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Objectives: Lung cancer has been widely characterized through radiomics and

artificial intelligence (AI). This review aims to summarize the published studies of

AI based on positron emission tomography/computed tomography (PET/CT)

radiomics in non-small-cell lung cancer (NSCLC).

Materials and methods: A comprehensive search of literature published

between 2012 and 2022 was conducted on the PubMed database. There were

no language or publication status restrictions on the search. About 127 articles in

the search results were screened and gradually excluded according to the

exclusion criteria. Finally, this review included 39 articles for analysis.

Results: Classification is conducted according to purposes and several studies

were identified at each stage of disease:1) Cancer detection (n=8), 2) histology

and stage of cancer (n=11), 3) metastases (n=6), 4) genotype (n=6), 5) treatment

outcome and survival (n=8). There is a wide range of heterogeneity among

studies due to differences in patient sources, evaluation criteria and workflow of

radiomics. On the whole, most models show diagnostic performance

comparable to or even better than experts, and the common problems are

repeatability and clinical transformability.

Conclusion: AI-based PET/CT Radiomics play potential roles in NSCLC clinical

management. However, there is still a long way to go before being translated into

clinical application. Large-scale, multi-center, prospective research is the

direction of future efforts, while we need to face the risk of repeatability of

radiomics features and the limitation of access to large databases.
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Introduction

Lung cancer is one of the most common malignant tumors in

the world and the leading cause of cancer-related death, with a five-

year survival rate of 21.7% (1). Although this figure is higher than

before, lung cancer is still a primary disease threatening human

health. Non–small cell lung carcinoma (NSCLC) is the most

common type of lung cancer, including adenocarcinoma,

squamous cell carcinoma, adenosquamous carcinoma, large cell

carcinoma, and sarcomatoid carcinoma (2). Tumor progression,

prognosis evaluation, and determination of treatment plans are

mainly dependent on the stage of the tumor and the histopathologic

subtype. 18F-fluorodeoxyglucose positron emission tomography/

computed tomography (18F-FDG PET/CT) is a fusion imaging

technique that can reflect the anatomical structure and functional

metabolic information of the lesions simultaneously. It has become

one of the popular diagnostic tools in oncology due to abundant

imaging information and high sensitivity it can provide. The

guidelines of the National Comprehensive Cancer Network

(NCCN) recommend 18F-FDG PET/CT for evaluation of patients

from stage I to stage IV NSCLC and an incidentally detected lung

nodule measuring more than 8 mm (3). In addition, 18F-FDG PET/

CT also shows unique value in the prognosis and therapeutic

response assessment (4–6).

Personalized medicine is the goal of modern cancer treatment,

which aims to link genomic and clinical profiles of individual

patients for more targeted therapies of tumors. Now, we

recognize lung cancer as a molecularly heterogeneous disease and

believe that understanding the link between underlying biology and

clinical behavior is crucial for therapeutic decision-making (7).

There is evidence that medical images can reflect the

heterogeneity of tumors, such as cellular metabolism, necrosis,

cancer-associated fibroblast, and expression of specific receptors
Frontiers in Oncology 02
(8, 9). Elevated glucose uptake is a hallmark of cancer. According to

previous studies, tumor size, histological subtypes, and prognosis of

NSCLC had influences on fluorodeoxyglucose (FDG) uptake (10–

12). The standardized uptake value (SUV) is a semi-quantitative

index reflecting FDG uptake in PET/CT, and the higher SUV was

believed to indicate the biological aggressiveness of tumors (13).

However, it does not always accurately convey tumor responses. A

positive PET finding can be caused by infection or inflammation

(14), while false-negative findings can result from some small

nodules, low cellular density in lesions such as ground-glass

opacity, or low tumor avidity of FDG (15).In the past decade, it

has been recognized that medical images contain more helpful

information that can not be captured by the naked eye but can be

obtained by computer extraction and analysis, leading to better

disease management.

The introduction of radiomics analysis provides a promising

new approach to cancer assessment. Radiomics is the application of

an automatic data characterization algorithm to transform image

data of the region of interest (ROI) into high-dimensional feature

data that can be mined (16). In radiomics analysis, the image

information is quantified for analysis by the computer, which

strengthens the traditional manual diagnosis. A complete

radiomics analysis pipeline involves many steps (17): i)

identifying the clinical question and target patient cohorts, ii)

determining the imaging mode for radiomics analysis, iii)

standardizing image acquisition and reconstruction, iv)

segmenting tumor and defining ROI, v) extracting and selecting

features, vi) building models with different machine learning

algorithms, vii)training and validating the radiomics model.

