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Denosumab, a fully humanized monoclonal neutralizing antibody, inhibits

activation of the RANK/RANKL/OPG signaling pathway through competitive

binding with RANKL, thereby inhibiting osteoclast-mediated bone resorption.

Denosumab inhibits bone loss; therefore, it is used to treat metabolic bone

diseases (including postmenopausal osteoporosis, male osteoporosis, and

glucocorticoid-induced osteoporosis), in clinical practice. Since then, multiple

effects of denosumab have been discovered. A growing body of evidence suggests

that denosumab has a variety of pharmacological activities and broad potential in

clinical diseases such as osteoarthritis, bone tumors, and other autoimmune

diseases. Currently, Denosumab is emerging as a treatment for patients with

malignancy bone metastases, and it also shows direct or indirect anti-tumor

effects in preclinical models and clinical applications. However, as an innovative

drug, its clinical use for bonemetastasis of malignant tumors is still insufficient, and

its mechanism of action needs to be further investigated. This review systematically

summarizes the pharmacological mechanism of action of denosumab and the

current understanding and clinical practice of the use of denosumab for bone

metastasis of malignant tumors to help clinicians and researchers deepen their

understanding of denosumab.
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Introduction

The RANK/RANKL/OPG system The
Receptor activator of NF-kB/The
Receptor activator of NF-kB ligand/
Osteoprotegerin system

The receptor activator of NF-kB ligand (RANKL was originally

defined as a new member of the tumor necrosis factor receptor

(TNFR) family which is expressed on non-dendritic cells and

participates in dendritic cell-mediated T cell proliferation and

RANK+T cell activation (1). The discovery of RANKL built a

bridge between the bone and the immune system and became an

important landmark in the rise of bone immunology (2–4). As the

RANKL/RANK (Receptor activator of NF-kB) signaling pathway

plays an important role in mediating osteoclast differentiation and

function (5), the relationship between RANKL and bone metabolism

has been extensively studied.

The differentiation and maturation of osteoblasts is regulated by

two systems: the RANK/RANKL system and the macrophage colony-

stimulating factor/colony-stimulating factor-1 receptor (M-CSF/c-

FMS) system (6). The M-CSF/c-FMS system is responsible for

regulating the differentiation of early hematopoietic stem cells

(HSCs) into osteoclast precursor cells and the survival of osteoclast

precursor cells (7), whereas the RANK/RANKL system is an

important trigger for the differentiation of osteoclast precursors

into functional osteoclasts. RANKL is a homologous trimeric

transmembrane protein which has two receptors: the membrane-

binding receptor RANK and the soluble bait receptor OPG (8). In

bone, RANKL is expressed in the bone matrix, osteoblast precursor

cells, and osteoblasts, and RANK is expressed on the membrane

surface of osteoclasts and osteoclast precursors as a membrane-

binding receptor (9).

The binding of RANKL to RANK leads to the recruitment of TNF

receptor associated factor 6 (TRAF6) as an articulatory molecule,

which activates the NF-kB, c-Fos/AP1, MAPK, and other signaling

pathways (10), leading to increased activation, amplification, and

transcription of the downstream signal nuclear factor of activated T

cells (NFATc1) (11), which directly mediates the differentiation of

osteoclast precursor cells into osteoclasts (12). NFATc1 is a major

regulator of osteogenesis (13). NFATc1 is both a major regulator of

osteoclast formation and is involved in the regulation of osteoclast-

specific genes (TRAP, Cathepsin K, calcitonin receptor) involved in

osteoclast differentiation proliferation and survival (14, 15). The

osteeoprotegerin (OPG) inhibits the activation of RANK signaling

by competitively binding to RANKL and preventing RANKL from

binding to its receptor RANK (16) (Figure 1).

Denosumab is the first and only clinically available RANKL

inhibitor that inhibits osteoclast activity by targeting and blocking

the binding between RANK and RANKL. While inhibiting the

function of mature osteoclasts (17), it also inhibits the maturation

of osteoclast precursor cells, reduces bone resorption, and promotes

bone reconstruction, thereby delaying bone-related events.
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Biology of bone metastasis of
malignant tumors

Tumor metastasis is the process by which cancer cells spread from

a primary lesion to other sites. Cancer cells metastasize in three major

ways: direct invasion, disseminated metastasis, and vascular and

lymphatic metastases (18). Tumor metastasis is a complex

biological process (19, 20). Tumor cells metastasizing from the

primary site to other tissues and organs generally undergo the steps

of reducing intercellular adhesion, destructing the epithelial barriers,

escaping from immune surveillance, secondary site colonizing,

proliferation and growth and lead to skeletal-related event SREs

(21) (Figure 2). The three major primary cancers that are most

prone to bone metastasis are breast, lung, and prostate cancers (22).

