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Background: Testicular Germ Cell Tumors (TGCT) are the most common cancer

among young adult men. The TGCT histopathology is diverse, and the frequency

of genomic alterations, along with their prognostic role, remains largely

unexplored. Herein, we evaluate the mutation profile of a 15-driver gene panel

and copy number variation of KRAS in a large series of TGCT from a single

reference cancer center.

Materials and methods: A cohort of 97 patients with TGCT, diagnosed at the

Barretos Cancer Hospital, was evaluated. Real-time PCRwas used to assess copy

number variation (CNV) of the KRAS gene in 51 cases, and the mutation analysis

was performed using the TruSight Tumor 15 (Illumina) panel (TST15) in 65

patients. Univariate analysis was used to compare sample categories in relation

to mutational frequencies. Survival analysis was conducted by the Kaplan–Meier

method and log-rank test.

Results: KRAS copy number gain was a very frequent event (80.4%) in TGCT and

presented a worse prognosis compared with the group with no KRAS copy gain

(10y-OS, 90% vs. 81.5%, p = 0.048). Among the 65 TGCT cases, different variants

were identified in 11 of 15 genes of the panel, and the TP53 gene was the most

recurrently mutated driver gene (27.7%). Variants were also detected in genes

such as KIT, KRAS, PDGFRA, EGFR, BRAF, RET, NRAS, PIK3CA, MET, and ERBB2,

with some of them potentially targetable.

Conclusion: Although larger studies incorporating collaborative networks may

shed the light on the molecular landscape of TGCT, our findings unveal

the potential of actionable variants in clinical management for applying

targeted therapies.
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1 Introduction

Testicular germ cell tumors (TGCTs) are relatively rare tumors,

accounting for about 1.7% of all cancers (1). However, they are themost

commonmalignant tumors among men aged between 15 and 44 years

worldwide (1). TGCTs are highly curable, and since the employment of

platinum-based combination chemotherapy regimens began (2, 3), the

overall cure rates have dramatically increased to over 95% across all

disease stages, however cure rates for IGCCCGpoor risk disease remain

less than 80% (4–8). Ten to twenty per cent of patients with advanced

disease are resistant to cisplatin and present with a less favorable

prognosis, with relapses requiring second-line treatment (9, 10).

The process of gonocyte maturation and cell differentiation

driven by mutations, associated with the microenvironment

interaction, leads to the formation of in situ germ cell neoplasms

(GCNIS) (11, 12). These precursor cells remain senescent until

puberty and develop into TGCT under the effect of sex hormones

and additional genetic changes (11). The TGCTs are subclassified

into two major histological groups: seminomas and non-

seminomas. Seminomas are formed by cells similar to GCNIS,

with suppressed differentiation, high sensitivity to chemotherapy

and radiotherapy, and better prognosis, whereas non-seminomas

have different histologies due to greater differentiation (embryonic

carcinoma, teratoma, yolk sac tumors, and choriocarcinoma),

resistance to radiotherapy and more aggressive behavior (13).

The genetic composition of TGCTs portrays the embryonic

characteristics of their precursor, the primordial germ cells (PGCs).

The molecular biology of TGCTs is not still fully elucidated, despite

intensive research on the molecular mechanisms involved in their

development (14, 15). Copy number alterations are the most

consistent genomic alterations in all histological subtypes.

Aneuploidy is considered an important biomarker for TGCT, with

the number of chromosomes varying between 50 and 70, and gains in

the short arm of chromosome 12 (isochromosome 12p) (16–20).

Recurrent somatic mutations in TGCTs are low, with the

exception of variants in KIT and KRAS oncogenes that are

frequently described (21, 22). KIT and KRAS mutations are reported

more frequently in seminomas when compared with non-seminomas

(23–25). Moreover, high levels of expression and KRAS gene

amplification have been described as mutually exclusive events in

TGCTs (26, 27). The molecular profile of Brazilian TGCT is poorly

explored, and themutational landscape remains unknown (15, 28–30).

