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Radiomics was proposed by Lambin et al. in 2012 and since then there has been

an explosion of related research. There has been significant interest in

developing high-throughput methods that can automatically extract a large

number of quantitative image features from medical images for better

diagnostic or predictive performance. There have also been numerous

radiomics investigations on intrahepatic cholangiocarcinoma in recent years,

but no pertinent review materials are readily available. This work discusses

the modeling analysis of radiomics for the prediction of lymph node

metastasis, microvascular invasion, and early recurrence of intrahepatic

cholangiocarcinoma, as well as the use of deep learning. This paper briefly

reviews the current status of radiomics research to provide a reference for

future studies.
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1 Introduction

After hepatocellular carcinoma, intrahepatic cholangiocarcinoma (ICC) is the second

most frequent primary liver cancer (1). According to different classification methods, the

least frequent type of bile duct cancer is intrahepatic cholangiocarcinoma, a malignant

tumor that develops in the epithelial cells of the intrahepatic bile ducts, either in the small

intrahepatic bile ducts or in the bile ducts close to the bifurcation of the hepatic ducts (2).

According to epidemiological studies, ICC morbidity and mortality have recently increased

globally (3, 4). Because there are no special clinical manifestations in the early stage of the

disease, the majority of patients are found by chance during physical examination.
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Unfortunately, the prognosis of ICC patients with either surgical or

non-surgical treatment is not satisfactory (5).

Currently, the most commonly used staging system for ICC is the

AJCC TNM staging system, but this system was not specifically

developed for postoperative prognostic prediction. Its accuracy may

be compromised when used to predict the prognosis of patients

undergoing a partial hepatectomy. In terms of clinical

characteristics, imaging presentation, and therapeutic approach, ICC

represents a distinct and habitual malignancy from hilar and distal

biliary cholangiocarcinoma. A special model for prognostic prediction

is necessary. Numerous researchers have created models that can

objectively and accurately predict the prognosis of patients following

ICC, and these established models have superior discriminative power

and accuracy compared to the 8th version of the AJCC TNM staging

system (6, 7). A useful predictive model can assist clinicians in

selecting the most effective treatment strategy based on the

individual prognosis of each patient. For clinicians, this is critical.

For preoperative tumor staging and resectability assessment of

intrahepatic cholangiocarcinoma, cross-sectional computed

tomography (CT) and magnetic resonance imaging (MRI) are the

most commonly used imaging modalities (8). Physicians are able to

use image information to refine treatment ideas. However, for

patients with atypical imaging characteristics, physicians need to

combine the advantages of multiple imaging techniques to obtain

additional information from multimodal images. In fact, the full

potential of medical imaging has failed to be realized in the clinical

diagnosis and treatment process.

The development of high-throughput methods that can

automatically extract a large number of quantitative imaging

features from medical images for better predictive or diagnostic

performance has been a subject of great interest (9). The application

of radiomics and deep learning in this field refers to the feature

extraction and quantitative analysis of image data from different

modalities for the purpose of diagnosis and prediction. Radiomics

begins with the acquisition of high-quality images, from which the

radiologist then identifies, segments a region of interest (ROI)
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containing the entire tumor or tumor subregions, and ultimately

presents it in two or three dimensions. Quantitative features (such

as shape, grayscale, texture and wavelet features) are extracted from

these ROIs, and a large number of features are filtered by feature

engineering and placed in the database together with other data

(such as clinical and genomic data). This data is then mined to

develop predictive or prognostic models. These models are then

represented by an interface-friendly tool that can be used by

clinicians and guide clinical decisions (Figure 1). Deep learning

features are learned automatically during the training process,

which is distinct from conventional radiomics. And deep learning

can be used for end-to-end modeling. Although these prediction

models have not yet been applied in clinical practice, the advantages

of this approach are to be affirmed.

Radiomics has received a lot of attention since it was

proposed in 2012 (10). Traditional imaging can only capture

simple semantic features, and the potential to reflect

tumor heterogeneity is limited. However, radiomics approaches

can provide a wealth of important complementary data which

can help to uncover potentia l re lat ionships between

quantitative image features and heterogeneity. Today, the

development of radiomics for tumor diagnosis, treatment

decisions and prognosis prediction is encouraging, and numerous

investigators are applying this approach to the field of

intrahepatic cholangiocarcinoma.

