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MRI-based pre-Radiomics and
delta-Radiomics models
accurately predict the post-
treatment response of rectal
adenocarcinoma to neoadjuvant
chemoradiotherapy
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11Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Objectives: To develop and validate magnetic resonance imaging (MRI)-based

pre-Radiomics and delta-Radiomics models for predicting the treatment

response of local advanced rectal cancer (LARC) to neoadjuvant

chemoradiotherapy (NCRT).

Methods: Between October 2017 and August 2022, 105 LARC NCRT-naïve

patients were enrolled in this study. After careful evaluation, data for 84

patients that met the inclusion criteria were used to develop and validate the

NCRT response models. All patients received NCRT, and the post-treatment

response was evaluated by pathological assessment. We manual segmented the

volume of tumors and 105 radiomics features were extracted from three-

dimensional MRIs. Then, the eXtreme Gradient Boosting algorithm was

implemented for evaluating and incorporating important tumor features. The

predictive performance of MRI sequences and Synthetic Minority Oversampling

Technique (SMOTE) for NCRT response were compared. Finally, the optimal pre-

Radiomics and delta-Radiomics models were established respectively. The

predictive performance of the radionics model was confirmed using 5-fold

cross-validation, 10-fold cross-validation, leave-one-out validation, and

independent validation. The predictive accuracy of the model was based on

the area under the receiver operator characteristic (ROC) curve (AUC).
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Results: There was no significant difference in clinical factors between patients

with good and poor reactions. Integrating different MRI modes and the SMOTE

method improved the performance of the radiomics model. The pre-Radiomics

model (train AUC: 0.93 ± 0.06; test AUC: 0.79) and delta-Radiomcis model (train

AUC: 0.96 ± 0.03; test AUC: 0.83) all have high NCRT response prediction

performance by LARC. Overall, the delta-Radiomics model was superior to the

pre-Radiomics model.

Conclusion: MRI-based pre-Radiomics model and delta-Radiomics model all

have good potential to predict the post-treatment response of LARC to NCRT.

Delta-Radiomics analysis has a huge potential for clinical application in

facilitating the provision of personalized therapy.
KEYWORDS

rectal adenocarcinoma, neoadjuvant chemoradiotherapy, MRI, radiomics,
machine learning
1 Introduction

Locally advanced middle-low rectal cancer (LARC) refers to the

rectal tumor less than or equal to 10 cm away from the rectal

margin, which is at stages T3 or T4 or N+, and M0 (1). Because of

the small space between the rectal and pelvic structures and organs,

the absence of serous membrane in the rectum, and the difficulty in

obtaining sufficient circumferential margin (CRM+) during surgery,

LARC has a very high local recurrence rate, low anal preservation

rate, and higher chances of complications and poor quality of life of

patients (2, 3). Therefore, neoadjuvant therapy (NCRT), including

the preoperative chemoradiotherapy, total mesorectum excision

(TME) plus postoperative adjuvant therapy (sandwich model),

and neoadjuvant therapy plus TME (TNT model) have recently

been recommended in the latest edition of the National

Comprehensive Cancer Network (NCCN) guidelines and the

2020 Chinese colorectal Cancer Diagnosis and Treatment

guidelines to treat LARC (1, 4). Compared with the surgery plus

postoperative adjuvant chemotherapy, NCRT significantly reduces

the local recurrence rate, increases the R0 resection rate, and

prolongs the survival of patients with LARC. In addition, NCRT

has a better local control rate and is only associated with fewer

adverse reactions than traditional postoperative adjuvant

therapy (5).
; NCRT, neoadjuvant

g; XGBoost, eXtreme

rsampling Technique;

the curve; TME, total

in; NCCN, National

sion coefficient; TRG,

LCM, gray level co-

rix; GLSZM, gray level

NGTDM, neighboring

02
The pathological complete response rate (pCR) of preoperative

neoadjuvant therapy for patients with LARC is about 20% (6–9). On

the other hand, some studies have shown that the pCR of NCRT

combined with immunotherapy could be higher than 40% and the

rate of patients with apparent/moderate retreatment could be

between 20%-30%, so NCRT has significant downstaging effect.