Importantly, a molecular understanding of TGCTs might unveil

signatures that will guide a more specific and effective treatment, as

well as medical decision-making. Therefore, the present study aims

to evaluate the mutational profile of driver genes and KRAS copy

number variation in Brazilian TGCT patients.
2 Materials and methods

2.1 Study population material

We performed a retrospective cohort study of all TGCT

Brazilian patients who attended Barretos Cancer Hospital. This
Frontiers in Oncology 02
study was approved by the Barretos Cancer Hospital IRB under

Protocol No. 784/2014. Clinicopathologic data were retrieved from

the electronic medical records, including data on age, date of initial

diagnosis, histological type, pathologic diagnosis, overall survival,

and treatment history with chemotherapy. All information that

could identify the patients was collected and managed using

REDCap electronic data capture tools hosted at Barretos Cancer

Hospital (31, 32), to ensure the confidentiality of the data and the

anonymity of the patients. REDCap (Research Electronic Data

Capture) is a secure, web-based software platform designed to

support data capture for research studies, providing 1) an

intuitive interface for validated data capture; 2) audit trails for

tracking data manipulation and export procedures; 3) automated

export procedures for seamless data downloads to common

statistical packages; and 4) procedures for data integration and

interoperability with external sources.

Formalin-fixed paraffin-embedded (FFPE) tumoral tissues were

retrieved by macrodissection guided by hematoxylin and eosin-

stained slides. The macrodissection of mixed tumor cases was

performed combining all histology subtypes in the sample. All the

samples are from primary tumor before any systemic treatment

exposure and were reviewed by an independent pathologist.

Biological samples of fresh frozen tumoral tissue were retrieved at

the Biobank of the Barretos Cancer Hospital (BB-BCH), ensuring

the quality of processes and the suitability of the biospecimens for

research (33).

For mutational analysis, among the 183 cases diagnosed with

TCGT feasible for inclusion in this study, 75 did not meet the

quality control criteria for DNA extraction (minimum 70% tumor;

maximum 30% necrosis); so 108 cases had their genetic material

extracted. After the multiplex PCR for the GAPDH gene, used as a

quality control for FFPE samples, 12 cases did not present intact

and good quality DNA and, for this reason, could not proceed to the

preparation of libraries for sequencing. Of the 96 samples that went

on to prepare libraries, 32 did not have their targets amplified.

Ultimately, only 65 cases were included for the Next Generation

Sequencing (NGS) variant identification analyses. For Copy

Number Variation (CNV) analysis for KRAS, among the 183

cases diagnosed with TCGT and feasible for inclusion in this

study, 66 cases did not have fresh frozen tissue samples available

in the Biobank. Out of 117 cases with available samples, seven post-

chemotherapy cases were excluded. Among the 110 cases feasible

for inclusion in this study, 59 did not meet the quality control

criteria for DNA extraction (minimum 70% tumor; maximum 30%

necrosis). Ultimately, only 51 cases were included for the CNV

analysis for KRAS gene. The cases selection flowchart is presented

in the Figure S1.
2.2 DNA isolation and integration analysis

FFPE samples were kept in the stove for 20 min at 80°C. The

rehydration of the sample was then performed by incubation with

decreasing alcohol percentages (100, 70, and 50% ethanol) for 1 min

at room temperature (RT). After that, samples were left in milli-Q
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H2O until the extraction step. Tumor DNA from FFPE was

extracted using QIAamp DNA FFPE Tissue Kit (Qiagen),

following the manufacturer’s protocols as previously reported

(28). Tumor DNA samples were quantified using Qubit® 2.0

Fluorometer technology (Invitrogen). A multiplex PCR for

GAPDH gene was used as quality control for FFPE samples, and

those with amplifications of longer fragments (200bp, 300bp, and

400bp) (34) were considered eligible for NGS workflow.

Amplifications were performed with a final volume of 30 µL,

containing 1.5 mM MgCl2 (Invitrogen), 0.2 mM dNTPs

(Invitrogen), 0.133 µM of each primer, 1 unit of Taq DNA

Polymerase (Invitrogen), and 50 ng of tumor DNA. The reactions

were performed in a ProFlex thermocycler (Thermo Fisher

Scientific) using the following amplification parameters: 94°C for

4 minutes, 35 cycles of 94°C for 1 minute, 56°C for 1 minute, 72°C

for 1 minute, and a final extension of 72°C for 7 minutes. The

amplified DNA was assessed on a 2% agarose gel and only samples

with 200 bp or more were accepted for further preparation of

sequencing libraries for mutation analysis.