Figure 1 displays a workflow of radiomics analysis (18). To

facilitate the clinical translation of radiomics, it is necessary to

improve the robustness and repeatability of imaging markers. So

far, many researchers have made efforts to this end. A set of 169
B CA

FIGURE 1

A workflow of radiomics analysis (18). (A) Image acquisition and ROI segmentation. (B) Extraction of radiomic features. (C) Model development.
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radiomics features was standardized by the Image Biomarker

Standardization Initiative (IBSI) (19) so that different radiomics

software can be verified and calibrated.

The term “artificial intelligence” was coined by John McCarthy

in 1955, defined as “the science and engineering of making

intelligent machines” (20). Today, AI is developing rapidly in

many fields, and the definitions in different kinds of literature are

abundant and confusing. The AI mentioned in this review

specifically refers to the virtual branch of medicine (20), that is,

AI technology represented by machine learning (ML) and deep

learning (DL). According to their purposes and how the underlying

machine is taught, ML algorithms can be divided into three

categories: supervised, unsupervised and semi-supervised (21).

Currently, most ML algorithms under the background of

predictive oncology are based on supervised learning. Several

classical ML algorithms include random forest (RF), Support

Vector Machine (SVM), Decision Trees, Naïve Bayes, and k-

nearest Neighbors (22). As the state-of-the-art subcategory of ML,

deep learning is essentially a variant of the artificial neural network.

In deep learning, the research of the Convolution neural network

(CNN) (23) has attracted much attention. CNN is a kind of multi-

layer feed-forward neural network, while low-level image features

are extracted by early hidden layers, and progressively higher

features are learned by successive layers before classification by

different classifiers. Programs have been created to automatically

perform all radiomics analysis tasks from tumor segmentation to

model building using AI (24–27). At present, radiomics-based ML

models (or DL models) are widely developed for whole-process

management of lung cancer: diagnosis, staging, treatment planning,

and prognosis, so on. Some results have reported superior

performance compared to traditional statistical methods or even

better than radiologists.

The primary purpose of this review is to sort out and summarize

the application of 18F-FDG PET/CT radiomics combined with

artificial intelligence in the disease management of NSCLC, as well

as opportunities and challenges.
Materials and methods

A comprehensive search of papers published from 2012 to 2022

was conducted on the PubMed database. The following keywords

and Medical Subject Heading (MeSH) words are used to generate

different searches: “Carcinoma, Non-Small-Cell Lung”[Mesh],

“lung neoplasm” [Mesh], “lung cancer”, “Positron Emission

Tomography Computed Tomography”[Mesh], “Positron-

Emission Tomography”[Mesh], “radiomic*” , “Artificial

Intelligence”[Mesh], “Machine Learning”[Mesh], “Deep Learning”

[Mesh]. We applied the following exclusion criteria: (1) Studies not

aimed at assisting clinical management decision-making of NSCLC,

such as screening, diagnosing, characterizing, predicting outcomes,

or evaluating prognosis;(2)Studies not combinate PET/CT

radiomics and artificial intelligence simultaneously;(3) Studies

focused on methodology and technology of radiomics or AI, such

as image segmentation, image denoising, comparison of feature

selection methods; (4) Articles without original data, such as
Frontiers in Oncology 03
reviews and editorials. No study was excluded due to language

and geographical location. About 127 articles in the search results

were screened and gradually excluded according to the criteria in

Figure 2. Then, this review included 39 articles for final analysis. We

identified several articles at every step of disease management:

Cancer detection(n=8), histology and stage of cancer(n=11),

metastases(n=6), genotype(n=6), treatment outcome, and

survival(n=8).
Results

Cancer detection and characterization

Lung cancer often occurs in the form of pulmonary nodules in

the early stage, with a diameter of no more than 3 cm (28).

Although the wide application of thin-layer CT has greatly

improved the detection rate of pulmonary nodules, accurate

localization and characterization is still a difficult problem for

radiologists, especially when the nodules are very small.

Compared with CT imaging, PET/CT shows a stronger ability to

detect solitary pulmonary nodules. One large cohort study of

patients with tumors reported that FDG-negative sub-centimeter

pulmonary nodules are benign in 98% (29). It is recognized that

integrating AI into radiomics can further reduce the false positive

rate of diagnosis (30, 31). Traditional AI-assisted diagnosis is only

based on CT features, so it is possible to misdiagnose vascular or

non-nodular areas as solitary pulmonary nodules, resulting in a

high false positive rate. Based on the ability of PET imaging to

extract phenotypic and functional tumor heterogeneity

information, predictive models have been established to extract

quantitative features from PET/CT to distinguish benign and

malignant nodules. Almost all studies achieved the best

performance of the model by combining PET and CT features.