However, NCRT may also lead to severe adverse reactions, such as

fecal incontinence, gastric emptying disorder, radiation enteritis,

sexual dysfunction, bone marrow suppression, gastrointestinal side

reactions, and neurotoxicity. In addition, a small proportion of

patients do not respond to the treatment (non-sensitive to radiation

and chemotherapy/immune therapy). Therefore, it is crucial to

accurately evaluate the effect of neoadjuvant therapy before

surgery and develop individualized therapy, mainly for patients

who are sensitive to the therapy, while patients with intolerant and

nonresponse to neoadjuvant therapy could be treated with other

therapies and surgery in order to effectively avoid the toxicity of

chemoradiotherapy, which is the focus of current neoadjuvant

therapy for LARC (10, 11).

Radiomics analysis, which extracts a large number of mineable

features from medical images using data characterization algorithms,

has the potential to uncover disease characteristics that are difficult to

identify by human vision alone (12, 13). In the last two years, several

studies have shifted the attention towards constructing novel

radiomics models to predict the NCRT response of LARC. Most

studies have already demonstrated the application of radiomics

features based on pre-therapy MRI for predicting the treatment

response of LARC after NCRT (14–28). Some studies are based

only on T2 MRI (21, 23, 25, 26) or apparent diffusion coefficient

(ADC) map (15), and their multi-modal imaging information is not

validated. These studies (16, 19, 27) have found additional valuable

perspectives using multi-modal MRI analysis. Furthermore, in some

studies (29), tumor regression degree (mrTRG) on MRI was

determined based on changes in tumor size and signal intensity on

T1, T2, and WI to predict the outcome of NCRT. Unfortunately, as
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demonstrated, there is no pathological gold standard. The above

studies only considered the contribution of pre-therapy images and

did not include a comprehensive analysis of images before and after

the therapy. Only a few studies have focused on the radiomics models

at different time nodes (30, 31).

This study aimed to develop and validate the novel models for

predicting LARC response to NCRT based on machine learning

algorithms using radiomics features (T1, T2, and T1+T2) obtained

from pre-therapy and post-therapy MRI images of LARC patients.
2 Materials and methods

The protocol for this retrospective study was approved by the

ethics committee of The First Affiliated Hospital of Hebei North

University and The Fourth Hospital of Hebei Medical University.

Patient approval or informed consent for the review of medical

images was not necessary.
2.1 Patients

The electronic medical database contained data for 105 rectal

adenocarcinoma patients (adenocarcinoma < 10 cm from rectal lower

margin) who underwent the standard long-course NCRT followed by

radical resection between October 2017 and August 2022 at The First

Affiliated Hospital of Hebei North University and The Fourth

Hospital of Hebei Medical University. The inclusion criteria were

as follows: (1) histologically diagnosed with primary rectal

adenocarcinoma; (2) with locally advanced rectal cancer based on

enhanced chest, abdominal, and pelvic CT, rectal MRI, and

transrectal ultrasound, according to the eighth edition of the Joint

Cancer Board (AJCC) (32) before treatment; (3) receiving

neoadjuvant chemoradiotherapy and TME; (4) with preoperative

MRI data. The exclusion criteria were as follows: (1) with incomplete

standard NCRT. Eight patients did not complete the standard NCRT

due to intolerance and rejection; (2) with other malignancies (six); (3)

with no tumor regression grading data (four); (4) with low-quality

key MRI images for analysis (three). In the end, 84 patients met the

inclusion criteria. Further examination revealed that postoperative

imaging data for 7 patients were missing. Finally, 84 patients with

pre-Radiomics of MRI and 77 patients with delta-Radiomics MRI

were included in this study (Figure 1).

According to the time of data collection, we used the last 16 data

collected as an independent validation cohort, and the other data as

the primary cohort for model construction and cross-validation.

