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Notch-Jagged1 signaling and
response to bevacizumab
therapy in advanced colorectal
cancer: A glance to radiomics or
back to physiopathology?
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Introduction: The Notch intracellular domain (NICD) and its ligands Jagged-1

(Jag1), Delta-like ligand (DLL-3) and DLL4 play an important role in

neoangiogenesis. Previous studies suggest a correlation between the tissue

levels of NICD and response to therapy with bevacizumab in colorectal cancer

(CRC). Another marker that may predict outcome in CRC is radiomics of liver

metastases. The aim of this study was to investigate the expression of NICD and

its ligands and the role of radiomics in the selection of treatment-naive

metastatic CRC patients receiving bevacizumab.

Methods: Immunohistochemistry (IHC) for NICD, Jag1 and E-cadherin was

performed on the tissue microarrays (TMAs) of 111 patients with metastatic

CRC treated with bevacizumab and chemotherapy. Both the intensity and the

percentage of stained cells were evaluated. The absolute number of CD4+ and

CD8+ lymphocytes was counted in three different high-power fields and the

mean values obtained were used to determine the CD4/CD8 ratio. The positivity

of tumor cells to DLL3 and DLL4 was studied. The microvascular density (MVD)

was assessed in fifteen cases by counting the microvessels at 20x magnification

and expressed as MVD score. Abdominal CT scans were retrieved and imported

into a dedicated workstation for radiomic analysis. Manually drawn regions of

interest (ROI) allowed the extraction of radiomic features (RFs) from the tumor.

Results: A positive association was found between NICD and Jag1 expression

(p < 0.001). Median PFS was significantly shorter in patients whose tumors

expressed high NICD and Jag1 (6.43 months vs 11.53 months for negative

cases; p = 0.001). Those with an MVD score ≥5 (CD31-high, NICD/Jag1
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positive) experienced significantly poorer survival. The radiomic model

developed to predict short and long-term survival and PFS yielded a ROC-AUC

of 0.709; when integrated with clinical and histopathological data, the integrated

model improved the predictive score (ROC-AUC of 0.823).

Discussion: These results show that high NICD and Jag1 expression are

associated with progressive disease and early disease progression to anti

VEGF-based therapy; the preliminary radiomic analyses show that the

integration of quantitative information with clinical and histological data display

the highest performance in predicting the outcome of CRC patients.
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Introduction

Notch signaling is an evolutionary conserved pathway that

plays a critical role in regulating cell-fate differentiation during

embryonic development (1, 2). This pathway also affects

angiogenesis (3), is aberrantly activated in several cancers and

influences malignant proliferation and progression (4). The

activation of the Notch pathway arises when specific ligands, such

as Jagged-1 (Jag1) or Delta-like ligand (DLL)-3 or DLL4, bind to the

Notch transmembrane receptor (1). Jag1 or DLL ligand binding to

Notch receptor leads to the separation of the Notch extracellular

domain by proteases of the ADAM family. Subsequently, the Notch

intracellular domain (NICD) is released by a gamma-secretase

processing and transits to the nucleus where it regulates

downstream gene expression (1).

Notch signaling triggered via Jag1 and DLLs plays a double role

(5, 6): it inhibits DLLs (5) while it activates Jag1 (6). Previous studies

have revealed that Notch signaling can be triggered by soluble forms

of DLLs and Jag1 (7–9), which have different consequences on

tumor progression: while soluble DLLs hinder tumor growth (10),

soluble Jag1 greatly exacerbates the malignant development of

cancer. Jag1 plays a key role in promoting epithelial to

mesenchymal transition (EMT) as well as fostering cancer stem

cell (CSC) phenotypes (8). Our previous data suggested an

association between high tissue levels of NICD and poorer

response to anti-vascular endothelial growth factor (VEGF)

bevacizumab as first-line therapy in metastatic colorectal cancer

(CRC) patients, but not to chemotherapy alone (11). No association

was found between NICD and DLL4 expression within the same

tumor (11). Jag1 might reduce Notch signaling, thereby

enhancing responses to VEGF; such tumors could therefore be

more susceptible to VEGF inhibition or different anti-

angiogenic treatments.