Tumor cells colonize the bone microenvironment from the primary

site, resulting in bone disease, which is defined as a SREs. Although all

are bone metastases, the different origins of the tumors lead to

completely opposite characteristics. When osteoblast-mediated bone

formation predominates, the bone shows abnormal proliferation and

presents with osteosclerotic malignancy; when osteoclast-mediated

bone resorption predominates, the bone shows abnormal resorption

and presents with osteolytic malignancy (23), and there are also some

mixed lesions in which osteosclerosis and osteolysis abnormalities

occur simultaneously (24).

Tumor progression or invasion of other tumors leads to the

disruption of bone homeostasis, forming a vicious circle between

osteoclasts, osteoblasts, immune cells, and tumor cells (25). Malignant

tumors release a variety of cytokines that can directly or indirectly

activate osteoblasts or osteoclasts. When tumor cells secrete IL-1

(Interleukin-1), IL-6 (Interleukin-6), TNF-a (Tumor Necrosis Factor

alpha), and other inflammatory cytokines, they activate osteoclasts in

large quantities, leading to enhanced osteolysis activity, which

produces inflammatory cytokines in large quantities, forming a

vicious circle in the bone microenvironment promoting pro-tumor

transformation and tumor cell progression (26). In addition, the

a l te rat ion of the bone microenv i ronment and tumor

microenvironment will make the immune cells’ surveillance and

clearance effect on the tumor weaken (27). Tumor cells will block

the immune response in many ways, resulting in the weakening of

immune cell anti-tumor immunity (28). Physicochemical and

environmental factors also play an important role in regulating the

progression of tumor metastasis. A hypoxic environment and low pH

values are conducive to tumor cell proliferation (29), and this hypoxic

acidic environment creates a suitable environment for tumor cell

growth, leading to increased levels of tumor cell production,

migration, invasion, and proliferation (30).

Bone metastases often lead to serious complications, including

fractures, nerve compression, and severe pain, resulting in loss of

mobility, a significant increase in medical costs, and a significantly

lower quality of life and survival rates (31). Metastases occur in

approximately 50% of patients with tumors and are the cause of death

in 90% of patients with cancer (32). In the past decades, metastases

have been treated using systemic approaches, including
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chemotherapy and immunotherapy, but most patients with new or

recurrent metastases still die within 5 years of diagnosis (33). This is

especially true for the high incidence and high risk of bone metastases,

so there is an urgent need to explore in depth the options to prevent

and treat bone metastases (34). Bisphosphonates are well documented

(35). Recognizing the development of early metastases in women

suffering from breast cancer, which usually occur in bone tissue,

attempts have been made to use bisphosphonates for early prevention

in women with breast cancer as a nonspecific treatment, decreasing
Frontiers in Oncology 03
the potential impact of SREs and increasing the overall survival

benefit (36).
The RANK/RANKL system in tumor
metastases to bone

RANKL has been recognized for its role in mediating dendritic

cell survival and T cell proliferation, and subsequently for its crucial
FIGURE 1

The RANK/RANKL/OPG system. The binding of RANKL to RANK leads to TRAF6 recruitment, which activates NF-kB, MAPK and Fos/AP-1 pathways. These
activating signals together lead to the activation of NFATc1, a key transcription factor for downstream osteoclast-associated gene activation, which is the
hallmark event of osteoclast formation. The OPG competitively binds RANKL and thus inhibits osteoclast activation, while denosumab, which has the
same molecular weight as OPG, also binds to RANKL and inhibits osteoclast activation and maturation.
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roles in mediating osteoclast differentiation and function (37). Thus,

it has been intensively studied in the field of bone metabolism, and

recently, research has returned to focus on the immune system. Many

studies have shown that the RANK/RANKL system plays an essential

role in developmental maturation and functional maintenance of the

immune system. By genetically engineering RANK- or RANKL-

deficient mice, it has been found that RANKL knock out mice show

lymph node deficiency and impaired B-cell development (38, 39), and

patients with mutations in the TNFRSF11A gene (encoding RANK)