Finally, the established pre-Radiomics and delta-Radiomics models

were evaluated again with the validation cohort.
2.2 Neoadjuvant chemoradiotherapy

Patients with LARC received long-course radiotherapy (45–

50Gy, 1.8–2.0 Gy each time, 5 times per week) and concomitant

chemotherapy (capecitabine 1250 mg/m2 twice a day, 5 times per

week). Radical excision (TME) was performed within 8-12 weeks

after the completion of NCRT.
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2.3 Pathological assessment and tumor
regression response

Postoperative TNM restaging was performed according to the

pathological outcomes of the surgically resected specimens to

evaluate the down-staging. Tumor regression response was

evaluated systematically according to tumor regression grade

(TRG) (32). The details were as follows: Grade 0: the tumor

completely retracted, and only calcium salt deposition in the

fibrous tissue showed pathological response; Grade 1,: moderate

retraction. Here, fibrosis was present with a few visible tumor cells

or cell masses; Grade 2: slight retraction. Here, there was no residual

tumor, but strong fibrosis interstitial filling was present; Grade 3: no

regression, extensive residual tumor, and little or no tumor cell

necrosis. TRG0-1 was defined as a good reaction, whereas TRG2-3

was defined as a poor reaction.
2.4 MRI protocol

In this study, all MRI image data were acquired from two time

points: one before NCRT and the other after NCRT. The pre-

Radiomics study was conducted using pre-therapy MRI images, and
FIGURE 1

Flow chart for inclusion and exclusion criteria of the LARC patients.
LARC, Local advanced rectal cancer; nCRT, neoadjuvant therapy;
TME, total mesorectum excision.
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the delta-Radiomics study was conducted using pre-therapy and

post-therapy MRI images. All rectum MRI examinations were

performed using a 3.0-T magnet (Philips Ingenia 3.0T) with a

phased array surface coil. Bowel preparation was performed before

image acquisition. The following pulse sequences covering the

entire tumor were included: (1) axial (perpendicular to the long

axis of the rectum) T2-weighted imaging (T2WI). This was

obtained with a slice thickness of 3.8 mm, repetition time (TR)/

echo time (TE) of 4000 ms/120 ms, a field of view (FOV) of 16 ×

16 cm, matrix size of 320 × 256, echo train length (ETL) of 22, and

the number of excitation (NEX) of 2.
2.5 Tumor segmentation

First, T1 and T2 MRI images were normalized and aligned to

facilitate accurate manual segmentation of tumor areas. Then, the

regions of interest (ROIs) of the tumors were manually segmented

using ITK-SNAP software by two experienced doctors (version

3.8.0; www.itksnap.org). Intraobserver difference of ROI was

performed by calculating the Dice ratio. Segmentations with a

dice ratio of over 0.90 were considered qualified. For those less

than 0.90, the segmentation would be re-evaluated by a third

experienced radiologist. An example of tumor segmentation is

shown in Figure 2.
2.6 Pre-Radiomics and delta-Radiomics
analysis

The image processing and radiomics feature extraction were

performed using the Pyradiomics tool (version 3.0.1) as previously

described (33, 34). A total of 105 three-dimensional Radiomics

features from each tumor volume, including 14 shape-based

features, 18 first-order features, and 73 texture features, were

quantified. The three-dimensional texture features were

calculated using gray level co-occurrence matrix (GLCM)

(N=22), gray level size zone matrix (GLSZM) (N=14), gray level

size zone matrix (GLSZM) (N=16), gray level run length matrix
Frontiers in Oncology 04
(GLRLM) (N=16), and neighboring gray-tone difference matrix

(NGTDM) (N=5).

In the study, two radiomics types were defined: pre-Radiomics

and delta-Radiomics. Pre-Radiomics analysis was implemented

only using the pre-Radiomics features from pre-therapy MRI.

Delta-Radiomics analysis was implemented using the delta-

Radiomics features based on changes in radiomic features before

and after NCRT, which were post-therapy radiomics features

minus the pre-therapy radiomics features. All the imaging

features were standardized for the subsequent machine-

learning processing.

Then, eXtreme Gradient Boosting (XGBoost) was used to

evaluate and select the important features, with the gbtree

booster, a max-depth of 10, a lambda of 1, and an eta of 0.01,

which was implemented using xgboost Python (version 0.82).

Previous studies have also demonstrated that the XGBoost

algorithm could be used for processing structured tabular data

(35, 36). Based on experience, a feature in more than 10 samples or

patients could be more robust for building binary classifiers (37, 38).