The role of imaging in CRC staging has been recently expanded

by the implementation of non-invasive biomarkers extrapolated

from medical images (12). Radiomics of liver metastases in patients

with CRC showed to predict outcome in patients treated with

FOLFIRI and bevacizumab (13). Recent attention has been given
02
to a multiomics strategy for comprehensive genotype–phenotype

characterization of several oncological diseases (14, 15). Proteomics

analysis can uncover new therapeutic choices, thus reducing the

emergence of drug resistance and potentially improving patient

outcomes (16). However, research mostly focused on radiomics

alone, without attempting to integrate the radiomic signature with

reliable clinical predictors and molecular data (KRAS mutation

status or microsatellite instability) (17). Therefore, predictive

models in CRC patients might be further improved by

multidisciplinary approaches encompassing quantitative metrics

derived from diagnostic studies, which have been more widely

used for other cancer types, instead.

These data prompted us to investigate the expression of NICD,

Jag1, DLL3 and DLL4 and a series of markers potentially involved in

angiogenesis and immune response to bevacizumab therapy.

We also tested whether radiomics could select treatment-naive

metastatic CRC patients responding to bevacizumab, beyond

clinical and NICD/Jag1/DLL expression parameters.
Materials and methods

We cha r a c t e r i z ed a s e r i e s o f t umor s by u s ing

immunohistochemistry (IHC) in tissue microarrays (TMAs) from

111 pre-treatment surgical specimens from patients with metastatic

CRC treated with anti VEGF-therapy bevacizumab in combination

with chemotherapy between 2008 and 2017 at the University

Hospital of Parma (Parma, Italy). Cases were selected based on

the availability of retrospective archival-FFPE (formalin-fixed,

paraffin-embedded) tissue specimens. The study protocol was

approved by the local Ethics Committee (AVEN: Comitato Etico

dell’Area Vasta Emilia Nord). The procedures used in this study

adhere to the tenets of the Declaration of Helsinki. Response to

bevacizumab was assessed by using time point RECIST version 1.1

(i.e. best response at time point).

NICD staining and other parameters were collected; patients’

demographics, primary tumor characteristics and therapy details

are listed in Table 1.
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Tissue microarray construction

The following method was used to construct TMAs.

Hematoxylin and eosin slides were reviewed to select tumor foci

for each patient. A TMA instrument (3DHISTECH) was used to

obtain cylindrical tissue cores from the selected areas of each donor

block. Cores were assembled and embedded in the recipient block.

Each core was 0.6 mm in diameter and its surface measured 0.282

mm2 (2 or 3 high-power fields). The distance from one core to the

other was 0.7 or 0.8 mm. 5 mm thick sections were cut from the

recipient block to perform immunohistochemistry (Figure 1).
Immunohistochemistry

Firstly, the expression of Notch Intracellular Domain (NICD

VAL 1744 clone D3B8, dilution 1:100, Cell Signaling Technology),

Jag1 (JAG1 clone D4Y1R, dilution 1:100 Cell Signaling Technology)

and E-cadherin (clone 36, Ventana Roche, ready-to-use) was

studied and only certain staining patterns were considered

positive. NICD, Jag1 and E-cadherin staining were considered

positive when they showed cytoplasmic and/or nuclear reactivity,

cytoplasmic and/or membrane reactivity and membrane reactivity,
TABLE 1 Patients’ characteristics and tissue microarray expression data.

Characteristics N = 111 (%)

Age (years) 66

Range 32-84

Sex

Male 60 (54)

Female 51 (46)

CEA

<30 57 (51)

>30 41(37)

Unknown 13 (12)

Primary tumor side

Right side 47 (43)

Left side 63 (57)

Unknown 1

Number of metastatic sites

1 51 (46)

≥2 60 (54)

Subsequent chemotherapy

Yes 87 (79)

Received aflibercept 9/87 (10)

KRAS

Mutant 61 (68)

Wild type 29 (32)

Unknown 21

NICD

High 42 (38)

Low 69 (62)

Jag1

Positive 68 (62)

Negative 42 (38)

DLL4

Positive 90 (86)

Negative 14 (14)

Not evaluable 7

DLL3

Positive 79 (81)