show a significant reduction in B-cell numbers (40), which confirms

that RANK/RANKL is essential for early T cell and B cell

development. In addition, RANK/RANKL intervenes in the

interactions between T cells and dendritic cells s, and RANKL

enhances dendritic cell formation and function in the absence of

co-stimulation and antigen presentation, enhancing the ability of

dendritic cells to stimulate the proliferation and differentiation of
Frontiers in Oncology 04
naive T cells (41). In addition, RANK/RANKL activation triggers

intracellular signaling pathways (e.g., MAPK, NF-kB, Fos/AP-1, JNK/

ERK/P38), which are involved in tumor proliferation and metabolic

activities (42).There are many preclinical studies on the above-

mentioned signaling pathways in RANKL activation-induced cancer

metastasis. For example, MAPK pathway is involved in RANKL-

induced breast cancer cell migration, and inhibition of MAPK

pathway activation by specific inhibitors can effectively block

RANKL-induced cell migration (43, 44). RANKL induces NF-KB

activation leading to enhanced aggressiveness of oral squamous cell

carcinoma by suppressing RANKL expression, which inhibits

RANKL-induced NF-KB activation thereby suppressing the

invasion of oral squamous cell carcinoma into the jawbone (45).

However, these intracellular signaling pathways do not exist in

isolation, but in crosstalk with each other (46). Until now, evidence

on the crosstalk between RANK/RANKL and intracellular signaling
FIGURE 2

The bone metastasis. The bone metastasis is a complex biological process. Tumor cells metastasizing from the primary site to other tissues and organs
generally undergo the steps of reducing intercellular adhesion, overcoming barriers, escaping from immunity, colonizing secondary sites, proliferation
and growth and lead to SREs. The bone metastases often lead to serious complications, including fractures, nerve compression, and severe pain,
resulting in loss of mobility, a significant increase in medical costs, and a significant reduction in quality of life and survival.
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pathways to regulate tumor proliferation and metabolism is still

incomplete. and needs further study.

Although it is not clear whether the RANK/RANKL signaling

pathway plays a favorable or unfavorable role in tumor proliferation

and metabolism, there is no doubt that RANK/RANKL signaling

plays a very important role in tumors. RANK/RANKL is expressed in

many tumor tissues (39), and many breast cancer patients show

abnormally high levels of RANKL expression in primary lesions, and

a positive correlation with the incidence of bone metastases (47).

RANK/RANKL is directly involved in tumor proliferation and

metabolism and regulates the tumor immune microenvironment

(48). The activation of dendritic cells releases a large amount of

activated cytokines (including IL-1, IL-6, and IL-12) (41), which

increase the number of transcriptional factor Foxp3 regulatory T

cells (Foxp3+ Tregs) (49), and induce the differentiation of CD4+ T

cells into Th1 cells (50), all of which lead to immunosuppression, and

allow tumor cells to escape immune surveillance that promotes

tumor progression.

The above evidence seems to indicate a negative aspect of the

RANK/RANKL system in the progression of tumors and anti-tumor

immunity. Because of the effectiveness of osteoclast inhibition in

preventing bone metastases, drugs acting on the RANK/RANKL

system have been developed and used to treat bone metastases from

malignant neoplasm.
The development and pharmacological
mechanism of denosumab

OPG was discovered in the 1990s when genomics was developed

and used for target identification and Amgen discovered emerging

mRNAs through large-scale sequencing and studied the function of

these genes in vivo by overexpressing them in mouse liver. Mice with

OPG transfer gene show a phenotype of increased bone density in the

lower limb bones. Following the discovery of the OPG phenotype,

subsequent studies began to search for a ligand for OPG. The OPG

ligand (OPGL) was screened by fluorescence techniques, and a series

of subsequent studies revealed that the OPGL sequence was identical

to the RANK ligand RANKL, which was then used as a ligand for

OPG. Because of its phenotype of increasing bone density, OPG was

used to inhibit bone resorption. Hundreds of variants of OPG were

developed and used in preclinical animal models, but all showed poor

bioactivity and poor pharmacokinetics, and the subsequent OPG

immunoglobulin Fc fusion protein (OPG-Fc) had an extended

potency enhancer half-life but presented safety risks in phase I

trials. Development of OPG-Fc was discontinued and shifted to

RANKL. Amgen reconstituted a fully human monoclonal antibody,

denosumab, using a modified Ig2 antibody (the modified Ig2 antibody

enhances resistance to papain and thus improves efficacy) with little

or no cytotoxicity (antibody-dependent cell-mediated cytotoxicity

and complement-dependent cytotoxicity) and improved

pharmacokinetics (51).