Therefore, according to the sample size, an appropriate number of

features were selected to construct the feature dataset. The sample

imbalance was addressed using the Synthetic Minority

Oversampling Technique (SMOTE) (39) to enhance the data and

improve the modeling performance. Finally, the pre-Radiomics and

delta-Radiomcis models were built using the corresponding features

and XGBoost classifier.
2.7 Experimental details

Multiple group comparison experiments were performed. First,

machine learning models were compared using single-model MRI

and multi-modal MRI. The T1, T2, and T1+T2 integrated models

were then constructed. Second, original features-based models and

resampled features-based models using SMOTE were compared.

Then, the pre-Radiomics model and delta-Radiomics model were

compared through cross-validation with 5-fold and 10-fold, leave-

one-out validation, and independent test. All the models were

evaluated using the area under the receiver operator characteristic

(ROC) curve (AUC). The degree of importance and statistical

differences of valuable features and radiomics prediction scores in

post-treatment responses were also assessed.
2.8 Statistical analysis

The relevant statistical analyses and machine learning algorithms

were generated using Python (version 3.6.6). Differences between

differently distributed variables were compared using T-test or

Mann–Whitney U test. XGBoost was performed for feature

selection and modeling. The prediction performance of the model

was evaluated using the area under the ROC curves and mean AUCs

through cross-validation. A Delong test was performed to compare

the performance of the models. P-value < 0.05 was considered

statistically significant.
FIGURE 2

An example of tumor segmentation from T1 MRI. (A) The original
image and tumor ROI; (B) The three-dimensional display of the
entire tumor area.
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3 Results

3.1 Clinical characteristics

Patient demographic characteristics are shown in Table 1. There

was no significant difference in clinical factors between patients

with good reactions and poor reactions to LARC. The reliability of

results from small sample sizes is usually low (40, 41). Among the

84 study lesions for pre-Radiomics analysis, 28 (33.33%) were

classified as having a good reaction, and 56 (66.67%) in the poor

reaction group. For delta-Radiomcis analysis with 77 lesions, 27

(35.06%) were good reactions and 50 (64.94%) were poor reactions.
Frontiers in Oncology 05
3.2 Prediction performance across T1, T2,
and T1+T2 models

Figures 3A–C, 4A–C show the ROC curves for T1, T2, and T1

+T2 models based on pre-Radiomcis and delta-Radiomcis analysis.

In pre-Radiomics analysis, the mean AUC of the T1 model was 0.81,

that of T2 was 0.73, and that of T1+T2 was 0.89. In delta-Radiomcis

analysis, the mean AUC of T1 was 0.77, that of T2 was 0.89, and

that of the T1+T2 model was 0.93. Therefore, T1 is more relevant

than T2 in pre-Radiomics analysis, but T2 is more relevant in delta-

Radiomcis. Based on the Delong test, combining the T1 and T2

models were superior to either model alone (P < 0.05).
TABLE 1 Patient demographic characteristics.

Characteristics Pre-Radiomics Delta-Radiomics

Primary cohort (N=68) Validation cohort (N=16) Primary cohort (N=61) Validation cohort (N=16)

Age

≤60 30 (44.12%) 12 (75.00%) 28 (45.90%) 12 (75.00%)

>60 38 (55.88%) 4 (25.00%) 33 (54.10%) 4 (25.00%)

Gender, n (%)

Male 50 (73.53%) 9 (56.25%) 45 (73.77%) 9 (56.25%)

Female 18 (26.47%) 7 (43.75%) 16 (26.23%) 7 (43.75%)

Tumor location cm

Middle (5-10) 39 (57.35%) 9 (56.25%) 33 (54.10%) 9 (56.25%)

Low (≤5) 29 (42.65%) 7 (43.75%) 28 (45.90%) 7 (43.75%)

Tumor size, cm

≤5 40 (58.82%) 10 (62.50%) 38 (62.30%) 10 (62.50%)

>5 28 (41.18%) 6 (37.50%) 23 (37.70%) 6 (37.50%)

Differentiated degree

moderatel 53 (77.94%) 11 (68.75%) 48 (78.69%) 11 (68.75%)

Low 15 (22.06%) 5 (31.25%) 13 (21.31%) 5 (31.25%)