Negative 18 (19)

Not evaluable 14

CD4/CD8

(Continued)
TABLE 1 Continued

Characteristics N = 111 (%)

2/1-3/1
1/1

84 (92)
6 (7)

1/2 1 (1)

Not evaluable 20

CD3

Positive 94 (100)

Negative 0

Not evaluable 17

Cyclin D1

High 71 (75)

Low 23 (25)

Not evaluable 17

CD44

High 22 (24)

Low 70 (76)

Not evaluable 19

Mismatch repair protein

MSI 7 (8)

MSS 76 (92)

Not evaluable 28
DLL, Delta-like ligand; Jag1, Jagged-1; MSI, Microsatellite instability; MSS, microsatellite
stable; NICD, Notch intracellular domain.
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respectively. Both the intensity and the percentage of stained cells

were evaluated. The intensity was assessed as 0 = negative, 1 = weak,

2 = moderate and 3 = strong.

Secondly, the absolute number of CD4+ (clone SP35) and CD8

+ (clone SP57) lymphocytes was counted in three different high-

power fields and the mean values obtained were used to determine

the CD4/CD8 ratio. A CD4/CD8 ratio of 2.0 was considered

normal. The assessment of CD3+ (clone 2GLV6), CD44+ (clone

SP37) and CyclinD1+ (clone SP4-R) was given as a percentage of

positive cells (Ventana Roche, ready-to-use).

Thirdly, the expression of DLL3 (clone SP347, Ventana Roche,

ready-to-use) and DLL4 (clone 4A11F8 dilution 1:100 Biorbyt) was

studied. Positivity was defined as ≥25% tumor cells, high expression

of DLL3/DLL4 was defined as ≥75% tumor cells. The intensity was

assessed as 0 = negative, 1 = weak, 2 = moderate and 3 = strong.

Lastly, mismatch repair proteins (MLH1 - clone M1, PMS2 -

clone A16-4, MSH2 - clone G219-1129, MSH6 - clone SP93;

Ventana Roche, ready-to-use) were studied. Negative expression

of one of them was considered proof of microsatellite instability. In

fifteen cases we assessed angiogenesis by counting the microvessels

at 20x magnification (Nikon, Eclipse E400).

The immunostained sections for CD31 (Ventana, ready-to-use

solution) were examined at low power to select the three areas with

the highest vascularity (hotspots).

Two pathologists separately assessed each case without any

clinical information.
Radiomic data

Patients that underwent abdominal Computed Tomography (CT)

at the University Hospital of Parma for CRC staging were included in

the study. CT scans were performed with different CT scanners and

imaging protocols; images were retrieved from Picture Archive and

Communication System (PACS) and were subsequently imported into

a dedicated software (3D Slicer) for tumor segmentation.
Frontiers in Oncology 04
One radiologist (ML) evaluated all CT scans visually and

identified the target lesion on portal venous phase. The reader

was instructed to draw manually multiple regions of interest (ROI)

at different levels by tracing the boundaries of the lesions:

subsequently, a dedicated tool (SlicerRadiomics) software

interpolated the ROIs to obtain the volume of interest (VOI)

which allowed the extraction of 852 radiomic features (RF). The

VOI was manually modified by the reader in case of inaccurate

segmentation. Image preprocessing based on wavelet

decomposition was performed by SlicerRadiomic before feature

calculation to generate independent radiomic predictors.

The radiomic dataset included shape, first-order, Gray-Level- Co-

occurrence-Matrix (GLCM), Gray-Level-Run-Length-Matrix

(GLRLM), Gray-Level-Size-Zone-Matrix (GLSZM), Neighboring-

Gray-Tone-Difference-Matrix (NGTDM), Gray-Level-Dependence-

Matrix (GLDM).
Statistical analysis and
classification model

Classical statistics

The chi-square test and Fisher’s exact test were used to perform

univariate comparisons between categorical variables.