Most prediction models for differentiating benign and malignant

pulmonary nodules are developed based on machine learning
FIGURE 2

Flow chart of the study selection process.
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algorithms of SVM. Support vector machine (SVM) is a generalized

linear binary classifier through supervised learning, building the

decision function based on a specific kernel function and the

penalty parameter to avoid over-fitting. It is especially suitable for

the case of a limited sample size. In a retrospective analysis, after

adding delayed PET features, the SVM model shows higher

diagnostic accuracy than the physician evaluation and common

clinical indicators (32).

The deep learning network shows excellent performance in the

prediction model. A study found that the artificial neural network

showed excellent predictive value in estimating the likelihood of

malignancy (AUC 0.981). The sensitivity and specificity

corresponding to the optimal critical point of the ROC curve

were 100% and 93.1%, respectively (33). Some studies try to

realize automation from the definition of regions of interest, a

high-resolution network (34) is proposed to automatically detect

and classify pulmonary nodules without any stride or pooling to

retain the high-resolution imaging features.

Not only lung cancer but also some benign diseases have

high FDG uptake, such as granulomatous disease and

inflammatory pseudotumor. Zhang et al. (35) reported that the

SurfaceVolumeRatio of the CT-radiomics features and SUVpeak of

the PET metabolic parameters have significance in differentiating

benign and malignant lung lesions. And SurfaceVolumeRatio has a

unique ability to distinguish granulomatous lesions from

inflammatory pseudotumors. Sarcoidosis and lymphoma often

present similar features on PET/CT, such as severely swollen

lymph nodes and hypermetabolic changes involving multiple

systems throughout the body. A study differentiates sarcoidosis

and lymphomas with seven different feature selection approaches

and four different ML classifiers. At the lesion level, they found
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highly accurate signatures to create models to differentiate cancer

vs. sarcoidosis (AUC 0.94) and Hodgkin vs. diffuse large B-cell

lymphoma (AUC 0.95) (36). In a more extensive cohort

retrospective study (37), the researchers used a CNN to

automatically locate and classify PET uptake patterns in lung

cancer and lymphoma. It is confirmed that the addition of the

atlas information (AUC 0.99) was the best feature combination,

which performed better compared with the PET/CT with maximum

intensity projection combination (P <0.001). We summarized the

main findings on lung nodule prediction of malignancy in Table 1.
Histology and staging

NSCLC is a group of heterogeneous diseases, of which lung

adenocarcinoma and lung squamous cell carcinoma are the most

common subtypes. Different subtypes of NSCLC have different

phenotypic and biological characteristics, leading to significant

differences in disease progression and prognosis (7). Hence, it is

necessary to make different treatment plans for different subtypes.

The gold standard of histological classification is pathological

evaluation. At present, many techniques can be used for tissue

diagnosis and the preferred choice is image-guided needle core

biopsy (38). Unfortunately, as an invasive examination, the

operational risks of biopsy are inevitable, including a series of

complications such as infection. Moreover, the spatio-temporal

pathological heterogeneity of tumors limits the ability to capture

biodiversity or disease evolution in a single biopsy (39). By contrast,

the extraction of quantitative radiological features from non-

invasive imaging can reflect a wealth of information about

genotype, tumor microenvironment, and sensitivity to treatment
TABLE 1 Main findings on lung nodule prediction of malignancy.

Aim Reference Studies
type

Data
set

Number
of
features

Model Validation External
testing

Results

Detection of pulmonary nodules Zhao et al.,
2015 (31)

Single center,
retrospective
analysis

219 6 SVM Ten-fold
cross
validation

None sensitivity
0.956

Scott et al.,
2019 (33)

Single center,
retrospective
analysis

125 6 ANNs Split sample
(40)

None AUC 0.98

Chen et al.,
2017 (32)

Single center,
retrospective
analysis

85 Unknown SVM Five-fold
cross
validation

None AUC 0.91

Distinction of lymphoma from
sarcoidosis

Lovinfosse,
et al., 2022
(36)

Single center,
retrospective
analysis

420 8 ML(RF,SVM,NB,
logistic regression)

Five-fold
cross
validation

None RF model
(AUC 0.94)

Localization and uptake
classification of lung cancer and
lymphoma

Sibille et al.,
2020 (37)

Single center,
retrospective
analysis

629 5 CNN Split sample None AUC 0.988

Differentiation of benign and
malignant lung lesions

Zhang et al.,
2019 (35)