Serum CEA ng/ml

>5.0 37 (54.41%) 4 (25.00%) 32 (52.46%) 4 (25.00%)

≤5.0 31 (45.59%) 12 (75.00%) 29 (47.54%) 12 (75.00%)

Clinical T stage, n (%)

cT2-3 37 (54.41%) 6 (37.50%) 34 (55.74%) 6 (37.50%)

cT4 31 (45.59%) 10 (62.50%) 27 (44.26%) 10 (62.50%)

Clinical N stage, n (%)

N0 6 (8.82%) 1 (6.25%) 6 (9.84%) 1 (6.25%)

N+ 62 (91.18%) 15 (93.75%) 55 (90.16%) 15 (93.75%)

Response to NCRT, n (%)

Good (0-1) 16 (23.53%) 12 (75.00%) 15 (24.59%) 12 (75.00%)

Poor (2-3) 52 (76.47%) 4 (25.00%) 46 (75.41%) 4 (25.00%)
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3.3 Effect of SMOTE on modeling

Figures 3, 4 show the ROC curves of the original features-based

models and SMOTE-based models. It was found that the

oversampled data using SMOTE method is more accurate than

original imbalanced data. As shown in Figures 3D–F, 4D–F showed

the same diagnostic trends and patterns as before, meaning that the

SMOTE technology has superior data mining potential.
3.4 Valuable radiomics features

Based on the above experiments, we selected T1+T2 as the final

radiomics model using SMOTE. The top-5 valuable pre-Radiomics and

delta-Radiomics features are shown in Table 2. All the valuable pre-

Radiomics features were from T1 MRI and texture features. T2 MRI

had more significance in delta-Radiomics analysis than in pre-

Radiomics. Overall, the delta-Radiomics features were more

important than pre-Radiomcis features. The types of important pre-

therapy imaging features were different from post-therapy features.
3.5 Comparison of the pre-Radiomics
model and delta-Radiomics model

The final pre-Radiomics and delta-Radiomics models were

built. The 5-fold cross-validation, 10-fold cross-validation, and

leave-one-out validation were used to comprehensively evaluate
Frontiers in Oncology 06
the differences in the prediction performance between the two

methods. The prediction performance of the pre-Radiomics and

delta-Radiomics models is shown in Table 3. The predictive

accuracy of the delta-Radiomcis model was higher than that of

pre-Radiomcis model in 5-fold cross-validation (0.96 vs. 0.93), 10-

fold cross-validation (0.95 vs. 0.92), and leave-one-out validation

(0.93 vs. 0.90). The accuracy of all radiomics models was higher

than 0.90, demonstrating their satisfactory good predictability in

predicting the NCRT response of LARC.

A given cutoff prediction value for the models was selected to

evaluate their NCRT prediction accuracy. The prediction probability

of the machine learning models as the radiomics prediction scores to

evaluate the degree of resistance to the treatment response. A higher

score means a higher risk of poor reaction. Figure 5 shows the

prediction scores of the pre-Radiomics and delta-Radiomics between

good and poor response groups in the primary and validation cohort.

Both models accurately distinguished responses to NCRT in the

primary cohort (P < 0.001) and the validation cohort (P < 0.05).
4 Discussion

In this study, we developed and validated the novel MRI-based

pre-Radiomics and delta-Radiomics models to predict the

treatment response of LARC to NCRT. The results showed that

the predictive accuracy of these models was very high and robust,

and delta-Radiomics could be used as an imaging biomarker for

clinical transformation.
A B

D E F

C

FIGURE 3

ROC curves of the pre-Radiomics models with 5-fold cross-validation. (A) T1 pre-Radiomics model; (B) T2 pre-Radiomics model; (C) T1+T2 pre-
Radiomics model; (D–F) The models developed by incorporating the SMOTE method. ROC, receiver operator characteristic; AUC, area under the
curve; SMOTE, Synthetic Minority Oversampling Technique.
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Studies have shown that radiomics models based on

preoperative T1 and T2 and delta-Radiomics have a good

predictive performance of LARC to NCRT (25–27, 30, 31),

consistent with our findings. We also found that to some extent,

integrating the multi-modal imaging data improve the predictive

performance of the radiomics models, and sample balancing with

the SMOTE technique can uncover the pattern of radiomics data.