The Kaplan-Meier method was used to estimate the mean and

median time for progression free survival (PFS) followed by a Cox

regression analysis to evaluate the relationship between survival and

covariates in a multivariable framework. The model was evaluated by

making use of model diagnostics. This included checking for the

overall goodness of fit, model adherence to key assumptions,

influential observations and nonlinearity. The variables considered

in the Cox regression were KRAS, type of chemotherapy protocol, site

of primary tumor, NICD, CD44, Jag1, CD3, DLL4 expression; only

NICD expression resulted statistically significant and was maintained

in the final model. The regression coefficients were reported as hazard
FIGURE 1

(A) TMA, Hematoxylin and Eosin; (B) TMA, NICD; (C) NICD; (D) Jag1; (E) CD31 non responder patient; (F) CD31 responder patient with NICD and Jag1+.
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ratios (HRs). The 95% confidence intervals (CIs) were also estimated

from the analysis.

The commercial package IBM-SPSS v.28 and the open-source

statistical system Jamovi version 2.3.0, which is based on the widely

used open-source system R, were used to perform survival analysis. A

p-value less than 0.05 was considered statistically significant (p < 0.05).
Multiomic models

Classification models were developed to predict time to disease

progression. With this aim in mind, PFS at 9 months was used to

stratify patients in two groups, namely short and long-term survivals.

We considered PFS at 9 months as a target variable because a

comprehensive meta-analysis has recently showed that PFS ranges

between 7 and 10.8 months for CRC patients treated with

bevacizumab (18). Therefore, we acquired the central value of that

interval from the meta-analysis to further stratify the prognosis of our

patients according to the integrated profile. Three models were

developed: radiomic (R), clinical/Notch signaling (C/N) and the

comprehensive integrated model (I). In the R model, we removed

redundant highly correlated features by calculating their Spearman

Rho correlation coefficient: RFs with a coefficient greater than 0.99

were excluded from the successive analyses. Subsequently, feature

standardization by z-score was applied. In the C/N model, the same

variables considered in the Cox regression were added as predictors

(Table 1). In both R and C/N models, a L2 penalized logistic

regression algorithm was implemented for features selection and

validation. Most predictive features were selected by means of a

wrapper approach, i.e. the sequential forward feature selection

algorithm with 20 Monte-Carlo cross-validation (MCCV) splits.

We chose the area under the receiver operating characteristic

(ROC) curve (ROC-AUC) as performance metric. We iterated the

selection process 50 times, using 50 different random states and,

subsequently, we selected the features that had higher frequency of

occurrence for both R and C/N models. Through 5000 MCCV splits

(train:0.7, test:0.3), different numbers of clinical/genomic and

radiomic features were selected and used respectively for R and C/

N model training and validation. Likelihood ratio test was applied to

verify if the addition of another feature significantly improved the

model performance. The selected C/N and R features were used

together to build the I model.

For all models, the ROC-AUC and accuracy scores for each

MCCV were calculated and averaged over these iterations. Mean

ROC curve and mean learning curve were also plotted. Recall and

precision metrics were also calculated
Frontiers in Oncology 05
Survival analysis was performed in radiomic dataset. Kaplan–

Meier survival curves PFS for two risk groups were calculated and

then compared using log-rank test. The risk groups were assessed by

using continuous RFs, previously selected by the machine-learning

model. Risk groups based on RFs were developed using ROC

analysis to determine the cutoff value of each RF for optimal

stratification into two classes: Youden index was chosen as

optimal threshold. Subsequently, we combined the selected

features in a single variable and we performed Kaplan–Meier

analysis again. Finally, we calculated the probability to predict

longer-term class in each risk group of combined features.

Probabilities derived from the R model were averaged over

MCCV splits.

Machine-learning model, analysis and plots were performed by

means of Python v. 3.8.5; scikit-learn and MLextend machine

learning libraries were used for features selection and

model development.
Results

Classical statistics

A total of 111 patients have been included in the analysis. The

cohort is shown in Table 1. A positive association was found in

univariate analysis between NICD and Jag1 expression (p < 0.001;

Table 2). No significant association was found for the other

analyzed markers and KRAS mutation (data not shown). All

main clinical characteristics were comparable among the

subgroups of patients (data not shown). Specifically, no

significant associations of NICD and Jag1 immunostaining scores

with age, baseline CEA levels, number of metastatic sites and

subsequent chemotherapy were observed.