Tumor DNA from fresh frozen tissue samples was extracted

using the DNeasy Blood and Tissue kit (Qiagen® Hilden-Germany),

following the manufacturer’s instructions, and by Biobank Barretos

procedures (NEUBER et al., 2021). DNA was quantified using

NanoDrop™ Spectrophotometer (Thermo Scientific).
2.3 Copy number variation analysis of
KRAS gene

For CNV analysis (n=51), a specific TaqMan assay for the KRAS

gene (Hs02739788_cn—Thermo Fisher Scientific) was used. The

reference gene Ribonuclease P (RNAse P 4403326—Thermo Fisher

Scientific), located on chromosome 14, is known to contain two

copies in the human genome and was used to calculate the number

of copies of the target gene. The TaqMan® KRAS Copy Number

Assay contained two primers and an FAM™ dye-labeled MGB

probe to detect the target genomic DNA sequence; the Ribonuclease

P reference assay contained two primers and a VIC® and

TAMRA™ dye-labeled probe to detect the genomic DNA

reference sequence. As controls for KRAS copy number, DNA

from the GCT cell line (NTERA-2), which contains five copies of

KRAS and a normal blood sample, which contains two copies, were

used. The qPCR reactions were performed using 20 ng of DNA, 10

mL TaqMan Genotyping Master Mix (Thermo Fisher Scientific), 1

mL of probes and region-specific primers and controls, and

nuclease-free ultrapure water in a total volume of 20 mL. The
copy number variation assays were performed simultaneously

with the reference assay in a qPCR duplex using QuantStudio 6

equipment (Thermo Fisher Scientific) and cycling with an initial

temperature of 95°C for 10 minutes, followed by 40 cycles of 95°C

for 15 seconds, and 60°C for 1 minute. The Ct values of each

reference sample and gene were exported to the CopyCaller™

software (Applied BioSystems, USA), in which a comparative Ct

quantification (DDCt) analysis of the real-time data was performed.
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The comparative Ct (DDCt) method calculated the difference (DCt)
between the threshold cycles of the target and reference assay

sequences and then compared the DCt values of the test samples

to a calibrator sample (normal blood), which contained a known

number of copies of the target sequence (two copies). All qPCR

reactions were performed in technical triplicates. A variation in the

number of copies of the KRAS gene was considered when the cases

presented a copy number different from two for this gene. Via the

method used, it was not possible to differentiate gain from

amplification, only to define a variation in the number of copies

different from normal (two copies of the KRAS gene).
2.4 Mutational analysis

To evaluate the driver mutations (n=65), the TruSight Tumor

15 panel (TST15 - Illumina) was used, as reported by the

manufacturer’s instructions (35). The panel provides a

comprehensive assessment of 15 driver genes (TP53, KRAS, KIT,

NRAS, BRAF, EGFR, MET, PIK3CA, PDGFRA, AKT1, ERBB2, RET,

GNA11, GNAQ, and FOXL2). For library preparation, targets were

enriched in a multiplex PCR, with an initial input of 20 ng/mL of

DNA, according to the manufacturer’s instructions. After library

preparation, the DNA amplification was verified by electrophoresis.

The libraries were paired-end-sequenced using MiSeq Reagent Kit

v3, 600 Cycles on the Illumina MiSeq instrument (Illumina).

Demultiplexed data and FASTQ files were generated using

BaseSpace software (Illumina).

The reads were aligned with the reference genome (GRCh37/

hg19) using the algorithm BWA-MEM-PAIRED, and Sequence

Alignment Map (SAM) output format files were converted to the

Binary SAM (BAM) format using SAMtools. BAM files were

processed using the Genome Analysis ToolKIT (GATK).

Realignment and variant calling were performed using GATK

HaplotypeCaller and the Freebayes genetic variant detector using

BED–Capture. The annotation of variants was performed using the

Varstation® (36) analysis platform, via the Varstation Annotation

Somatic software.