Single center,
retrospective
analysis

135 17 SVM Five-fold
cross
validation

None AUC 0.887
fr
NB, naive bayes; RF, random forest; SVM, support vector machine.
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(17, 40). Unlike most previous studies that explored only one

model, recent studies compared the combination of different

feature selection methods and machine learning algorithms to

build models and evaluate the best performance (41). The RF

model and SVM model performed well in many studies, and deep

learning is superior to all traditional machine learning. Han et al.

extracted 688 features from each ROI, and finally selected the top 50

features of each feature selection method for analysis. The best

performance of subtype classification was achieved when linear

discriminant analysis (AUC 0.863) and SVM (AUC 0.863)

classifiers were combined with the L2,1NR feature selection

method. In addition, they evaluated the VGG16 deep learning

model based on transfer learning, outperforming all traditional

machine learning algorithms (AUC 0.903) (42). Zhou et al.

evaluated five feature selection methods and nine classification

methods, the gradient boosting decision tree and the RF was

considered optimal classification methods for the PET and CT

datasets, respectively (43). Some studies have shown that the ability

of the model to distinguish histological subtypes can be further

improved by combining clinical features and tumor markers (44).

Zhao et al. use the Boruta algorithm to determine an optimal subset

of 13 features, including two clinical features(sex and smoking

history), two laboratory indicators(CEA and SCCA), and nine PEF/

CT radiomic features (38). The clinical features they included were

the same as those of Ren et al (44), but there were differences in

laboratory indicators. Ren et al. proposed that SCCA and

CYFRA21-1 were statistically significant, while CEA levels were

not statistically different between adenocarcinoma and squamous

cell carcinoma patients.

The TNM staging system is a standard tool for evaluating the

primary tumor, regional lymph node metastasis (LNM), and distant
Frontiers in Oncology 05
metastasis (45). In previous work, the CNN algorithm was

developed and tested to distinguish T1-T2 from T3-T4 lung

cancer on PET/CT images, achieving 69% accuracy, 70% recall

and 67% specificity in the test set (46). Recently, Kasinathan et al.

proposed a Cloud-based Lung Tumor Detector and Stage Classifier

based on PET/CT images. The model achieved an average

classification accuracy of 99.1% and an average accuracy of 98.6%

(47). We summarized the main findings on histology and staging

in Table 2.
Metastases

NSCLC is usually accompanied by metastasis of mediastinal

and hilar lymph nodes, and the identification of LNM significantly

affects the staging, prognosis and treatment. Yin et al. developed a

classification method based on SVM to improve the diagnostic

performance of LNM. They converted the predictive model

including the optimal feature SURblood into scoring rules to help

clinicians make decisions (48). To solve the time-consuming

problem caused by manual localization of nodules in previous

studies, Wallis et al. used a U-Net to automatically identify

candidate regions on PET/CT images and a 3D CNN model to

classify regional lymph nodes. Through further fine-tuning the

model using transfer learning, their model achieved good

performance on test sets of different scanners (49).

Furthermore, there is also great clinical significance in the

distinction of second primary lung cancers from pulmonary

metastases because of the vastly different survival outcomes

between them (50). D’Arnese et al. proposed LuCIFEx, a fully

automated three-stage pipeline for the characterization of NSCLC.
TABLE 2 Main findings on histology and staging.

Aim Reference Studies
type

Data
set

Number of
features

Model Validation External
testing

Results

Histology Han et al., 2021
(42)

Single center,
retrospective
analysis

1419 50 10 ML classifiers and 1 DL
classifier (VGG16)

Ten-fold cross
validation

None VGG16 (AUC
0.903;
accuracy 0.841)

Zhou et al., 2021
(43)

Single center,
retrospective
analysis

769 Unknown 9 ML classifiers Ten-fold cross
validation

None GBDT-GBDT
(AUC 0.897)
GBDT-RF (AUC
0.839)

Zhao et al., 2022
(38)

Single center,
retrospective
analysis

120 13 10 ML algorithms Split sample None SVM model
(AUC 0.876)
RF model (AUC
0.863)

Hyun et al., 2019
(41)

Single center,
retrospective
analysis

396 44 5 ML algorithms Random
sampling

None LR model (AUC
0.859)

Staging Kirienko et al.,
2018 (46)

Single center,
retrospective
analysis

472 Unknown CNN Five-fold cross
validation

None AUC 0.68;
accuracy 0.69

Kasinathan et al.,
2022 (47)

Single center,
retrospective
analysis

94 Unknown Cloud-LTDSC Ten-fold cross
validation

None accuracy 0.97
LR, logistic regression; GBDT, gradient boosting decision tree.
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Similarly, LuCIFEx pipeline automatically segmented lesions on