Compared with patients who had NICD and/or Jag1 low

tumors, patients whose pre-treatment tumors expressed high

NICD and Jag1 levels showed poor RECIST 1.1 categories with

higher rates of stable disease (SD) or progressive disease (PD) as

best response, and lower frequencies of complete response (CR) or

partial response (PR); p = 0.002 (Table 3). Associations between

NICD and Jag1 and therapy response were further evaluated using

PFS and Kaplan-Meier and Cox proportional hazard modeling.

Median PFS was significantly shorter in patients whose tumors

expressed high NICD and Jag1 (6.43 months vs 11.53 months for

negative cases; p = 0.001, Figure 2). Cox regression following

univariate analysis confirmed NICD as the only independent

predictor for PFS (HR = 1.820 [1.165 – 2.844]; p = 0.009).
TABLE 2 Association between NICD and Jag1 expression in CRC.

Low Jag1 High Jag1

Low NICD 38 (56%) 30 (44%)

High NICD 4 (10%) 38 (90%)

c² continuity correction p < 0.001

Fisher’s exact test p < 0.001
Jag1, Jagged-1; NICD, Notch intracellular domain.
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Quite surprisingly, 5 patients with high NICD tumors showed long

PFS. Each case was evaluated for the following features: inflammation,

staging, grading and microvascular density. The last one was the only

noteworthy characteristic. For this reason, we assessed themicrovascular

density according to Chalkey’s methods: microvessels were counted

manually for each hotspot at 20x magnification (high power field) and

expressed asMVD score. This assessment was carried out for 15 patients

based on response to therapy: 5 were non responder (NICD/Jag1

positive), 10 were responder (5 NICD/Jag1 positive and 5 NICD/Jag1

negative). Those with an MVD score ≥5 (CD31-high, NICD/Jag1

positive) were associated with significantly poorer survival. Low CD31

was seen in all 10 responder patients (both 5 NICD/Jag1 positive and

NICD/Jag1 negative) and associated with a better prognosis.
Multiomics

The retrospectively collected 111 CRC cases were decreased due

to inclusion criteria that comprised the availability of (i) CT data

and (ii) PFS information. Thus, the ensuing results based on the

multiomic approach refer to a restricted population of 76 subjects.

Regarding feature preprocessing, the Spearman correlation matrix

for RFs is reported in Figure S1. Redundant features were removed,

thereby reducing the number of RFs by about 33.6%.
Frontiers in Oncology 06
In the R model, the best performance in differentiating short

and long survival was obtained by selecting two RFs: Strength

(NGTDM) and Skewness (first order) with a ROC-AUC of 0.709

and an accuracy of 0.671. Likelihood ratio showed that the

performance of the model would not significantly improve by

adding further RFs (Table 4).

In the C/N Model, the most predictive features were Jag1 and

NICD, whereas the addition of a third feature was not significantly

relevant: the ROC-AUC was higher as compared to the R model

alone, with a ROC-AUC of 0.743, while accuracy was slightly lower

(0.649) (Table 4).

The I Model included the previously selected R and C/N

features, that had a negative effect on the likelihood of predicting

long survivors, as shown by odds ratios (Table S1). The I model

yielded the highest ROC-AUC (0.823) and accuracy (0.751) values.

The mean ROC curves are displayed in Figure 3.

Learning curves show the ROC-AUC score (Figure S2A) and

accuracy (Figure S2B) as a function of the number of training

samples. We plotted performance scores obtained by predictions for

both training (blue line) and validation (green line) datasets and

averaged over all iterations of the MCCV. For each model, we also

calculated and averaged over 5000 MCCV splits the recall metric

representing the true predictions of longer survival class: 0.794 [95%

CI : 0.790, 0.797] for R model, 0.660 [95% CI: 0.654, 0.666] for C

model and 0.767 [95% CI : 0.763, 0.770] for I model. In addition, we

calculated precision metrics (i.e. positive predictive value),

representing the fraction of true positive cases among the total

positive predicted instances: 0.642 [95% CI : 0.641, 0.645] for R

model, 0.673 [95% CI: 0.669, 0.676] for C model and 0.751 [95% CI :

0.749, 0.754] for I model.