A customized analysis filter was used, which retained pathogenic

and likely pathogenic variants of uncertain/unknown significance

(VUS) and drug response, as well as those with population frequency

less than 1% (gnomAD, 1000 genomes, ABRaOM); allelic frequency

(VAF) greater than or equal to 3%; vertical coverage (depth) greater

than or equal to 500x in the exonic and splicing regions, and frameshift,

non-synonymous, or stopgain type. Variants leading to loss of function,

“high‐impact” variants (frameshift, nonsense, and canonical splice site

variants), and missense variants were selected. In addition, benign and

likely benign variants were excluded from the analyses.

The manual curation of the variants was carried out using

public databases (Clinvar, IARC TP53, Varsome, COSMIC,

gnomAD, ABraOM, and CGI) for the better classification of the

detected variants according to their effect, pathogenicity, and

frequency in the general population. CGI was also employed to

verify the status of driver variants, and only known variants or those

predicted as drivers in cancer-related genes were retained. The
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variants were classified according to public databases as pathogenic,

likely pathogenic, uncertain significance (VUS), and drug response.
2.5 Statistical analysis

Univariate analysis was used to compare sample categories in

relation to mutation frequencies. For this, the c2 test or Fisher’s exact
test was used, according to the characteristics of the sample. Survival

curves were plotted using the Kaplan–Meier method and events of

interest (death record) were considered for the outcome of overall

survival (OS). Alive patients and those lost to follow-up were

discounted. Univariate comparisons of survival times were

performed using the log-rank test. Statistical analyses were

performed using IBM SPSS Statistics for Windows, Version 2.0

(IBM), and alpha=0.05 with 80% power in a two-tailed hypothesis test.
3 Results

3.1 Clinicopathologic characterization of
TCGT patients

Out of the 97 cases analyzed, the average age at diagnosis was

32.5 years (range, 18-50 years), and most cases (57.7%) were non-

seminomas (Table 1). Among the histological group of non-

seminomatous tumors, 41.2% presented a histology of mixed

tumors. In total, 67% of cases were in the advanced stages of the

disease (stage II and III—AJCC), of which 39.2% were low risk,

according to the IGCCCG risk.

The most used treatment strategy was the bleomycin, etoposide,

and cisplatin (PEB) combination (57.7%). Considering all of the

chemotherapy regimens, 63.9% were responsive and 6.2% were

refractory. The remaining 29.9% corresponds to those who did not

undergo chemotherapy (n = 25) and/or to those who died (n = 4)

before the date set for the first cycle.

The overall survival probability of the analyzed cohort was 91.5%

in the 5-year follow-up period and 83.2% in the 10-year follow-up

period; the overall survival according to AJCC staging, histological

group, IGCCCG risk, and chemosensitivity status were evaluated and

did not differ from the results in the literature (Figure S2).
3.2 CNV analysis for KRAS

In total, 51 cases were analyzed for KRAS CNV, and it was

observed that 41 cases (80.4%) showed at least one copy number gain,

with a variation of three to seven KRAS copies (Figure 1). Non-

seminoma cases showed a non significant trend of greater variation in

the number of copies of the KRAS gene, when compared to

seminoma cases (47.1% vs 33.3%; p = 0.160), and none of the cases

showed loss of copy number.

KRAS copy gain was compared to the clinicopathologicdata of

the TGCT patients, including age, histological group, stage (AJCC),

risk (IGCCCG), chemosensitivity to cisplatin-based treatment, and

overall survival; however, no significant association between KRAS
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CNV status and patient’s features was observed (Table S1).

Regarding overall survival (10-year period), the KRAS copy gain

group presented a worse prognosis compared with the group with

no KRAS copy gain (10y-OS, 90% vs. 81.5%, p = 0.048) (Figure 2).
TABLE 1 Characteristics of patients with TGCT at the Barretos Cancer
Hospital.