2 Application of conventional
radiomics in intrahepatic
cholangiocarcinoma

2.1 Prediction of lymph node metastasis
(LNM)

Lymph node metastasis is significantly associated with a poor

prognosis in patients with intrahepatic cholangiocarcinoma (11).
FIGURE 1

Radiomics model development and application process.
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Currently, the prediction accuracy of lymph node status evaluation

methods is usually unstable. Cross-sectional imaging alone can

suggest the presence of lymph node metastases, but with limited

identification (12, 13). Fine needle aspiration is invasive and has a

limited role in detecting minor lymph node metastases (14). PET/

CT is more sensitive than CT and MRI in detecting lymph node

metastases, but its applicability seems fewer satisfactory for lymph

nodes smaller than 1 cm (15). Histopathology is the gold standard

for identifying the status of lymph nodes, but this strategy is only

available in the postoperative period.

The development and validation of a radiomics model for

preoperative prediction of lymph node metastasis in intrahepatic

cholangiocarcinoma, based on the feasibility of the radiomics

approach to evaluate lymph node status in ICC patients, can

facilitate clinical decision-making and define the subgroup of

patients who will benefit most from surgery. In one study (16),

image features were extracted from arterial phase CT images to

develop a radiomics model incorporating radiomics features and

various risk factors for predicting lymph node metastasis. This

model provides a powerful diagnostic tool for predicting lymph

node metastasis and differentiates patients into high-risk and low-

risk groups for lymph node metastasis likelihood, with significant

differences in overall survival time and recurrence-free survival

between the two groups. However, this study only extracted features

from arterial phase CT images and the model was built on data from

a single center and has not been validated in any external cohort. In

another study (17), the fusion model of CT features was constructed

by combining radiomics features of multiple sequences of CT

images. In three cohorts (model training cohort, internal

validation cohort, and external validation cohort), the area under

the curve (AUC) values of the fusion model outperformed any

radiomics model for monophasic CT images. The nomogram

constructed in this study has demonstrated favorable differential

and prognostic values through independent external validation.

This approach is not only feasible in CT, but also applicable in

MRI. Xu et al (18). extracted image features from T1-weighted

contrast-enhanced MRI and used a support vector machine (SVM)

classifier to construct a prediction model after filtering radiomics

features. Combining SVM scores and two clinical features (CA19-9

levels and MR-reported LNM factors) to construct a combined

nomogram, both the ROC curve and the decision curve suggested

that the constructed model had decent performance. Numerous

studies have reported a strong correlation between LNM and ICC

prognosis, making this non-invasive method a potential

preoperative assessment and prognostic assessment tool for ICC

due to its great predictive ability of preoperative LN status.
2.2 Prediction of microvascular
invasion (MVI)

Microvascular invasion is an independent risk factor for

prognosis in patients undergoing radical ICC resection (19).

With the increasing understanding of MVI and its prognostic
Frontiers in Oncology 03
value, the prediction of MVI has become a focus of research in

recent years , both in hepatoce l lu lar carc inoma and

intrahepatic cholangiocarcinoma (20–22). Moreover, some

qual i ta t ive or quant i ta t ive images were found to be

correlated with MVI (23). Clinical microvascular invasion is

primarily detected by histopathology under a microscope.

However, due to the heterogeneity of the tumor and the

sampling error, the preoperative biopsy results may be

unreliable. The radiomics approach addresses this concern

by allowing features to be extracted throughout and around

the tumor.

Peng et al (24). study to develop a radiomics model based on

ultrasound (US) medical images and the first study to use an

ultrasound radiomics approach to non-invasively assess MVI.

This study showed the feasibility of using radiomics methods to

predict microvascular invasion of ICC, but the performance of the

model seems to be less satisfactory. Since then, the vast majority of

research has been devoted to the improvement of model

performance. Zhou et al (25). developed a radiomics model

based on dynamically enhanced MRI images with AUC of 0.873

and 0.850 in training and validation cohorts, respectively.

This model can be useful for pre-operative prediction of

microvascular invasion in patients with mass-like intrahepatic

cholangiocarcinoma and is instructive for individualized

treatment of ICC patients. Another study (26) used recursive

feature elimination support vector machine to construct the

radiomics model, combining radiological factors and radiomics

features to construct nomogram with an AUC of 0.886 for the

training dataset and 0.80 for the test dataset, achieving satisfactory

performance. Qian et al (27). extracted radiomics features from six

sequences (DWI, T2WI-FS, 3DVIBE T1WI, AP, PVP, and DP) of

images that could help predict the MVI status of ICC patients. The

construction of nomogram for predicting MVI (containing:

combined radiomics features, clinical features and imaging

features) had an AUC of 0.953 for the training cohort and 0.861

for the validation cohort, further improving the predictive

performance of the MVI diagnosis. In addition, the study also

compared logistic regression (LR), random forest (RF) and SVM

classifier modelling effects, respectively. The aim of the study by

Jiang et al (28). was to investigate the contribution of 18f

-fluorodeoxyglucose positron emission tomography/computed

tomography (18F-FDG PET/CT) radiological features to MVI.