PET/CT images without manual annotation, and output the results

through RF classification method after calculating the accurate

radiation features. The accuracy of their model in distinguishing

primary NSCLC from lung metastases is 92.3 ± 1.9% (51).
Genotype

Over the past two decades, the emergence of various targeted

therapies and immunotherapies has provided more individualized

treatment decisions for patients with advanced NSCLC. The

diagnosis of tumors at the molecular level is crucial for the

accurate determination of targeted therapy. Different driver

mutations have been identified in NSCLC, including oncogenic

mutations in epidermal growth factor receptor (EGFR), anaplastic

lymphoma kinase (ALK), BRAF, ROS1, and MET (52). If feasible,

NCCN recommends that eligible patients with metastatic NSCLC

be tested for molecular and biomarkers of disease-related mutations

before starting treatment (1).

Early identification of EGFR mutational status is important before

tyrosine kinase inhibitors treatment. There have been conflicting results

that 18F-FDG uptakes may not be a reliable marker for predicting

EGFR mutation status (53, 54). Present studies have validated that it is

more convincing to use some PET/CT radiological features to predict

EGFR mutation state (55, 56). In one large multi-center study (57), a

small-residual-convolutional-network model was proposed to

distinguish EGFR-mutant type from wild type, and the deep learning

score (DLS) performed well with the AUC of 0.81 in the external test

cohort. There was apparent heterogeneity in clinical characteristics and
Frontiers in Oncology 06
image acquisition because the patient cohorts came from different

institutions. However, this could be regarded as an advantage, because

this heterogeneity can avoid the possibility of over-fitting caused by a

specific patient cohort or imaging parameters to some extent, resulting

in a more robust and portable model. A similar DLS was also used to

predict programmed death-ligand 1(PD-L1) status, which is the

checkpoint target determined by immunohistochemistry. It was

shown that the PD-L1 DLS significantly discriminated between PD-

L1 positive and negative patients (AUC≥0.82 in the training, validation,

and two external test cohorts) (58).

Identifying EFGR mutation subtypes is essential to guide more

accurate personalized treatment. Increasing evidence has

demonstrated that patients with E19 del mutation have a higher

response to EGFR tyrosine kinase inhibitors (TKIs) treatment than

those with E21 mis mutation, and have longer survival time (59).

Liu et al. extracted and selected two sets of PET/CT radiomic

features to identify E19 del mutation or E21 mis mutation, the AUC

of radiomics features of the two groups is 0.77 and 0.92 respectively

(60). The main clinical tools for detecting ALK rearrangement

include immunohistochemistry and fluorescence in situ

hybridization. Chang et al (61). firstly proposed a novel ML

model to predict the ALK mutation status based on PET/CT

images. They also confirmed that age and pleural effusion were

independent predictors. The PET/CT-clinical combined model has

a significant advantage in predicting the ALK mutation status, with

the highest AUC value (0.88) in the test group. In addition, another

study has successful ly predicted the tumor immune

microenvironment phenotype of NSCLC based on the PET/CT-

clinical combined model (62). We summarized the main findings

on genotype in Table 3.
TABLE 3 Main findings on genotype.

Aim Reference Studies
type

Data
set

Number of
features

Model Validation External
testing

Results

EFGR mutation status,
subtypes

Liu et al.,
2020 (60)

Multi-center,
retrospective
analysis

148 10 XgBoost 3-fold cross
validation

None general EGFR
mutation (AUC 0.87)
E19 del mutation
(AUC 0.77)
E21 mis mutation
(AUC 0.92)

Nair et al.,
2021 (56)

Single center,
retrospective
analysis

50 14 LR LOOCV* None AUC 0.87

Mu et al.,
2020 (57)

Multi-center,
retrospective
analysis

616 Deeply learned
features(N=256)

SResCNN Split sample Yes AUC 0.81

Measurement of PD-
L1 status

Mu et al.,
2020 (58)

Multi-center,
retrospective
analysis

697 Deeply learned
features(N=256)

SResCNN Split sample Yes AUC 0.82

Predicting TIME
profiles

Tong et al.,
2022 (62)

Single center,
retrospective
analysis

221
+39

9 Multivariate
regression

Split sample Yes AUC 0.932

Predicting ALK
rearrangement status

Chang et al.,
2021 (61)

Single center,
retrospective
analysis

526 25 LASSO 100-folds
LGOCV

None AUC 0.88
ALK, Anaplastic lymphoma kinase; LOOCV, the leave-one-out cross-validation; LASSO, Least absolute shrinkage and selection operator; LGOCV, leave-group-out cross-validation; SResCNN,
small-residual-convolutional-network; TIME, The tumor immune microenvironment.
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Treatment outcome and survival