Characteristics Patients

n (%)

TGCT 97

Age

< 30 years 49 (50.5%)

≥ 30 years 48 (49.5%)

Histological group

Non-seminoma 56 (57.7%)

Seminoma 41 (42.3%)

Histology

Pure Non-seminoma 16 (16.5%)

Pure Seminoma 41 (42.3%)

Mixed Tumor 40 (41.2%)

Stages (AJCC)

IS 7 (7.2%)

I 25 (25.8%)

II 27 (27.8%)

III 38 (39.2%)

Risk (IGCCCG)

Low (good prognostic) 38 (39.2%)

Intermediate 15 (15.5%)

High (poor prognostic) 12 (12.4%)

N/A 32 (33.0%)

Chemotherapy

PEB 56 (57.7%)

EP 14 (14.4%

TIP 1 (1.0%)

Ignored 26 (26.8%)

Chemosensitivity

Responsive 62 (63.9%)

Refractory 6 (6.2%)

Ignored 4 (4.1%)

N/A 25 (25.8%)
fro
AJCC, American Joint Committee on Cancer; IGCCCG, International Germ Cell Cancer
Collaborative Group.
N/A, Not applicable.
PEB, Bleomycin, Etoposide and Platinum.
EP, Etoposide and Platinum.
TIP, Paclitaxel, Ifosfamide, and Cisplatin.
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3.3 Called variants by next
generation sequencing

Sixty-five cases were analyzed for the presence of variants and a

total of 82,975 variants were initially detected; the variants were

filtered out according to the pipeline, and we identified 73 different

variants (amongst them, pathogenic, likely pathogenic, VUS, and

drug response) (Table S2). Furthermore, after CGI was employed to

verify the variant prediction status, only known variants and/or

predicted drivers in cancer-related genes were maintained. So,

among the 65 cases analyzed for the presence of variants in this

study, 35 cases (53.8%) showed a total of 51 different variants

(known and/or predicted as drivers) that were identified in 11 of 15

genes of the panel.

TP53 alterations were the most common in our cases (27.7%,

n=18), followed by KIT (18.5%, n=12), KRAS (7.7%, n=5), PDGFRA

(7.7%, n= 5), EGFR (6.2%, n=4), BRAF (4.6%, n= 3), RET (4.6%,

n=3), NRAS (3.1%, n= 2), PIK3CA (3.1%, n= 2), MET (3.1%, n=2)

and ERBB2 (1,5%, n=1). No variants were identified on AKT1,

FOXL2, GNAQ, or GNA11 genes in any of the cases (Figure 3).

We further analyzed the variants according to the histologic

group, staging (AJCC), risk (IGCCCG), and chemosensitivity

(Figure 3). The frequency of known and/or predicted driver
Frontiers in Oncology 05
mutations in seminomas was higher (72% of cases with at least

one variant) when compared to non-seminomas (42.5% of cases

with at least one variant) (p = 0.024) (Table S3).

TP53, KIT, and KRAS genes were the three most mutated in our

case series; TP53/KIT and KIT/KRAS genes were mutually

exclusively mutated, except for a non-seminoma case and a

seminoma case, respectively.

Mutations in the TP53 gene were identified more frequently

among non-seminomas when compared to seminomas, and more

than one variant was observed for the same case. Three non-

seminoma cases and one seminoma case, all of which were

chemotherapy-responsive, carried the R248Q variant. The R337C

and R290C variants were observed in more than two cases. A case of

poor prognostic non-seminoma presented three distinct variants,

and another four cases also presented two or more variants

concomitantly (Figures 3A, B; Table S2).

Only one chemotherapy-refractory non-seminoma case

(staging III and intermediate risk) presented two different

variants in the TP53 gene (R158C and C277Y) (Table S2).

Mutations in the KIT gene were identified more frequently

among seminomas when compared to non-seminomas, and more

than one variant was observed in only one case. L576P and A829P

variants were observed in more than one case. One non-seminoma
FIGURE 1

Copy number variations of the KRAS gene compared to clinicopathologic data (histological group, staging, risk and chemosensitivity). Only TGCTs
evaluated for copy number variation are presented (n = 51). Each column represents an individual patient. The dotted line in the center of the figure
separates seminoma and non-seminoma cases. A color scale (blue to red) is used to represent the variation in the number of copies of the KRAS
gene, in which the dark blue color represents the deletion of two copies of this gene (0 copies); light blue the deletion of only one copy; white
represents that there is no loss or gain of copies; and light red to dark red colors represent a gain of copies of this gene (1 to 7 copies).
FIGURE 2

Overall Survival stratified by KRAS copy number in TGCT.
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case with a poor prognosis, a carrier of the N655K variant, died

before the date set for the first cycle of adjuvant chemotherapy, at 20

years old. No variant in the KIT gene was found in chemotherapy-

refractory cases (Figures 3A–C; Table S2).