The results suggest that the PET model has better performance

than the CT model or PET combined CT model in ICC MVI

prediction. Fiz et al (29). elucidated that radiomics features of the

tumor and peritumor region extracted from preoperative PET/CT

could provide noninvasive biological characterization of ICC. For

MVI prediction, the combined clinical-radiomics model was

superior to the preoperative clinical model alone and achieved a

performance no less than that of the postoperative pathological

model. It can be seen that it is valuable to predict MVI on the basis

of preoperative images, which can help doctors to make clinical

decisions related to treatment plans and influence the choice of

individualized treatment plans.
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2.3 Prediction of early recurrence (ER) of
postoperative patients

Partial hepatectomy is the preferred option for radical

treatment of ICC, yet postoperative survival remains

unsatisfactory and the main reason for the poor prognosis is the

high recurrence rate (30). Understanding the timing associated with

recurrence is expected to inform discussions around adjuvant

therapy, monitoring and treatment of recurrent disease (31). The

qualitative and quantitative features of the images have predictive

value for postoperative recurrence time of intrahepatic

cholangiocarcinoma (32). But reliably identifying patients at high

risk for ER remains a challenge, hindering the decision-making

process for personalized treatment of ICC patients. Although some

predictive models constructed based on clinical characteristics exist,

they are limited by poor accuracy and cannot be widely used. This

has led clinicians to seek safe, effective and novel methods to

identify high-risk patients for ER. Medical imaging plays an

important role in the preoperative evaluation of ICC, so it is

necessary to find an image-based method to predict the early

recurrence of ICC. Many studies have done the same, of course.

The optimal threshold for distinguishing between early and late

recurrence after surgery for intrahepatic cholangiocarcinoma is 24

months (33). Liang et al (34). constructed a model that combines

radiomics features and clinical staging to predict early recurrence in

ICC patients undergoing a partial hepatectomy. This is the first

study to use MRI features to predict ER in intrahepatic

cholangiocarcinoma, and the AUCs of the training and validation

team nomograms were 0.90 and 0.86, respectively, and the decision

curve analysis confirmed the value of this model for clinical

application. Zhao et al (35). developed MRI radiomics models

(AP, PVP, DP), clinicopathology-imaging models (CPR), and

combined models. The performance of the three models for

detecting early recurrence in patients after ICC was compared,

and the results obtained were that the combined model had a

stronger predictive performance (AUC=0.949). Moreover, this

study points out the most important feature parameters for

predicting ER, mainly the texture features from MRI AP

sequences. To investigate the value of peritumoral area in

predicting early recurrence of ICC. Xu et al (36). combined

quantitative magnetic resonance imaging features based on

intratumoral and peritumoral (3 or 5 mm) regions. Among all

early recurrence prediction models, the combined radiomics-

clinical model with intratumoral and 5-mm peritumoral regions

performed the best.

However, we also found that the time of early recurrence was

different according to the definition of different investigators, and

further study is needed to determine the optimal cut-off value of

early and late recurrence. Yang et al (37). developed a prediction

model based on diffusion-weighted imaging based on recurrence

within 1 year after surgery as early recurrence. A multivariate

logistic regression analysis was used to construct a comprehensive

nomogram and a CPR model was developed as a reference to

demonstrate the incremental value of radiomics features in

predicting ER. Low- and high-risk groups defined according to
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postoperative adjuvant chemotherapy for ICC, improving

prognostic prediction. Zhu et al (38). regarded relapse 6 months

after surgery as early recurrence. The model was established

according to the CT image features, radiomics features, clinical

indicators and pathological features of mass-forming ICC. As in the

previous study, the combined model performed better. To explore

the impact of classifier selection on prediction model performance.

Hao et al (39). performed a CT-based radiomics analysis in a three-

center cohort, using multiple feature selection algorithms and

classifiers for modeling. A more generalized model was selected to

predict ER in ICC patients. Observation of the above studies for

predicting ER of intrahepatic cholangiocarcinoma found that

multicenter retrospective and prospective verification should be

carried out in follow-up studies to obtain a higher level of evidence.