One goal of radiomics is to construct models for predicting

treatment response and prognosis from medical images in the

context of tumor characteristics. Radiological criteria are usually

used as a substitute for pathology to evaluate the response of tumor

treatment, including the definitions of complete response, partial

response, stable disease, and progressive disease (63). The

evaluation of the efficacy of World Health Organization (WHO)

criteria or Response Evaluation Criteria in Solid Tumors (RECIST)

was entirely based on the anatomical size of the tumor. Since

nuclear medical imaging can provide information on metabolic

activity other than anatomical imaging, PET/CT is particularly

valuable in evaluating tumor treatment response (64). PET

Response Criteria in Solid Tumors (PERCIST 1.0) provides a

systematic and structured method for assessing response to

therapy in cancer patients with 18F-FDG PET (65).

In the field of radiomics, several studies have been published

to evaluate the response to radiotherapy or immunotherapy based

on ML algorithms, but most of them are based on CT images (66).

Yoo et al. firstly constructed an RF model by extracting texture

features from PET/CT images to assess the neoadjuvant

concurrent chemoradiotherapy (CCRT) response of patients

with stage III NSCLC. The pathological complete response after

neoadjuvant CCRT is an independent prognostic factor for

recurrence-free survival (RFS), and overall survival (OS) in

NSCLC (67). In comparison with PET parameters and physician

reporting, the ML model had a significantly higher accuracy of

93.4% (p < 0.05) (68).

Stereotactic body radiotherapy (SBRT) is now a standard of care

option for patients with NSCLC, especially those not candidates for

surgery. In some previous studies, the radiomics features used to

build models differed significantly, which may be attributed to

different patient cohorts, scanners, and segmentation/intensity

discretization schemes (69). These radiomics features that were not

in conformity with the IBSI standardization framework were not

repetitive and comparative. It was demonstrated that the ComBat

harmonization method (70) could coordinate the radiomics features

derived from different acquisition and reconstruction parameters,

including PET, CT and MRI imaging of NSCLC, nervous system and

cervical cancer (71). Dissaux et al. applied this algorithm to a multi-

center study, and by combining one feature from PET, and one from

CT, the best-performingmodel was obtained, reaching a sensitivity of

100% and a specificity of 96% (72).

The European Society for Medical Oncology (EMSO)

recommends that NSCLC patients treated with radical intent

should be followed for treatment-related complications and

detection of treatable relapse (73). Ahn et al. established ML

models to improve clinical recurrence risk stratification, and the

contrast and busyness texture features from neighborhood grey-

level difference matrix were proved to be the best two predictors

(74). A multi-center study compared multiple feature selection

methods and ML classification algorithms, constructing a risk-

stratification model for predicting recurrence, RFS and OS (75).
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sets and provide more accurate results than traditional Cox

proportional-hazards models. Another multi-center study

explored the relationship between tumor immune status and RFS

and OS in patients receiving immunotherapy through deep learning

(76). Most of the current work is based on RFS and OS, the two

leading indicators to be output as the results of prediction models.

Although these studies have achieved varied success, they have

focused on predicting the binary results at specific time points.

Huang et al. extend features extracted with the CNN to the

prediction of survival as a continuous outcome by incorporating

the random survival forest model, which outperformed

corresponding CT-only and PET-only models (77). We

summarized the main findings on treatment outcome and

survival in Table 4.
Discussion

Radiomics has sprung up rapidly in the past decade, and

developing reliable computer-aided diagnosis systems based on

AI has been recognized as an important research field in medical

imaging. Although radiology has been used in many diseases, lung

cancer is the most widely studied and characterized malignant

tumor so far (78). This review aims to introduce and summarize

the published literature on the subject of PET/CT radiomics

combined with AI in the field of NSCLC, including tumor

detection, histology, staging, treatment response assessment,

prognosis prediction, and prediction of recurrence and metastasis.

An exciting news is that most of the models developed in these

works performed well, with predictive performance comparable to

or even better than that of human experts, which confirms that the

hope is feasible to apply AI to medical images to assist radiologists

in improving diagnostic accuracy and efficiency.

However, none of them has been applied to a certain scale of

clinical trials, which means there is little high-quality evidence that

the work of clinicians or the disease outcomes of patients have

been improved.

The process of model building, training, verification, and testing

is essential before moving on a technology to a clinical trial. After

training a ML or DL model, a validation set is generally used for

guiding the optimization of the parameters. The cross-validation

method and random sampling are most commonly used to separate

validation sets. Previous studies have reported that the performance

of the training set and validation set of classifiers is generally

optimistically biased under a limited sample size (79). To evaluate

the real performance of the model in unknown situations, an

independent test set is necessary, which was not learned by the

model during the training process, preferably external (80).