Mutations in the KRAS gene were identified more frequently

among seminomas when compared to non-seminomas, and four

different variants were observed in five TGCT cases. One non-

seminoma case and one seminoma case, both chemotherapy-

responsive, carried the G12S variant. Two other variants, also on
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the KRAS gene codon 12 (G12R and G12D), were observed in

seminoma cases. The A146T variant was identified in non-

seminoma case (staging III and intermediate risk) (Figures 3A–D;

Table S2).

Analysis comparing the mutational status of genes with

clinicopathologic data revealed that KIT (p = 0.007) was

significantly mutated in seminomas, and EGFR (p = 0.010) in

stage IS. All clinical and molecular comparisons of the other

genes are shown in Table S4.
FIGURE 3

Waterfall plot of the known and/or predicted driver mutation spectrum of Testicular Germ Cell Tumor (TGCT). (A) Plots show the frequency of
samples mutated for seminomas and non-seminomas. The upper panel demonstrates the frequency of mutation for each sample. The left panel
shows the frequency of samples harboring mutations according to the gene. The lower panel indicates clinicopathologic data. (B) Variant distribution
in TP53 gene. (C) Variant distribution in KIT gene. (D) Variant distribution in KRAS gene. All graphs depict a lollipop plot showing identified variants
relative to a schematic representation of the gene. Any position with a mutation is shown with a circle, and the length of the line depends on the
number of mutations detected at that codon. The grey bar represents the entire protein with different amino acid positions (aa). The colored boxes
are specific functional domains. On top of the lollipops, the most frequent variants are annotated as the amino acid change at that specific site.
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We further compared the mutational status with overall

survival, but no significant association was found (Tables S5, 6;

Figure S3).
4 Discussion

The analysis of tumor mutation and KRAS copy number

variation revealed expressive KRAS copy number gain, well-

known variants and potentially targetable variants never

described before in TGCT.

The findings of KRAS copy number gain might be explained due

to the gain of the 12p isochromosome, commonly found in almost all

TGCTs, especially in non-seminomas. KRAS is located in the

12p11.2–p12.1 region of chromosome 12, and its overexpression

seems to be associated with the development of TGCTs (17, 37). In

seminomas, Loveday et al. (17) demonstrated that KRAS copy

number was relatively high, but Shen et al. (18) identified a subset

of seminomas with decreased KRAS copy number. We were not able

to identify statistical differences between seminomas and non-

seminomas regarding KRAS copy number gain, and none of our

cases had loss of copy number. Therefore, the role of the KRAS copy

number in TGCT needs to be explored further. Worse cancer-

specific and overall survival have been associated to KRASmutation

and copy number gain in lung cancer (38, 39). Using cell free DNA

somatic mutation analysis, KRAS mutation and copy number gain

were associated to worse outcomes in pancreatic cancer (40). We

demonstrated a worse prognosis associated toKRAS copy gain when

compared to the group with no gain, and this finding has not been

addressed before in TGCT.

The gain of 12-p occurs in utero at the gonocyte stage and the

development of GCNIS, a TGCT precursor, after birth (41). This

pathogenesis involves the blood–testis barrier, which harbors a

specialized microenvironment and an immunological barrier that

prevents the production of antibodies against meiotic and postmeiotic

germ cells (42). This complex and overprotected microenvironment

might, at least in part, explain why point mutations are rare events in

TGCTs. Although rare, mutationmight occurmainly in the TP53,KIT,

KRAS, BRAF, and NRAS genes (18, 41, 43).

TP53 is one of the most frequently mutated genes in different

types of cancer (44, 45) and variants in TP53 have been identified in

non-seminomas with no changes in seminomas (46). However, the

COSMIC database shows that mutations in TP53 are rare in

TGCTs, with a frequency of 4% considering all histological

subtypes. Here, among the known and predicted driver

mutations, 26% were found in the TP53 gene, which was the

most commonly mutated in our series of cases, mainly in non-

seminomas. Fifteen variants were detected in TP53, and ten of them

(R290C, R158H, G245S, C242Y, C277Y, E171K, R158C, R181H,

R196* and R342*) have not been described in TGCT previously.