Application of radiomics in predicting lymph node metastasis,

microvascular invasion, and early recurrence (Table 1).
2.4 Prediction of overall survival time (OS)/
progression-free survival (PFS)
before operation

Currently, the most commonly used staging system for ICC is

the tumor, lymph node and metastasis based TNM staging, which is

based on only a limited number of tumor features. Due to tumor

heterogeneity, the prognosis of ICC patients varies from individual

to individual and its predictive accuracy is somewhat limited (40,

41). In addition, many prognostic models for intrahepatic

cholangiocarcinoma rely on surgical pathology data and are not

applicable in a preoperative setting. This shows the need for

enhanced risk stratification to better predict clinical outcomes

and optimize perioperative management. In clinical practice or in

future clinical trials, good adjunctive prognostic prediction

tools such as radiomics-based prediction models and nomograms

have been proposed. This is urgently needed to develop

treatment strategies.

For the above reasons, it was also to verify the value of

radiomics in preoperative prediction of the prognosis of ICC.

Silva et al (42). developed a prognostic model that combines

clinical parameters and radiomics features to test the predictive

power of radiomics through a unique scale for survival

stratification. Another study (43) investigated the predictive value

of an enhanced CT-based radiomics model for the prognosis of

intrahepatic cholangiocarcinoma. The covariates in the nomogram

include radiomics scores and some clinical indicators. Park et al

(44). aimed to develop and validate a preoperative model capable of

predicting postoperative outcomes. Three different models are

constructed using clinical, radiological, and radiomics features,

respectively. The study focused on predicting recurrence-free

survival and the clinical-radiological-radiomics model performed

optimally with a training group c-index of 0.75 (0.72-0.79). This

facilitates the preoperative assessment of postoperative outcomes in

patients with mass-forming ICC in order to select the best

treatment option at the time of the initial treatment decision.
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TABLE 1 Application of radiomics in predicting lymph node metastasis, microvascular invasion, and early recurrence.

ature selection +
Classifier **

Performance

Accuracy Sensitivity Specificity AUC

LASSO; LR 0.74 0.89 0.90 (0.83–0.94)

LASSO; LR 0.868 0.736 0.846 (0.768-0.925)

mRMR; SVM 0.7264 0.8936 0.5763 0.842 (0.758-0.906)

ypothetical test; LR 0.87 0.94 0.84 0.95 (0.90-1.00)

ypothetical test; SVM 0.848 0.550 0.933 0.699

LASSO; LR 0.863 0.750 0.906 0.873 (0.796-0.950)

mRMR; bootstrap 0.74 0.78
0.825 (0.756
−0.880)

LASSO; LR 0.877 0.833 0.892 0.917 (0.840-0.965)

mRMR; GBM 0.750 0.879 0.603 0.802 (0.727-0.876)

ypothetical test; SVM 0.845 0.771 0.903
0.886 (0.823–

0.949)

ASSO; LR/RF/SVM
0.892/0.946/

0.869
0.974/0.895/

0.763
0.859/0.967/

0.913
0.953/0.988/0.898

ckward stepwise/PCA 0.819 0.853 0.789 0.881

mRMR; RF; LR 0.76 0.77 0.73 0.82 (0.68–0.96)

mRMR; DT; LR 0.94 0.87 0.97 0.98 (0.96–0.99)

ypothetical test; RF 0.77 0.75 0.80 0.90

0.92 0.94 0.91 0.98 (0.96–0.99)

0.98 0.99 0.97 0.998

MR, maximal relevance and minimal redundancy; SVM, support vector machine; GBM, Gradient Boosting Machine; RF,
sis; B = Prediction of microvascular invasion; C = Prediction of early postoperative recurrence in patients. **, These studies
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Ref Year Type* Image Population Number
of cases Segmentation (ROI) Feature