However, most of the published studies so far only contain cross-

validation results, that is, confusing the meaning of verification set

and test set.

Overviewing these works, we only found that one prospective

study cohort was used as an external test cohort to test the model by
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Mu et al. (57), while the rest of the studies are all retrospective. One

of the major reasons may be the long time-taking and great

difficulty of prospective study design.

A large enough training sample size is crucial for developing a

robust machine algorithm, especially deep learning depends on a

large number of data sets (81). However, the available clinical data is

limited. Even though there are some published multi-institution

cohort studies, achieving a smooth flow of data among a wide range

of institutions is difficult. An effective method used by deep learning

developers to solve limited samples is transfer learning, that is, fine-

tuning CNN models pre-trained from natural image datasets to

medical image tasks. It is reported that transfer learning was

generally beneficial in improving the training convergence and

robustness of the CNN model (82).

Although we emphasize the need for multi-center research,

there is a repeatable risk problem for radiology. For example,

different scanning protocols and image reconstruction methods

may lead to limited performance or result deviation of radiomics

models. Selection of reproducible and robust features is an arduous

and prudent work, and there is great heterogeneity between the

radiological features extracted by the current work. Many variables,

including scanner type, scan time, respiratory movements,

reconstruction algorithms, voxel size, etc., may affect the

repeatability of radiomics (69, 83).

There are two iterative reconstruction algorithms commonly

used in PET/CT images: Ordered Subset Expectation Maximization

(OSEM) and Block Sequential Regularized Expectation

Maximization (BSREM). It seems that BSREM shows more

sensitivity towards reconstruction. According to an evaluation by

Schwyzer et al., AI performed significantly better on images with

BSREM than OSEM (84). Another challenge is how to remove the

image noise caused by the inherent characteristics of PET/CT
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different texture feature selection methods to image noise and

blur, and found that the existence of noise reduced the

discrimination performance of all texture features (85, 86).

Some features depend on different segmentation methods, which

also affects the reproducibility and repeatability of radiomics. The

traditional method is manual segmentation, which is undoubtedly

time-consuming and labor-dependent, and variability between and

within observers is inevitable (87). In recent years, automatic and

semi-automatic segmentation techniques have been recommended to

improve efficiency and reproducibility (88). Bi et al. proposed a

recurrent fusion network (RFN) for automatic tumor segmentation

on PET/CT imaging, which progressively fused the intermediary

segmentation results from individual phases to minimize the risk of

inconsistent feature learning. This result allows tumors with uneven

texture to be segmented and consistent segmentation results can be

achieved on various network backbones (26).

A prior article (89) evaluated studies in this field through the

Transparent Reporting of a multivariable prediction model for

Individual Prognosis or Diagnosis (TRIPOD) (90). Common

problems included small datasets, a lack of clinically relevant

comparators, independent testing, and standards for reporting the

studies. Recently, a statement provided a consensus-based reporting

guideline for the Developmental and Exploratory Clinical

Investigations of Decision support systems driven by Artificial

Intelligence (DECIDE-AI) (91). Unlike Tripod-AI, which focuses on

specific research designs, Decision-AI is a reporting guideline for the

evaluation phase for early, small-scale and real-time clinical evaluation

of decision support systems based on AI. As we said, there are very few

AI models that have been put into clinical application in the field of

PET/CT radiomics, this report emphasizes that it is important to

assess actual clinical performance at a small scale after the preclinical
TABLE 4 Main findings on treatment outcome and survival.

Aim Reference Studies
type

Data
set

Number of
features

Model Validation External
testing

Results

Treatment
Response to CRRT

You et al., 2022
(68)

Single center,
retrospective
analysis

430 30 RF 10-fold cross
validation

None accuracy 0.934

Local control after
SBRT

Dissaux et al.,
2020 (72)

Multi-center,
retrospective
analysis

87 2 Multivariate
regression

Split sample Yes sensitivity 1.0
specificity 0.96

Response to
immunotherapy

Park et al.,
2020 (76)

Multi-center,
retrospective
analysis

152 Deeply learned
features

3D CNN 10-fold cross
validation

Yes Spearman rho -0.54

Survival
Predicting
recurrence and
survival

Hindocha et al.,
2022 (75)

Multi-center,
retrospective
analysis

657 34 10 ML
algorithms

10-fold cross
validation

Yes RFS (AUC 0.681)
Recurrence (AUC 0.722)
OS (AUC 0.717)