In addition to building machine learning models, we also found

that the texture features of the images contributes to the prediction
Frontiers in Oncology 07
of NCRT response by LARC, consistent with previous studies (26,

28). Moreover, wavelet transformation may enhance the texture

characteristics of the images, improving the model performance

(42), which may give some hints that this task can be verified in

future studies.

In addition to the MRI-based radiomics research, other

deep learning models have achieved remarkable results (43, 44).

Many other machine learning tools built from other data

modalities to predict LARC response to NCRT have also been
TABLE 2 The top-5 valuable pre-Radiomics and delta-Radiomics features.

Model MRI sequences Type Features* Importance**

pre-Radiomics T1 GLDM Small Dependence Low Gray Level Emphasis 406

T1 GLSZM Zone Entropy 374

T1 GLCM Idn 336

T1 GLSZM Size Zone Non-Uniformity Normalized 304

T1 GLCM Inverse Variance 284

delta-Radiomics T1 Shape Sphericity 492

T2 GLCM Cluster Prominence 338

T2 Shape Sphericity 304

T2 GLDM Dependence Non-Uniformity Normalized 270

T1 First-order 90 Percentile 234
* The mathematical definition of the radiomics features could be obtained at https://pyradiomics.readthedocs.io/en/latest/features.html.
** The important coefficient was defined by XGBoost. The value is directly proportional to the degree of contribution to classifier modeling.
GLDM: gray level dependence matrix; GLSZM: gray-level size zone matrix; GLCM: gray-level co-occurrence matrix.
A B

D E F

C

FIGURE 4

ROC curves of the delta-Radiomics models with 5-fold cross-validation. (A) T1 delta-Radiomics model; (B) T2 delta-Radiomics model; (C) T1+T2
delta-Radiomics model; (D–F) The above models were developed by incorporating the SMOTE method. ROC, receiver operator characteristic;
AUC, area under the curve; SMOTE, Synthetic Minority Oversampling Technique.
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developed (45–48). Medical multi-modal information fusion is an

inevitable development trend in intelligent precision medicine.

Multi-modal data could be used to build more efficient and robust

clinical diagnostic tools through extensive reference to other

successful studies.

This research has potential for future improvement. First, the

sample size was small, which limited the upper limit of data

mining and model building. Although data was obtained from two

centers and adopted a data enhancement algorithm, there is still

some bias. Second, several cross-validation algorithms were used

to evaluate the overall performance of our model. Through 5-fold

cross-validation, 10-fold cross-validation, leave-one-out

validation, and independent validation, the good predictive

performance of the radiomics models was confirmed, which
Frontiers in Oncology 08
explains the generalization of the models to a certain extent. But

the validation of large scale multi-center data cohort is the best

way to evaluate and transform imaging biomarkers. Finally,

because this was a retrospective study, we had no control over

the collected data. Thus, key additional clinical data that could

have enhanced our research outcome could not be included.

Future studies should consider incorporating multi-modal data

to build a better predictive model.
5 Conclusion

This study demonstrated that MRI-based pre-Radiomics and

delta-Radiomics models could accurately predict the post-
A B

DC

FIGURE 5

Comparison of pre-Radiomics and delta-Radiomics prediction scores between good and poor response groups. (A) pre-Radiomics prediction and
(B) delta-Radiomics prediction in the primary cohort. (C) pre-Radiomics prediction and (D) delta-Radiomics prediction in the validation cohort.
TABLE 3 Prediction performance of the pre-Radiomics and delta-Radiomics models.

Model mAUC1* mAUC2** mAUC3*** test AUC

pre-Radiomics 0.93 ± 0.06 0.92 ± 0.06 0.90 ± 0.07 0.79

delta-Radiomics 0.96 ± 0.03 0.95 ± 0.05 0.93 ± 0.06 0.83
fr
*mAUC1 means the mean AUC based on 5-fold cross-validation.
**mAUC2 means the mean AUC based on 10-fold cross-validation.
***mAUC3 means the mean AUC based on the leave-one-out method.
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treatment response of LARC to NCRT. Delta-Radiomcis analysis

may also be used in the clinical diagnosis of LARC for

personalized medicine.
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