Denosumab is a fully synthetic monoclonal neutralizing antibody

that acts as an IgG2 subclass immunoglobulin, inhibiting osteoclast

differentiation, survival, and activity by competitively binding

RANKL, thereby blocking RANK binding to RANKL. Denosumab

is considered a highly effective inhibitor of osteoclast bone resorption
Frontiers in Oncology 05
(52). In vitro studies have shown that denosumab, similar to OPG, has

high affinity for soluble and membrane-bound RANKL (53).

Denosumab has good pharmacokinetic properties, and although

there are individual metabolic differences, its molecular mass and

structural properties allow for rapid absorption and a nonlinear

metabolic profile that can be sustained in vivo (54). After

subcutaneously administration denosumab of 60 mg, maximum

serum denosumab concentration was reached on day 10 (range: 2-

28 days), with serum levels declining gradually over 3 months (range:

1.5-4.5 months), with a half-life of 26 days (range: 6-52 days). After

subcutaneously administration denosumab of 120 mg every 4 weeks,

steady-state concentrations were achieved at 6 months. the mean (±

standard deviation) serum steady-state trough concentration at 6

months was 20.5 (± 13.5) µg/mL. The mean elimination half-life was

28 days. It can last up to 9 months after a single dose (55). Similar to

other monoclonal antibodies, denosumab is likely cleared in vivo by

the reticuloendothelial system and is not metabolized by the liver or

kidneys (56); therefore, no further impairment of renal function or

changes in efficacy or pharmacokinetics have been reported with

denosumab in clinical trials, including renal replacement therapy in

patients with impaired renal function (57). However, pilot studies on

the mechanism of clearance of denosumab, and clinical evaluation of

hepatic impairment on the efficacy and pharmacokinetics of

denosumab have not yet been conducted (Figure 3).
The clinical trials of denosumab on bone
metastasis of malignant tumor

The RANKL inhibitor denosumab has entered clinical trials for

malignant bone metastases (Figure 4). A prospective double-blind

placebo-controlled phase III trial (58) with 3425 subjects showed that

denosumab in women with early-stage hormone receptor-positive

postmenopausal breast cancer treated with an aromatase inhibitor

was effective in reducing bone mineral density and fractures due to

aggressive bone resorption, with no significant variation in the

incidence of adverse events (58). Another prospective double-blind

placebo-controlled phase I trial with 1432 subjects showed that

denosumab was effective in preventing bone metastases in non-

metastatic castration-resistant prostate cancer, and that denosumab

significantly postponed the onset of first bone metastasis in patients

with this type of tumor (59). A randomized phase II clinical study

showed that in patients experiencing bone metastases associated with

malignant tumors, including prostate, breast, or other tumors, who

received bisphosphonates by intravenous injection but still had

excessive bone resorption (urinary N-terminal peptide uNTx >100

nmol), increased treatment with denosumab was effective in reducing

uNTx levels, inhibiting the bone resorption rate, and reducing the

incidence of SREs (60). In addition, a double-blind randomized phase

III clinical trial showed that treatment with denosumab (120 mg every

4 weeks) prolonged the time to first bone metastasis radiotherapy

compared to conventional bisphosphonate anti-bone metastases (61),

implying that the time-lapse to bone metastases was delayed in

patients receiving denosumab subcutaneous injections, in addition

to prolonging the time to the first SREs occurrence and

hypercalcemia, reduced pain levels, and improved the well-being of

people suffering from bone metastases. In addition, denosumab
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effectively reduced serum calcium levels in patients with refractory

hypercalcemia whose serum calcium could not be controlled with

intravenous bisphosphonate therapy (62), achieving an overall

remission rate of 64%, delaying the onset of hypercalcemia in

patients with advanced bone metastases, achieving a durable

therapeutic response in reducing serum calcium, and being used in

patients with renal failure (compared to bisphosphonates).

Denosumab is neither metabolized nor excreted by the kidneys

compared to bisphosphonates), making denosumab a promising

second drug to be approved for the treatment of refractory

hypercalcemia after zoledronic acid.