Kaplan Meier curves of PFS (Figure S3) showed significantly

different risk strata for Strength, whereas none for skewness. The

combined RF (strength-skewness) created 3 risk groups which

significantly stratified in PFS curve (Figure 4). Probabilities of

longer-term class prediction are listed in Table 5.
Discussion

The diagnosis of CRC is based on the integration of multiple

features (histopathology, immunohistochemistry and molecular

findings) and its management is of the utmost importance.
TABLE 3 Response according to NICD and Jag1 protein expression.

Response rate Total

NICD-Jag1 SD + PD CR + PR

Low NICD_Low Jag1 13 (34%) 25 (66%) 38

Low NICD_High Jag1 21 (70%) 9 (30%) 30

High NICD_Low Jag1 3 (75%) 1 (25%) 4

High NICD_High Jag1 28 (74%) 10 (26%) 30

c² continuity correction p = 0.002

Fisher’s exact test p < 0.001
CR, complete response; Jag1, Jagged-1; NICD, Notch intracellular domain; PD, progressive disease; PR, partial response; SD, stable disease.
FIGURE 2

Progression-free survival (PFS) according to NICD and Jag1 expression
levels in metastatic CRC patients treated with bevacizumab.
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Although immunohistochemistry has been widely used to detect

microsatellite instability in CRC screening for defective DNA

mismatch repair, unexpectedly negative results have been

reported probably due to somatic mutations. This implies that the

analysis should be completed with microsatellite instability-

polymerase chain reaction test to have reliable results (19).

In this study, we investigated NICD expression and a series of

other correlated markers that have been previously associated with

angiogenesis to predict tumor progression-free in advanced stage

CRC treated with bevacizumab and first-line chemotherapy. Our

results show that high NICD and Jag1 expression are associated

with PD and early disease progression to anti VEGF-based therapy.

Notch signaling may regulate both the initiation and the

cessation of angiogenesis through different mechanisms (20). The

potentiality of Notch signaling to rule angiogenic processes

becomes crucial in the context of aberrant angiogenesis.

Furthermore, neoangiogenesis in CRC may differ in distinct

tumor subtypes (21).

Angiogenesis is the expansion of emergent vascular sprouts

from preexisting blood vessels. Luminal endothelial cells switch into

tip cells that lead to the outgrowth of a multicellular stalk. Notch

signaling involves cell fate determination as a mechanism to

determine tip and stalk cells (21). The distribution of vascular

sprouts depends on Notch triggering; moreover, the formation of a

new sprout or the alteration of the original vessel relies upon Notch-

DLL4 expression in endothelial tip cells (20). VEGF signaling can be

downregulated in cells with activated Notch signaling by decreasing

VEGF receptor transcription levels (22–24). In these cases, the
Frontiers in Oncology 07
uncontrolled dysfunctional tumor vessels proliferation under Notch

signaling is not inhibited by VEGFR. The uncontrolled angiogenesis

increases tumor hypoxia which is detrimental to chemotherapy as

well. VEGF regulates blood vessel function by inducing tumor cell

growth and suppressing immune activation (25).

Unlike DLL4, Jag1 is overexpressed in tumor cells. It is

supposed to work as a communication element between tumor

cells and tumor-associated endothelial cells to trigger Notch

signaling, enhance cell proliferation and stabilize vessels (26). Jag1

is a critical regulator of tip cell formation and sprouting because of

its ability to modulate DLL4-Notch signaling in the angiogenic

endothelium (20). Notch and VEGF induce the expression of DLL4

(27, 28); on the contrary, Jag1 is not upregulated by Notch and is

induced by inflammatory cytokines, such as TNF-a, which reduces

DLL4 transcription. These signals might modulate angiogenesis by

changing the ratio of DLL4 and Jag1 expression, allowing the

integration of different pro or antiangiogenic signals. The intricate

interaction of the ligands DLL4 and Jag1 traces the pathway of tip

cell selection (20).