extraction
Fe

Liang et al 2018 C MRI Single center 209 Manually 467

Ji et al 2019 A CT Single center 155 Manually 105

Xu et al 2019 A MRI Single center 148 Manually 491

Zhao et al 2019 C MRI Single center 47 Manually 396/phase H

Peng et al 2019 B US Single center 128 Manually 1076 H

Zhou et al 2021 B MRI Single center 126 Manually 788/phase

Xu et al 2021 C MRI Single center 209 Manually 2268

Zhu et al 2021 C CT Single center 125 Manually 87/phase

Hao et al 2021 C CT Three centers 177 Manually 473

Xiang et al 2021 B CT Single center 157 Manually 1130/phase H

Qian et al 2022 B MRI Two centers 187 Manually 2600/phase

Fiz et al 2022 B PET/CT Single center 74 Manually Ba

Yang et al 2022 C MRI Single center 124 Manually 110

Zhang et al 2022 A CT Two centers 296 Manually 832

Jiang et al 2022 B PET/CT Single center 127 Semi-automatically 1815

Gao et al 2022 B MRI Three centers 519 CNN

Wakiya
et al

2022 C CT Three centers 41 CNN

ROI, regions of interest; AUC, area under curve; LASSO, least absolute shrinkage and selection operator; LR, logistic regression/linear regression; m
random forest; PCA, principal components analysis; DT, decision tree; CNN, convolutional neural network; *, A = Prediction of lymph node metast
used a variety of feature selection methods and classifiers. This column shows only the main methods described in the paper.
L

H
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Deng et al (45). developed a nomogram to assess the prognosis of

radical resection in ICC patients. It is a clinical-radiomics model

that combines sarcopenia, additional clinical features and radiomics

scores. Similar to previous studies, the c-index of the clinical-

radiomics model was 0.766, which was significantly higher than

the c-index of the different models: 0.667 (radiomics model), 0.598

(tumor differentiation system) and 0.563 (AJCC 8th edition),

respectively. Furthermore, the clinical-radiomics model predicted

1 and 3-year OS with an AUC of 0.809 and 0.886, respectively,

which was the most accurate prognostic prediction for patients with

ICC with mass formation.

Due to the lack of ultrasound and PET radiomics studies related

to ICC prognosis. Li et al (46). were the first to extract radiomics

features from baseline US and CEUS images (four sequences) to

construct a preoperative model for predicting OS in patients with

intrahepatic cholangiocarcinoma. The C-index of nomogram

containing CA 19-9, gender, ascites, radiomics features and

radiological features was higher than the 8th TNM staging

system. It was also found that the predictive efficacy of radiomics

alone was not statistically superior to TNM staging. Fiz et al (29).

compared a preoperative radiomics model for PET/CT imaging

with a model for postoperative pathological data in order to assess

the prognosis of patients with ICC with masses who underwent

preoperative hepatectomy. Both models have similar performance

in predicting patient OS/PFS, which further demonstrates the

predictive power of radiomics for prognostic assessment. Another

study (47) used MRI-based radiomics models to predict pre-

operative survival outcomes in patients. The integration of

radiomics features into the TNM staging system significantly

improves the accuracy of prognosis prediction compared to TNM

staging alone.

Application of radiomics in predicting OS/PFS (Table 2).
Frontiers in Oncology 06
2.5 Other applications

Identifying tumors can guide treatment and make more

appropriate choices. It is sometimes difficult to identify

intrahepatic cholangiocarcinoma in a non-invasive manner or to

distinguish it from other tumors. Most ICC and hepatocellular

carcinoma (HCC) lesions have a similar imaging presentation.

Qualitative image analysis is not sufficient to differentiate between

HCC or ICC. Xu et al (48). developed a diagnostic model based on

CT images to provide a reference for future differential diagnosis of

HCC and ICC. Its diagnostic power is superior to that of

experienced radiologists. Ren et al (49). aimed to explore machine

learning-based ultrasomics in the preoperative noninvasive

identification of hepatocellular carcinoma and intrahepatic

cholangiocarcinoma. The combined model has a strong

performance, yet the performance of the ultrasomics model alone

is poorer than the clinical model. Another study on MRI-based

radiomics nomogram models also showed excellent discriminatory

performance (50). This approach is not limited to the differentiation

of ICC from HCC. Some studies have also been able to distinguish

intrahepatic cholangiocarcinoma well from combined

hepatocellular and cholangiocarcinoma (51, 52), hepatic

lymphoma (53), and inflammatory mass with hepatolithiasis (54,

55). In addition, there may be differences between preoperative

assessment and intraoperative findings in some patients. Chu et al

(56). developed a model that accurately predicted preoperative

ineffective excision to guide clinical work.

At present, the evaluation of tumor biological characteristics is

mainly based on immunohistochemistry. In cancer patients, however,

different parts of the tumor have different molecular signatures, and

this variation can also change over time. Since it is not possible to

biopsy every part of every tumor at multiple points in time, the
TABLE 2 Prediction of overall survival time/progression-free survival before operation.