Although there were no cases of Li–Fraumeni syndrome in our

dataset, some of the variants found were associated with that

syndrome (R282W, R342*, R196*) in some aspects (47–50). TP53

has been associated to the platinum-resistance mechanism (51), but

we did not find any association, and there is no evident cause for the

high frequency of TP53 in our study.
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KIT mutation is more prevalent in seminomas, and it was the

second most frequently mutated gene among our cases, with almost

all cases being seminomas (23, 25, 52, 53). KIT variants have been

identified in TGCT precursor cells, suggesting that the KIT gene

may be largely responsible for the development of TGCTs, and the

identification of these variants might assist in the diagnosis of the

disease at an early stage (54). We found eight variants of KIT, and it

is noteworthy that the D816V, D820H, and D820Y variants, located

in the same region as other KIT mutations (exon 17), presumably

also encode a constitutively activated protein that confers resistance

to imatinib (55, 56). Addionally, KRAS mutations have been

associated to cisplatin-resistant TGCTs (57), but we did not find

any association in our results. We found four KRAS variants

(A146T, G12D, G12R, G12S) and two NRAS variants (G12A,

G60R), and this is the first time the NRAS G60R variant has been

described. None of the PDGFRA variants identified have been

previously described in TGCT either.

Interestingly, targetable variants were found in genes such as

BRAF, EGFR, and RET. BRAF mutations are rare in TGCT (28, 52)

and the majority of anti-BRAF drugs target V600E variants.

However, we found three cases of BRAF T599I variants, and it

has been suggested that vemurafenib might control cancer, such as

melanoma, even in patients with that variant (58). Four genomic

alterations were detected in EGFR (A822T, R776H, S768N,

T790M), and the T790M variant has been described in advanced

non-small cell lung cancer (NSCLC) as an acquired variant

associated with Tyrosine Kinase Inhibitors (TKIs) resistance (59,

60). A third generation of anti-EGFR drugs has been developed to

overcome this resistance in lung cancer with the T790M variant,

including osimertinib (61). RET inhibitors such as pralsetinib and

selpercatinib have been developed and approved by the FDA to

treat patients with RET alterations (62). We found two different

variants in RET (R912W, T930M), and none of them have been

reported in TGCT before. Although rare, targetable mutations in

TGCT increase the opportunities for precision medicine within the

scenario of the accelerated approval of new drugs, mainly in cases of

refractory disease.

There are limitations to our study, such as the low number of

TGCT cases, the retrospective design, the single institution setting,

the low number of events to analyze survival, and the large number

of mixed tumors. All these limitations increase bias and might lead

to misinterpretation of the results. Additionally, the sequencing

analysis of the presence study was limited tumor tissue, since it was

a retrospective nature of the study and we did not have availability

of blood or normal tissue of the cases. Therefore, we could not

exclude the germline or somatic nature of the variants identified.

The analysis based on important and consolidated databases might

minimize the presence of polymorphisms. However, we found new

variants never described before in TGCT, and we were able to show

targetable variants using a reliable mutational panel. Moreover,

patients with admixed American ancestry, like Brazilian people, are

commonly underrepresented in genomic profile studies, although it

has been increasing (63). The populations previously studied are

mostly European, so the cases in our Brazilian cohort are expressive,

and might bring new insights and generate new hypotheses in

precision oncology.
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In conclusion, the increase in the number of copies of the KRAS

gene is a very frequent event in TGCT, and non-seminomas are

most highly associated with a higher rate of this amplification.

Although point mutations are rare events in TGCTs, relevant gene

variants are identified mainly in TP53, KIT, KRAS, andNRAS genes,

and 40% of the evaluable genes have at least one known and/or

predicted driver variant in one of the 15 genes tested, with TP53

being the most commonly mutated gene. Although larger studies

enrolling collaborative networks might shed light on the molecular

landscape of TGCTas well as limited evidence available for use of

targeted approaches in TGCT, our findings unveil the potential of

actionable variants in clinical management when applying targeted

therapies, and further evaluation of these approaches is necessary.
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