitinib resistance (34, 35),

and we thus analyzed the angiogenesis score in CIN25 subtypes of

ccRCC tumors. As shown in Figure 8D, a significantly lower

angiogenesis score was observed in the CIN-C2 tumors from the

IMmotion151 (CIN25-C1 vs C2: P = 9.78E-17) and IMmotion150

(P = 0.0096) cohorts of ccRCC patients treated with Sunitinib. The

TCGA and E-MTAB1980 ccRCC analyses showed similar results,

which validated the observations above (Figure 8E).
Discussion

CIN is an important cancer hallmark (23–25). Because of the

difficulty in directly assessing a CIN phenotype, a CIN25 signature
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has been developed, and the CIN25 expression-based score system

roughly reflected levels of CIN in several cancer types (22). By

analyzing primary ccRCC tumors and TCGA ccRCC cohort, we

observed that expression of genes included in the CIN25 signature

was robustly upregulated but significantly heterogenous. Based on

CIN25 scores calculated from their mRNA levels, we categorized

ccRCC patients into two clusters: CIN25-C1 (CIN25-low) and

CIN25-C2 (CIN25-high), respectively. Our findings demonstrate

that the CIN25 signature is present in ccRCC and this cluster

system is useful in predicting patient outcomes and therapeutic

response to TKR inhibitors.

CIN has been shown as a key driver of chromosomal alterations

in human malignancies and primarily characterized by aneuploidy

or SCNAs (23–25). Consistent with this, we observed that CIN25-

C2 ccRCC tumors exhibited robustly increased aneuploidy. CIN-
A B

DC

FIGURE 6

The CIN25 subtypes for prediction of Sunitinib response in ccRCCs. (A, B) IMmotion151 cohort of ccRCC patients treated with Sunitinib. Poor
response to Sunitinib and shorter patient PFS in the CIN25-C2 group. (C, D) IMmotion150 cohort of ccRCC patients treated with Sunitinib. Poor
response to Sunitinib and shorter patient PFS in the CIN25-C2 group.
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triggered aneuploidy creates intratumour genetic heterogeneity,

thereby promoting phenotypic adaptation during cancer

evolution and progression. On the other hand, aneuploidy or

SCNAs further accelerate CIN rates. Thus, CIN and aneuploidy

affect each other, establishing positive feedback.

CIN underpins much of the intratumoural heterogeneity

observed in cancers and drives phenotypic adaptation during
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tumor evolution (23–25). It has been shown that the CIN

phenotype is associated with resistance to chemo- and radio-

therapies, however, it remains to be defined whether it has

impacts on targeted therapeutic drugs. Sunitinib, a TKR inhibitor,

has been applied as the first-line drug for advanced ccRCC

treatment (12–14). Clinical studies showed that the intrinsic

resistance to Sunitinib occurred in approximately 1/3 of patients,
A B

D

C

FIGURE 7

The enriched oncogenic pathways and aggressive phenotypes in the CIN25-C2 subtype of ccRCC tumors. The TCGA cohort analysis. (A, B)
Enrichments of overrepresented KEGG (A) and hallmark (B) pathways in CIN25-C2 tumors. (C) Representative enriched pathways in CIN25-C2
tumors: Cell cycle, E2F targets, EMT and IL6-JAK-STAT3. (D) Higher EMT, proliferation and stemness scores in CIN-C2 tumors.
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FIGURE 8