Ref Year Type Population Number of cases Segmentation Feature
extraction

Feature
selection C-index

Silva et al 2021
CT

(Portal venous phase)
Single center 78 Manually PCA 0.81

Tang et al 2021
CT

(Portal venous phase)
Single center 101 Manually 42 LASSO 0.783/0.751

Park et al 2021
CT

(Two sequences)
Six centers 345 Manually 661 LASSO

0.75
(0.72-0.79)

Deng et al 2021
CT

(Two sequences)
Single center 82 Manually 214 Cox + AIC

0.768
(0.765-0.770)

Li et al 2022
US

(Four sequences)
Single center 170 Manually 1044/phase LASSO 0.72/0.75

Fiz et al 2022 PET/CT Single center 74 Manually correlation/PCA 0.80/086

Yang et al 2022
MRI

(Six sequences)
Single center 163 Manually 4998 LASSO

0.750
(0.680-0.819)
f

PCA, principal components analysis; LASSO, least absolute shrinkage and selection operator; AIC, Akaike information criterion.
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assessment of the biology of a biopsy sample may not be representative

of the whole tumor (57). Yet medical imaging contains a wealth of

information about the tumor microenvironment and potential

treatment outcomes. Peng et al (24). attempted radiomics approach

to evaluate some immunohistochemical features: Ki-67, VEGF and

CK7. Various data dimensionality reduction methods and machine

learning algorithms are used to select the optimal model, and the

model predictions achieve great results. It can be seen that radiomics

can use the extracted feature information to characterize intra-tumor

heterogeneity. Zhang et al (58). used preoperative magnetic resonance

imaging texture analysis to predict the immunophenotype of patients

with intrahepatic cholangiocarcinoma. Patient samples were classified

into inflammatory or non-inflammatory immunophenotypes based

on the density of CD8+ T cells, and logistic regression analysis was

applied to select the significant features associated with

immunophenotype. From the constructed immunophenotype

prediction model, it was known that the inflammatory

immunophenotype had a better prognosis than the non-

inflammatory immunophenotype. It can be seen that MRI texture

features can be used as biomarkers to predict immune phenotypes and

clinical outcomes in ICC patients.

Workflow of conventional radiomics (Figure 2).
3 Application of deep learning in
intrahepatic cholangiocarcinoma

3.1 Deep learning for model construction

In recent years, artificial intelligence algorithms, particularly

deep learning (DL), have made significant advances in the field of

medical image analysis, driving the field forward at a rapid pace (59,

60). Among them, convolutional neural network (CNN) is a
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commonly used deep learning method that has great potential in

various clinical tasks, such as disease diagnosis and classification. It

can analyze not only pathological images but also medical images.

Deep learning-radiomics is a newly developed method that can

extract a large number of valuable quantitative features from

medical images. Moreover, the continued development of

convolutional network architectures has helped to build more

compact and accurate models (61). The introduction of deep

learning allows radiomics to model medical data end-to-end and

to perform multi-task learning for multiple clinical tasks. Good

results have been achieved in studies of nasopharyngeal carcinoma

(62), non-small cell lung cancer (63), and breast cancer (64). The

basic structure of convolutional neural network includes:

convolutional layer, pooling layer, fully connected layer and

output layer. Convolutional layer and pooling layer were used for

feature extraction and feature dimension reduction, respectively.

The fully connected layer and the output layer can integrate the

features and finally complete the classification. Workflow of deep

learning for model construction (Figure 3).

Current studies also exist on deep learning models constructed

for predicting early ICC recurrence, microvascular infiltration. Gao

et al (65). developed a DL model based on DCE-MRI

multiparametric fusion for preoperative assessment of ICC MVI.