The use of denosumab has produced alterations in bone

metabolism and therefore its application in some specific skeletal

metabolic disorders deserves to be noted. Paget’s disease is

characterized by local bone metabolism disorder, partial bone

overgrowth, disorder of bone reconstruction, abnormal osteoclast

metabolism causing bone lysis, compensatory increase of osteoblasts,

brittle change of abnormally proliferated bone tissue, bone expansion

and loosening, and easy fracture, so some clinical studies abroad use

denosumab to intervene in early Paget’s disease. In two reported

clinical cases (63, 64), patients with Paget’s disease treated with

bisphosphonates for a long time, who progressed to giant cell

tumor of bone, received subcutaneous injections of denosumab

(120 mg every 4 weeks), and imaging showed a reduction in tumor

size and an improvement in clinical symptoms. Treatment of bone

metastases is usually systemic, and radiotherapy and chemotherapy

are the conventional means of treatment for bone metastases. Patients

with bone metastases have usually undergone systemic treatment

prior to the development of bone metastases, does the combination of

denosumab and chemotherapy produce a synergistic effect? Does the

combination of denosumab and chemotherapy have a synergistic

effect? Does it have an effect on effectiveness or does it produce drug

resistance? Studies in animal models have shown that inhibition of

RANKL improves the efficacy of the chemotherapeutic agent
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cisplatin, but there are no objective data on the effect of denosumab

in combination with chemotherapeutic agents at this time (39).

Based on the above clinical study results, denosumab could be

considered for use as a more effective anti-bone metastasis drug than

bisphosphonates, because it delays the onset of bone metastases,

reduces the frequency of SREs, improves patient life treatment, and

can also be used in patients with bone metastases who are allergic to

bisphosphonates or have renal failure (65). However, caution should

be exercised. The clinical application of drugs is different from

preclinical studies, because tumorigenesis is a complex process with

differences in the nature of the tumor itself, and tumorigenesis leads

to systemic metabolic changes. There are already relevant clinical

studies that are skeptical of denosumab for bone metastases from

malignant tumors.

A large multicenter prospective randomized clinical trial revealed

the effect of adjuvant treatment with denosumab on early-stage

female breast cancer patients. A total of 4509 female breast cancer

patients were enrolled in the study (66), half of whom received

denosumab (120 mg once a month) at the start of chemotherapy

for five years, primarily to determine whether denosumab could play

an anti-metastatic role. Unfortunately, there was no significant

difference between the two groups, and no significant improvement

or therapeutic effect on bone metastases, in addition to neutropenia in

15% of patients and osteonecrosis of the jaw in 5% of patients.

Another randomized open phase III clinical study showed that

adding denosumab to standard first-line platinum-based dual

therapy did not improve overall survival in patients with advanced

non-small cell lung cancer (NSCLC) (67). These clinical trials showed

that the combination of denosumab did not benefit patients and

imposed a financial burden on these patients. A large randomized

trial showed a 9-fold increase in medical costs for monthly

denosumab treatment compared with 3-monthly zoledronic acid

treatment, but no significant survival extension or other benefits

were observed (68).
FIGURE 3

The description of denosumab. The properties of denosumab are briefly described in four dimensions: usage and dosage, pharmacological mechanism,
pharmacokinetics and adverse reactions.
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In addition, the increased incidence of adverse events associated

with the use of denosumab cannot be ignored, with frequently

reported adverse events being osteonecrosis of the jaw, neutropenia,

and increased risk of fracture (61, 69).

Based on the above studies, we must carefully evaluate the use of

denosumab for the prophylaxis and treatment of bone metastases in

malignant tumors. The following questions require careful consideration;
Fron
• Whether denosumab is only indicated for certain specific

tumor types?

• Whether the use of denosumab brings more clinical benefits

and medical cost savings to patients with malignant tumors?

• Whether the combination of denosumab with first-line

chemotherapeutic agents may superimpose adverse effects

and how to prevent rebound effects after denosumab

discontinuation are worthy of prudent evaluation.
Therefore, joint efforts by researchers and clinicians are required.
tiers in Oncology 07
Conclusion

In 2020, there will be approximately 19.3 million new cancer cases

and 10 million cancer deaths worldwide, and with the growing

population base and aging population, this number is expected to

increase by 47% by 2040, with the global cancer burden reaching 28.4

million cases (70, 71). Approximately 50% of patients with tumors

develop metastases, and the majority of patients with tumors die from

a variety of complications caused by metastases, rather than from

other causes. Bone metastatic disease is most common in some

specific cancers, among which the incidence of bone metastasis in

breast cancer is approximately 70%, prostate cancer is about 85%,

cancer bone metastasis is about 40%, and the incidence of bone

metastasis in multiple myeloma is as high as 95% (22). Given the high

incidence of these tumors, many bone metastases occur each year,

causing great pain and devastation to patients. Most bone metastases

occur in the spine, pelvis, ribs, and other important areas (72), causing

pain, compression, bone destruction, pathological fractures, and other
FIGURE 4

The timeline of RANK/RANKL/OPG system and denosumab. The chronological order shows the important events in the process from the discovery of
the RANK/RANKL/OPG system and denosumab to its clinical use.
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serious SREs (73). Approximately 40% of patients with bone

metastases experience SREs during antitumor treatment (73).