Although the detailed mechanisms behind Notch activation

have not been fully discovered, it is known that the related soluble

ligands influence several contexts. They regulate the proliferation of

regulatory T cells (7, 9), influence tumor microenvironment,

promote adipocyte differentiation (29), mediate hematopoietic cell

differentiation (30) and neurogenesis (31). Moreover, Jag1

overexpression in cancer cells can activate Notch signaling in

adjacent endothelial cells (32). Our study focused on NICD

expression, however did not underestimate the role of tumor

microenvironment. In fact, the assessment of CD3 and CD4/CD8
TABLE 4 Performances of the R, C/N and I models.

Model name ROC AUC ROC AUC 95%CI Accuracy Accuracy 95%CI

R 0.709 0.706-0.711 0.671 0.668-0.673

C/N 0.743 0.741-0.745 0.649 0.647-0.651

I 0.823 0.824-0.828 0.751 0.749-0.753
FIGURE 3

Mean receiver operating characteristic (ROC) curves.
FIGURE 4

Kaplan Meier curves of progression-free survival (PFS) for three risk
groups identified by Strength-Skewness (ST, Strength; SK, Skewness).
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ratio did not show a correlation with tumor aggressiveness or

survival. Although we have restricted our analysis to lymphocytes,

we know that Notch signaling can also affect other factors such as

tumor associated fibroblasts, endothelial cells and the expression of

CTLA4 in tumor infiltrating lymphocytes. Further studies are

necessary to assess the interaction of Notch with other stromal

cells (33, 34).

This study did not prove that DLL4 was relevant to define the

biological behavior of tumors. Patients with a highly vascular tumor

microenvironment went worse in comparison to those with a poor

tumor vascularization. However, the expression of Notch and Jag1

was associated with a better outcome only in those patients with a

poor tumor vascularization.

We developed an integrated model which included clinical,

genomic and radiomic variables to explore its potential role in the

prediction of survival. The model was designed to predict 9-months

PFS in CRC patients and included a first-order (skewness) and a

second-order (NGTDM strength), along with NICD and Jag1

expression levels. Results showed that each additional increase of

one point of NGTDM strength - which accounts for tumor

heterogeneity - was associated with approximately 50% decrease

in the odds of survival.

Regarding prognostic performance, our radiomic model agreed

with other CT-based radiomic models that have been proposed,

which yielded ROC-AUCs between 0.66 and 0.74 (18, 35). The

integration of radiomics with clinical (36) and genomic predictors

have led to increased model performances (17, 37, 38); this study

has confirmed this finding. Cao et al. tested a radiomic signature in

381 patients with CRC and showed that a radiomic-derived score

was able to stratify their outcome and enrich the TNM staging (39).

In our study, we differentiated three groups of patients based on

binarization of the values of RFs: those individuals with lower RF

“skewness” were those with longer survival; similarly, when patients

displayed lower RF “strength” values their outcome was better.

Lower “skewness” and “strength” values might potentially be related

to more homogeneous lesions, which could be related to a more

favorable outcome. Radiomics might represent a step forward into

personalized and tailored medicine, helping to identify patients that

might benefit most from therapy.

Our research has some limitations. Firstly, we enrolled a single

center retrospective cohort and no external validation was

considered: performances of our multiomic models derived from

cross-validation analyses. Therefore, further studies based on

datasets from other centers are needed to evaluate model

generalizability. Secondly, the repeatability and robustness of
Frontiers in Oncology 08
radiomic features with respect to CT acquisition parameters and

to manual segmentation were not addressed. We recognize the

reproducibility of manual segmentations of CRC to be a potential

source of variability potentially affecting the results, given the

potential challenges in the identification of the boundaries of such

lesions with an impact on the generalization of our model.

Therefore, we look forward to future studies on larger

populations with multiple readers to be involved in the

segmentation process. However, the purpose of the radiomic

analysis of this study was to produce preliminary results to be

compared with the histopathological data.

In conclusion, this study provides the first evidence that high

NICD and Jag1 expression predict early disease progression in CRC

patients treated with anti-VEGF-based therapy.

Although the data must be confirmed in a larger series, the

increase in intratumoral microvascular density could predict a

lower response to treatment.

Further studies will be necessary to demonstrate our hypothesis

that newly formed vessels in tumors expressing elevated NICD do

not benefit from bevacizumab and expand our preliminary results

on the potential role of radiomics to improve the prediction of

outcome of CRC patients.
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