Predicting the
recurrence risk

Ahh et al., 2019
(74)

Single center,
retrospective
analysis

93 35 5 ML
algorithms

Split sample None RF model (AUC 0.956,
accuracy 0.901)

Predicting
progression and OS

Huang et al.,
2022 (77)

Multi-center,
retrospective
analysis

1168 16 CNN, RF Split sample None progression (AUC=0.876,
accuracy=0.790)
OS (C-index=0.737)
CRRT, concurrent chemoradiotherapy; OS, overall survival; RFS, recurrence-free survival; SBRT, stereotactic body radiotherapy.
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stage and before further large-scale clinical trials. Furthermore, the

report emphasized the role of human in decision-making, and experts

agreed that the variability of patients and users should be considered

when evaluating artificial intelligence systems.

At present, no definitive conclusion can be drawn on which

approach in radiomics and AI should be preferred. Compared with

machine learning, deep learning has more advantages in tumor

segmentation and processing big data sets, but its black box theory

lacks explanation (92). At present, there is no universally accepted

method to test trust in the context of clinical artificial intelligence,

which can help explain why Decision-AI does not include

interpretability and trust issues in its guidelines. In the future,

joint strategic management is needed to improve the clinical

translatability and practicability of radiomics and AI in order to

gain the trust of users (93).

The disease management pattern of NSCLC has been greatly

improved in the past few decades. The introduction of screening

programs for high-risk groups has significantly improved the early

diagnosis and survival rate of NSCLC, unfortunately, more than half

of patients have locally advanced or metastatic diseases (stage III or

IV) at the time of diagnosis (94). From this starting point, clinicians

still face many difficulties. First, under the trend of personalized

medicine, more accurate diagnosis and subtype classification of

tumors are needed. It has been proved that immunohistochemical

markers, such as thyroid transcription factor -1(TTF-1), Napsin A,

CK5/6, P63 and P40, can help to improve the accuracy of histological

diagnosis (95). However, as we have already mentioned, a single

biopsy of a small specimen cannot reflect the whole tumor. By

contrast, PET/CT radiomics has been considered to reflect intra-

tumor heterogeneity. This is especially important for inoperable

patients and large tumors that are inconvenient for histological

evaluation of the whole tumor. On the basis of radiomics,

radiogenomics is gradually emerging. Radiogenomics correlates a

large number of radiomics features with genomic data to reveal the

potential molecular mechanism, providing a promising means of

non-invasive diagnosis at the molecular level (96).

With the successful introduction of molecular markers in the

clinic, targeted therapy and immunotherapy have become

important treatment options, but there are still some limitations

in their development. There is no evidence of targeted therapy to

cure non-small cell lung cancer. Patients treated with EGFR TKIs

will develop drug resistance with long-term use, leading to disease

progression (97). Immunotherapy may achieve a lasting response,

but only a small number of selected patients benefit from it. In

addition, subsequent immune-related adverse events (IrAEs),

including checkpoint inhibitor pneumonia (CIP), have been

widely reported (98). In this case, radiogenomics is expected to

help effective treatment options and avoid expensive treatments

that do not provide survival benefits, as well as predict treatment

responses. In the articles we included in the analysis, there have

been studies that simultaneously associated PET/CT radiomics with

clinical outcomes and genomics. Mu et al. explored the alternative

markers of PD-L1 expression based on PET/CT radiomics. The

results revealed the biological driving force (hypoxia) behind deep

learning and provided non-invasive decision for follow-up

treatment (58). This is a direction of continuing efforts in the
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future, that is, radiogenomics data is expected to provide accurate

diagnosis, tissue classification, treatment guidance and monitoring

for NSCLC patients, so as to achieve more personalized patient care.

Conclusion

Radiomics and artificial intelligence are considered as potential

tools for the management of non-small cell lung cancer in the future,

but the clinical transferability of results is an urgent problem to be

solved. At present, there are several initiatives and recommendations

to regulate the treatment and standardization of research reports. In

the future, multi-center, prospective, larger cohort research is

necessary. To overcome the technical repeatability and

reproducibility defects, the establishment of a large multi-agency

cooperative database covering a variety of imaging protocols and

equipment, clinical environment, and patient characteristics may be

the best way. Considering human factors, future developers should

apply AI based on PET/CT radiomics analysis to more clinical trials

to evaluate the applicability of computer-aided diagnosis systems in

the local clinical environment. Furthermore, derived radiogenomics

is expected to provide new insights into cancer biology, and there is

still a long way to explore to achieve non-invasive decision-making

under accurate medical care.
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