The evolution of malignant tumor metastasis to the bone is a

complex process (74). The metastatic spread of tumor cells includes

reducing intercellular adhesion, destructing the epithelial barrier,

escaping from immune surveillance, secondary site colonization and

SREs events happening (75). However, when tumor cells colonize the

bone, it also provides favorable support for the rapid proliferation of

tumor cells. The relationship between tumor cells and the bone

microenvironment has been compared to the relationship between

seeds and soil (76), and the various cells and blood supply in the

skeletal system provide a natural breeding ground for tumor cells to

colonize and proliferate. However, not all types of tumors develop

bone metastasis, and it seems that the characteristics of the seed (i.e.,

tumor cells) interacting with the soil (i.e., bone microenvironment),

play a more important role in the spread of malignant tumor bone

metastasis (77), which may explain why some specific primary tumor

types (e.g., breast cancer and prostate cancer), are more prone to bone

metastasis (78). In addition, differences in the primary foci classify

bone metastases into different types, and bone metastases are

classified into osteosclerotic malignancies, osteolytic malignancies,

and mixed malignancies (79). Osteolytic malignancies are usually

primary tumors of breast or lung cancer, whereas osteosclerotic

malignancies are usually highly associated with prostate cancer.

However, this division is simple and rough, and when bone

metastases from malignant tumors occur, skeletal lesions within the

bone microenvironment are often complex (80). When bone

metastases occur in most solid tumors, there is both an accelerated

process of osteolytic destruction and bone formation and

reconstruction, and bone metastases in different parts of a single

patient’s body may be different, i.e. osteolytic bone destruction may

occur in one part of the bone and another part of In other words,

osteolytic bone destruction may occur in one part of the skeleton,

while another part of the skeleton, on the contrary, may develop

sclerotic osteogenic lesions or mixed bone metastases. The complexity

of bone metastases along with the resistance of neoplastic cells to

metastases poses a great challenge for their treatment (81).

The current standard of care for bone metastases from malignant

tumors includes bisphosphonates and the RANKL inhibitor,

denosumab (82), both drug types which target osteoclast inhibition

(83). Bisphosphonates have been used clinically for many years, and a

large amount of preclinical evidence fully demonstrates their anti-

tumor cell metastatic ability (84, 85). Their action on osteoclasts leads

to reduced bone resorption, which may establish a bone

microenvironment unfavorable to tumor cell attachment (86). In

addition, nitrogen-containing bisphosphonates can inhibit tumor

angiogenesis and modulate immunity to exert indirect antitumor

activity (87). Due to its good pharmacological activity and cost-

effectiveness, zoledronic acid has been the standard of care for the

prevention of bone metastases from malignant tumors and other

SREs for nearly a decade (88), significantly improving the quality of

life and survival of patients with bone metastases (89). However, the

pharmacological properties of zoledronic acid have led to adverse

effects (mainly acute reactions and renal impairment), making it
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unavailable to some patients with bone metastases (90), and until the

advent of denosumab, these patients had no choice.

Denosumab was approved by the FDA in 2010 for the treatment

of bone metastases from solid tumors, and has since become a

breakthrough treatment for bone metastases from malignant

tumors. Several clinical trials have confirmed that it is as effective as

zoledronic acid (91, 92). Several large multicenter prospective double-

blind randomized controlled clinical trials have shown that

denosumab is effective in delaying the time to first bone metastasis,

reducing the incidence of SREs, reducing pain levels in patients with

bone metastases, and improving the quality of life in patients with

malignancies (93, 94). However, with further clinical studies and the

gradual expansion of the included population, the effectiveness of

denosumab was gradually questioned (95), and several clinical studies

showed that denosumab did not differ from zoledronic acid in terms

of overall survival and disease progression (96). In addition, the

treatment of bone metastases from malignant tumors is a long-term

process, and the cost of the drug is an issue that must be considered.

With conflicting clinical data from different institutional centers,

more clinical studies and longer follow-up periods are needed to

obtain credible evidence about the role of denosumab in malignant

bone metastases, its advantages over zoledronic acid, and to analyze

the various reported adverse effects from denosumab. The answers are

thus both necessary and urgent.

Although clinical studies and conclusions about denosumab are

still to be optimized, there is no doubt about its advantages over

zoledronic acid. The emergence of denosumab brings hope to patients

with bone metastases from malignant tumors combined with renal

abnormalities as it is not metabolized and excreted by the kidneys (97).