Differences in EZH2 expression and angiogenesis between CIN25-C1 and C2 subtypes of ccRCC tumors. (A, B) CIN25-C2 tumors expressed significantly
higher levels of EZH2 mRNA. (A) TCGA (left) and E-MTAB1980 (right) ccRCC cohorts. (B) IMmotion150 (left) and 151 (right) cohorts. (C) Differences in
EZH2 expression in tumors from CRPR, SD and PD patients (left and right: IMmotion150 and 151 cohorts, respectively). (D) Lower angiogenesis scores in
CIN25-C2 tumors (left and right: TCGA and E-MTAB1980 ccRCC cohorts, respectively). (E) Lower angiogenesis scores in CIN25-C2 tumors (left and
right: IMmotion150 and 151 cohorts, respectively).
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while many of them initially responded to Sunitinib but the

treatment failure developed eventually (6, 12, 15). Several

molecules and signaling pathways have been implicated in

Sunitinib irresponsiveness, however, the development of reliable

biomarkers that distinguish Sunitinib responders from non-

responders remains challenging. Our present findings suggest that

the CIN25 signature serves as a useful stratifier to predict the

therapeutic efficacy of Sunitinib and PFS in ccRCC patients. EZH2

upregulation and poor angiogenesis are likely the mechanism

underlying lower efficacy observed in CIN25-C2 patients. Further

studies are required to elucidate how CIN25 signature affects EZH2

expression and angiogenesis.

A link between telomere dysfunction and CIN has been well

characterized in human malignancies and animal carcinogenesis

models (39). Telomeric DNA repeats, when sufficient long, together

with their binding-factors or sheltering proteins, form protective

structures at the ends of linear chromosomes that prevent

CIN (39, 45). Telomeric DNA is synthesized by telomerase, an

RNA-dependent DNA polymerase activated in most human

malignancies for telomere length maintenance (40). However,

telomerase activation usually occurs at the late stage during a

stepwise malignant transformation (45). Therefore, telomeres

already become shortened in precursor lesions, which leads to

telomere dysfunction as a driving event for CIN in early

carcinogenesis (39, 45, 46). Shorter or dysfunctional telomere-

bearing chromosomes are prone to fusion, thereby triggering the

dicentric chromosome formation that missegregate or break in

mitosis during anaphase (39). The resultant chromosomal breaks

are fusogenic, through which a cycle of chromosome fusion and

breakage is propagated. In the present study, we observed

significantly shorter telomeres in ccRCC tumors than in their

matched renal tissues. There were no differences in telomere

length between CIN25-C1 and C2 tumors, but TERT expression

and telomerase activity was noticeably higher in CIN25-C2 tumors.

Likely, increased telomerase activity attenuates or compensates for

telomere attrition in CIN25-C2 tumors.

CIN is one subtype in the genomic instability category that

encompasses a variety of DNA alterations, including single

nucleotide to whole chromosome changes (41). Interestingly, we

observed that CIN25-C2 tumors also had increased genomic

alterations reflecting all other aspects of genomic instability. In

addition, HRD has been implicated in genomic instability including

CIN, and consistently, HRD scores were significantly higher in

CIN25-C2 tumors. Thus, the CIN25 clustering system help measure

not only the CIN phenotype, but also the whole genomic instability

level. From this point of a view, assessment of CIN25 signature may

have broader implications both biologically and clinically. For

instance, HRD occurs frequently in breast and ovarian cancer,

and those patients are in general sensitive to PARP inhibitors.

Conceivably, the CIN25 assessment may also be useful to stratify

patients who respond to PARP inhibitor treatment. A PCR method

is sufficient to quantify expression levels of 25 CIN genes, which is

cost- and time-friendly, and easily applied for clinical routine.
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In conclusion, the CIN25 clustering model can categorize

ccRCC tumors into CIN25-C1 and C2 subtypes, and this

classification hold great promises in predicting patient survival

and response to Sunitinib. CIN25-C2 tumors are characterized by

active proliferation, stemness and EMT phenotypes. EZH2

overexpression and poor angiogenesis may drive all these

aggressive phenotypes, shorter survival and drug resistance.

Importantly, the CIN25 clustering model not only represents a

CIN phenotype, but also is strongly associated with other genomic

instability-related alterations. Thus, the assessment of CIN25

reflects levels of CIN and whole genomic instability. Moreover, a

PCR quantification is enough for the CIN25-based tumor

classification, which is suitable for clinical routine application.

Taken together, the present findings will contribute to improved

personalized management of ccRCCs.
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