The DL model allows for complementary feature extraction and

cross-scale fusion of multiple MRI sequences, showing better

performance than traditional radiomics models for MVI status in

ICC patients. In the Wakiya et al (66). study, early recurrence was

defined as recurrence within 1 year after liver surgery. No previous

application of DL to ICC post-resection recurrence prediction has

been reported. This study developed a prediction model using CNN

construction that successfully demonstrated strong performance in

predicting early postoperative recurrence using preoperative CT

images. The model can directly predict early recurrence and predict

who should receive adjuvant chemotherapy based on the risk of
FIGURE 2

Workflow of conventional radiomics. LASSO, least absolute shrinkage and selection operator; mRMR, maximal relevance and minimal redundancy;
PCA, principal components analysis;LDA, linear discriminant analysis; LR, logistic regression; SVM, support vector machine; RF, random forest; KNN,
k-nearest neighbor.
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recurrence, presenting a novel perspective on ICC management. Of

course, there are also some tumor identification studies, which show

the feasibility of deep learning system to identify ICC, and the

simultaneous identification of more types of lesions is becoming a

trend (67–69). Its discrimination ability is superior to that of a

radiologist, and it can even combine the experience and intuition of

a radiologist with the computational power of a DL decision

support tool to optimize workflow and obtain higher quality

diagnostic results (70).
3.2 Deep learning for feature extraction

In some studies on gastric cancer (71), COVID-19 pneumonia

(72), and hilar cholangiocarcinoma (73), models constructed from a

combination of features extracted from deep learning methods and

radiomics features have shown strong performance. It can be seen

that applying this method to the study of ICC will also achieve good

results. Preoperative models based on AI and human collaboration

in imaging can provide substantial benefits for treatment decisions

and can be easily and non-invasively applied prior to surgery.

Workflow of deep learning for feature extraction (Figure 4).

However, these deep learning features are not specifically

defined, and future work should explore the image encoding

process used to generate each deep learning feature to further

enhance the interoperability of these features. Wang et al (74).

enabled radiologists to interpret the decision elements behind

classification decisions through automatic recognition, mapping,

and scoring of radiological features by a DL system. Despite the lack

of validation criteria for feature maps and correlation scores, this

fuels the integration of deep learning into clinical practice. ()
4 Advantages and disadvantages of
conventional radiomics and
deep learning

(1) In conventional radiomics, machine learning approaches are

fast to run, good for small-scale data, and easy to understand and

implement. However, overfitting of the model can occur.
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(2) For deep learning, data enhancement can be achieved by

transforming medical images (e.g., rotating angles, moving,

flipping, and scaling), and the neural network architecture can be

flexibly tuned. The overfitting phenomenon can be avoided while

improving the model performance. However, this approach often

sacrifices the interpretability of the model. In clinical work,

clinicians are often not happy to use tools that are difficult

to understand.

(3) In conventional radiomics, the process of outlining ROIs is

often time-consuming, and the accuracy of manual outlining has

been questioned. But in the end-to-end CNN architecture, there is

no need to segment the lesions precisely.
5 Trends in radiomics

5.1 Radiogenomics

Although radiomics has been used in oncology for more than a

decade, its potential has not been fully tapped. Yu et al (75).

explored the relationship between radiomics features and the

tumor microenvironment in breast tumors, and key features were

significantly and linearly correlated with immune cells, long

noncoding RNA and methylation sites. Changes in gene

expression are strongly associated with some imaging traits, and

this relationship is not accidental (76). The systematic link between

imaging features and gene expression allows for useful inferences

from both directions, using visual images to translate gene

expression. This approach represents an emerging field called

radiogenomics. The diversity of today’s imaging modalities (CT,

MRI, US and PET) and the easier access to high-resolution images

provide favorable conditions for research in this direction. In a

multicenter study (77), radiogenomics was used to predict MVI in

liver cancer. Although this study was based on qualitative imaging

features only, good results were achieved. Diagnostic performance

did not differ significantly between institutions or between tumor

sizes. In a study of colorectal cancer, Yang et al (78). found that CT-

based radiomics features were significantly associated with KRAS/

NRAS/BRAF mutations. Hoivik et al (79). used a radiogenomic

approach to integrate preoperative MRI with histology,
FIGURE 3

Workflow of deep learning for model construction.
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transcriptomics, and molecular biomarkers to identify aggressive

tumor features. A correlation between quantitative features of the

tumor and gene expression was also shown in a study of

intrahepatic cholangiocarcinoma (80). In addition, the use

of clinically available images has the advantage of being

inexpensive and easy to implement compared to gene

sequencing. It is thus seen that this will be a direction of

development for radiomics in predicting personalized prognosis

of intrahepatic cholangiocarcinoma.
5.2 Guiding immunotherapy

In recent years, new insights into immunotherapy for

oncology patients have emerged, and the reliable identification

of ICC immunophenotypes is clinically important for predicting

response to immune checkpoint blockade. For example, as

blockade of the PD-1/PD-L1 pathway becomes more

widespread in cancer therapy, understanding their expression

status in ICC patients can help determine which patients are
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most likely to benefit and enable personalized treatment. Zhang

et al (81). used radiomics features from MRI as a non-invasive

biomarker to predict PD-1/PD-L1 expression in ICC patients.