This makes it available for patients with bone metastases from

malignant tumors treated with renal replacement therapy. This is

particularly important for elderly prostate cancer patients, who are at

a high risk of bone metastases. They often suffer from renal

insufficiency due to malignant tumor proliferation-induced urinary

tract obstruction, for which bisphosphonates are absolutely

contraindicated, and who desperately need a drug that can control

bone metastases (93). In addition, denosumab reduces the rate of bone

resorption by competitively binding to RANKL, resulting in a durable

reduction in serum calcium levels. This provides a new approach for the

treatment of previously intractable hypercalcemia with bone metastases

(98). Denosumab has also been reported to delay pain progression and

reduce overall pain levels and analgesic drug use (99), but these reports

suffer from inadequate sample sizes and are highly susceptible to

subjective evaluations, which are currently unreliable.

Another question that needs to be answered is how does

denosumab function in different types of tumors? Although it was

approved by the FDA in 2010 for the treatment of bone metastases

from solid tumors, it is not yet known whether denosumab is effective

for all types of bone metastases from solid tumors (100). Clinical trials

in NSCLC have shown that bone metastasis is very common in non-

small cell lung cancer; one clinical trial confirmed that 50%-60% of

NSCLC tumor tissues express RANKL and RANK, and the trial

showed that denosumab can directly block RANKL to inhibit bone

metastasis in NSCLC. However, subsequent clinical trials have
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indicated the opposite conclusions, since adding denosumab to

standard first-line platinum-based dual therapy did not improve

overall survival in advanced NSCLC. Data from different studies are

conflicting, so there are questions about whether denosumab is

effective in NSCLC. A more fundamental issue is that the

mechanism of denosumab, which acts on osteoclasts to exert anti-

metastatic effects by reducing bone resorption, may be effective in

osteolytic bone metastases where osteoclast-mediated bone resorption

predominates. However, there is a lack of evidence to demonstrate

whether it is effective in sclerotic bone metastases where osteoblast-

mediated bone formation predominates.

To minimize the impact of malignant tumor bone metastases on

patients and reduce the occurrence of SREs events, the control of bone

metastases often requires comprehensive treatment rather than a

single therapeutic measure, and the treatment usually includes

multiple treatment measures such as radiotherapy, chemotherapy,

surgical treatment, immunotherapy, and palliative care. Combination

therapy with denosumab is therefore a major clinical issue, most

notably denosumab in combination with immunotherapy (101).

RANKL, as a bridge between the skeletal and immune systems, will

inevitably crosstalk with the immune system; therefore, the outcomes

arising from the combination of immunotherapy and denosumab

must be seriously considered. Several studies are currently underway

to examine the effects of denosumab monotherapy and combination

immunotherapy to assess whether the combination has a beneficial

effect on progression-free survival and overall survival of

patients (102).

In summary, the bone metastasis of malignant tumors has become

a major challenge in tumor treatment. The various mechanisms

mediating the growth of metastasis and the special skeletal

microenvironment bring great challenges to the treatment of bone

metastasis, and the emergence of denosumab provides a new path for

the treatment of bone metastasis. However, since the understanding of

denosumab is not yet perfect, more research is needed in the future to

explore the great therapeutic potential of denosumab and provide a

more solid and rational basis for clinical use.
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15. Pang M, Rodrıǵuez-Gonzalez M, Hernandez M, Recinos CC, Seldeen KL, Troen
BR. AP-1 and mitf interact with NFATc1 to stimulate cathepsin K promoter activity in
osteoclast precursors. J Cell Biochem (2019) 120(8):12382–92. doi: 10.1002/jcb.28504

16. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity,
bone, and beyond. Front Immunol (2014) 5:511. doi: 10.3389/fimmu.2014.00511
frontiersin.org

https://doi.org/10.1007/s00774-020-01175-1
https://doi.org/10.1159/000371845
https://doi.org/10.1186/s41232-019-0111-3
https://doi.org/10.1186/s41232-019-0111-3
https://doi.org/10.1101/cshperspect.a031245
https://doi.org/10.1038/s41413-018-0040-9
https://doi.org/10.1177/0022034513500306
https://doi.org/10.1016/j.bone.2006.09.023
https://doi.org/10.4049/jimmunol.1103387
https://doi.org/10.1007/s11154-010-9153-1
https://doi.org/10.1080/10408398.2020.1836606
https://doi.org/10.1172/JCI94606
https://doi.org/10.1038/sj.emboj.7600564
https://doi.org/10.3389/fphar.2022.938447
https://doi.org/10.3389/fphar.2022.938447
https://doi.org/10.1038/s41401-019-0289-6
https://doi.org/10.1002/jcb.28504
https://doi.org/10.3389/fimmu.2014.00511
https://doi.org/10.3389/fonc.2023.1133828
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.1133828
17. Polyzos SA, Makras P, Tournis S, Anastasilakis AD. Off-label uses of denosumab in
metabolic bone diseases. Bone. (2019) 129:115048. doi: 10.1016/j.bone.2019.115048

18. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev
Cancer. (2021) 21(3):162–80. doi: 10.1038/s41568-020-00320-2

19. Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, et al.
Systems biology of cancer metastasis. Cell systems. (2019) 9(2):109–27. doi: 10.1016/
j.cels.2019.07.003

20. Valastyan S, Weinberg RA. Tumor metastasis: Molecular insights and evolving
paradigms. Cell. (2011) 147(2):275–92. doi: 10.1016/j.cell.2011.09.024
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cancer therapy. Cancer letters. (2007) 257(1):16–35. doi: 10.1016/j.canlet.2007.07.007

36. Barni S, Mandalà M, Cazzaniga M, Cabiddu M, Cremonesi M. Bisphosphonates
and metastatic bone disease. Ann Oncol Off J Eur Soc Med Oncol (2006) 17 Suppl 2:ii91–
95. doi: 10.1093/annonc/mdj935

37. Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by
RANKL-RANK-OPG. J Bone mineral Metab (2021) 39(1):54–63. doi: 10.1007/s00774-
020-01178-y

38. Cheng ML, Fong L. Effects of RANKL-targeted therapy in immunity and cancer.
Front Oncol (2014) 3:329. doi: 10.3389/fonc.2013.00329

39. van Dam PA, Verhoeven Y, Trinh XB. The non-Bone-Related role of RANK/
RANKL signaling in cancer. Adv Exp Med Biol (2020) 1277:53–62. doi: 10.1007/978-3-
030-50224-9_3

40. Rao S, Cronin SJF, Sigl V, Penninger JM. RANKL and RANK: From mammalian
physiology to cancer treatment. Trends Cell Biol (2018) 28(3):213–23. doi: 10.1016/
j.tcb.2017.11.001

41. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux
ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and
dendritic-cell function. Nature. (1997) 390(6656):175–9. doi: 10.1038/36593

42. Hu J, Hu WX. Targeting signaling pathways in multiple myeloma: Pathogenesis
and implication for treatments. Cancer letters. (2018) 414:214–21. doi: 10.1016/
j.canlet.2017.11.020

43. Zhang L, Teng Y, Zhang Y, Liu J, Xu L, Qu J, et al. Proteasome inhibitor
bortezomib (PS-341) enhances RANKL-induced MDA-MB-231 breast cancer cell
migration. Mol Med Rep (2012) 5(2):580–4. doi: 10.3892/mmr.2011.678

44. Tang ZN, Zhang F, Tang P, Qi XW, Jiang J. RANKL-induced migration of MDA-
MB-231 human breast cancer cells via src and MAPK activation. Oncol Rep (2011) 26
(5):1243–50. doi: 10.3892/or.2011.1368

45. Shin M, Matsuo K, Tada T, Fukushima H, Furuta H, Ozeki S, et al. The inhibition
of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral
squamous cell carcinoma cells. Carcinogenesis. (2011) 32(11):1634–40. doi: 10.1093/
carcin/bgr198

46. Renema N, Navet B, Heymann MF, Lezot F, Heymann D. RANK-RANKL
signalling in cancer. Bioscience Rep (2016) 36(4). doi: 10.1042/BSR20160150
Frontiers in Oncology 10
47. Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A. RANKL/RANK/OPG
system beyond bone remodeling: Involvement in breast cancer and clinical perspectives. J
Exp Clin Cancer Res CR. (2019) 38(1):12. doi: 10.1186/s13046-018-1001-2

48. Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK axis in
immunity-implications for pathogenesis and treatment of bone metastasis. Front
Immunol (2022) 13:824117. doi: 10.3389/fimmu.2022.824117

49. Francisconi CF, Vieira AE, Azevedo MCS, Tabanez AP, Fonseca AC, Trombone
APF, et al. RANKL triggers treg-mediated immunoregulation in inflammatory osteolysis.
J Dental Res (2018) 97(8):917–27. doi: 10.1177/0022034518759302
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