This predictive model can help clinicians assess the value of

immunotherapy and make appropriate clinical decisions. It can

also avoid unnecessary surgery for some ICC patients and

avoid their harm and financial loss. Radiomic signatures can

help to identify tumor immunotherapy phenomena, which will

provide new theoretical and experimental foundations for

precision medicine.
5.3 Virtual biopsy

The development goal of radiomics is “virtual biopsy”. The use

of machine learning methods gradually failed to meet the demands

of researchers. Currently, more and more studies use deep learning

methods to build more accurate models. Radiomics has the

potential to be used as a quantitative, non-invasive prognostic

biomarker for clinical practice.
FIGURE 4

Workflow of deep learning for feature extraction.
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6 Discussion

From the observations of previous studies, we find some

patterns and problems. (1) The choice of classifier is one of the

influencing factors of model effectiveness. Some studies compare

different classification methods to obtain the method with the best

results in terms of certain predictions (39, 53). (2) Some studies

suggest that the extracted radiomics features in arterial phase

images have a better predictive performance. The reason for

slightly better AP imaging than PVP may be related to the

different arterial blood flow (51). (3) Models constructed with 3D

image features have an advantage over 2D image feature models.

This rule has at least been shown in studies of intrahepatic

cholangiocarcinoma. This could also be related to the type of

imaging data, the endpoint events of the predictive model, or the

volume size of the tumor (82). (4) Standardization of image scans

and protocols remains a challenge in the study of multiple

sequences of images from different centers or different

instruments. Without a uniform standard for image formats, the

accuracy of modeling analysis will be compromised. Perrin et al

(83). found that contrast agent injection rate and pixel resolution

affect feature repeatability. (5) Many current studies are based on a

single center and have limited sample size and lack prospective

studies. Studies where a large number of radiomics features are

extracted can lead to model overfitting and poor validation sets

when the sample size is too small. (6) Radiomics models alone may

not necessarily have better efficacy than clinical models, but

considering their objectivity, constructing models in combination

with clinical indicators will achieve reliable results. Observations of

related studies in recent years have revealed that this is also the case

(23). (7) Previous studies have found that most of the radiomics

features extracted in ROI, after feature engineering screening, are

texture features or wavelet texture features (24, 58). This pattern has

been found not only in studies of ICC, but also in studies of other

tumors. For example, in breast cancer studies (75), significant

differences were found in key radiomics features of patients

before and after neoadjuvant chemotherapy, and two wavelet

features were significantly associated with chemotherapy response

(wavelet-LLL-GLCM, wavelet-HHH-GLSZM). Wavelet features

may have potential associations with pathophysiology, proteomics

and tumor morphology that are not captured by clinicians through

low-level radiomics features or visual inspection (34). (8) The

segmentation methods of tumor images can be divided into three

categories: manual segmentation, semi-automatic segmentation,

and automatic segmentation. However, current research is still

dominated by manual segmentation. There is no uniform

conclusion as to which segmentation method is more standard.

Manual and semi-automatic segmentation techniques are time-

consuming, and the ROI outlined in differs between readers due

to differences in shape, size, and boundaries. (9) The outline of the

region of interest is no longer limited to the tumor itself, but can

also include sub-regions of the tumor, for example, the peritumoral

part also contains some valuable information. (10) At present, most

studies are focused on improving the performance of the model, but

relatively few studies have focused on the interpretability, which
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may be a direction for future research. (11) Studies are now not

limited to CT and MRI images, but there are also some studies that

have explored PET and US images. Radiomics-related research is

moving toward plurality. However, non-redundancy and

reproducibility are issues that need to be addressed in order to

apply some of the research results to the clinic in the form

of biomarkers.
7 Conclusion

Radiomics can extract features from multiple time sequences

and images containing the entire tumor, which is of great

significance to the research of tumor related fields. The modeling

analysis using radiomics has achieved satisfactory results in

predicting lymph node metastasis, microvascular invasion and

early recurrence of intrahepatic cholangiocarcinoma. In addition,

deep learning and radiogenomics will be the trends in research

methods and research directions, respectively. With the advent of

multi-omics and multi-modal research, applying this approach to

the study of intrahepatic cholangiocarcinoma is not only a

challenge, but also an opportunity.
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