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Instruction: Lynch syndrome (LS) is the most common inherited cancer

predisposition disorder of colorectal cancer (CRC) which is associated with

pathogenic variants in 4 mismatch repair (MMR) genes. Here, we reported a

multi-generation Chinese family clinically diagnosed with LS.

Methods: To identify the underlying pathogenic gene variants, 30 whole blood

samples and 4 colorectal cancer tissue samples and their clinical data were obtained

from this four-generation family. Microsatellite instability-high (MSI) testing,

immunohistochemistry (IHC), and Whole-Exome Sequencing (WES) were

performed to identify the MMR/MSI and the underlying gene variants. The

minigene splicing assay and in vitro splicing assay were used to explore the

function of this variant.

Results: MSI-H and dMMR was revealed by the MSI testing and IHC, Whole-

Exome Sequencing (WES) in 3 patients successfully identified a splicing variant

(c.793-1G>A) in intron 4 of MSH2. Sanger sequencing validated the WES results,

and all the “healthy” individuals carrying the variant have been identified in the

family by PCR. Bioinformatics analysis and in vitro minigene assay showed that

the pathogenic variant affected the splicing process of MSH2 gene to generate 2

kinds defective transcription products, and consequently reduced the expression

of MSH2 protein. The mutation carriers were later recommended for

colonoscopy and other important cancer diagnostic inspections every 1-2

years because they both have a higher risk of LS.

Discussion: We found a pathogenic splicing variant (rs863225397, c.793-1G>A)

of MSH2 gene, and furtherly confirmed that this mutation plays an important role

in LS patients of this pedigree based on the vitro study. Our study indicates that

one splicing mutation in the MSH2 gene (c.793-1G>A) causes LS and highlights

the importance of LS gene testing.

KEYWORDS

Lynch syndrome, mismatch repair gene, alternative splicing, MSH2 Lynch syndrome,
MSH2, variant
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1 Introduction

Globally, colorectal cancer (CRC) is one of the most prevalent

cancers and has become a major public health problem, which

ranks third as sorted by the new incidence and ranks second in

terms of cancer-related death (1, 2). CRC is a multifactorial

malignancy caused by both environmental and inherited factors

playing varying roles in patients with CRC. Most CRCs arise as a

consequence of somatic genomic events that disrupt key cellular

processes in individual colonic epithelial cells (3), and,

approximately, 15%–35% of CRCs are thought to be associated

with hereditary factors (4, 5).

Lynch syndrome (LS), also known as hereditary non-polyposis

CRC (HNPCC), is an autosomal dominant disease that markedly

increases the lifetime risk of CRC, endometrial cancer (EC), and

other cancers of the ovary, stomach, urothelial tract, small bowel,

pancreas, biliary tract, and sebaceous neoplasms of the skin. LS is

the most common cause of inherited CRCs and EC, and it accounts

for 2.2%~5% of all patients with CRC and 3% of all patients with EC

(6–9). Clinical criteria, tumor testing, and genetic testing are

effective strategies for identifying patients with LS. As a

commonly used testing method for LS, genetic testing confirms

the diagnosis at the molecular level and provides a basis for the

treatment plans, risk stratification, and surveillance plans for

patients and career planning for families (10). Furthermore,

extensive research studies that are concern about the genetic basis

of LS have led to the novel concepts of tumor development and the

feasibility of application to clinical diagnosis and treatment (11).

Clinically, microsatellite instability (MSI) testing and mismatch

repair (MMR) protein immunohistochemistry (IHC) tumor

testing are the most commonly used examination assessments in

LS-caused tumors (12). Research indicates that nearly all patients

with LS have MSI/MMR-deficient tumors (13). MSI is a molecular

hallmark of LS and represents germline mutations in one of the

MMR genes (14). MMR genes play a pivotal role in the detection

and rectifying of DNA sequence mismatches during DNA

replicat ion. Deficiency in MMR leads to MSI-H and

hypermutability, resulting in a 100- to 1,000-fold increase in the

mutation rate due to uncorrected base mismatches (15). MMR

mutations occur in approximately 15% of CRCs and 9% of patients

with EC. Carriers have a significantly higher lifetime risk of

developing colorectal and ECs, as well as other tumors compared

to the general population (16, 17). The majority of LS is caused by

germline mutations in MMR genes, of which the four well-

recognized MMR genes are mutL homolog 1 (MLH1), MSH2,

MSH6, and postmeiotic segregation increased 2 (PMS2). Further

identifying and characterizing the mutations might be crucial to

enable personalized risk assessments of patients with LS (18).

Identification of a high-risk disease-causing constitutional

mutation in a cancer patient guides the clinical management of the

entire family, which has implications for counseling, cancer treatment

options, pre-symptomatic surveillance, and consideration of risk-

reducing surgery and/or medication regimes (19, 20). The sequencing

of the MMR genes for mutations is the key procedure in diagnosing

LS (7). MSH2 has the highest proportion of pathogenic variants,
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accounting for 40% of mutations found in LS families. The estimated

cumulative risks of CRC by age 70 years reached 48%, and the risk of

EC reached 21% (21). Although clinical evidence can contribute to

evaluating the significance of these variants, usually, none of them

can be used for clinically useful variant interpretation due to lack of

laboratory evidence (19). Therefore, it is of great importance to

export the pathogenicity and assess the risk of the variants for risk

classification, treatment, prognostic monitoring strategy

establishment, and genetic counseling. This will help identify

individuals who would benefit from surveillance and prophylactic

surgery to prevent cancer (22).

In this research, we identified a pathogenic MSH2 splicing site

mutation in a four-generation LS family through whole-exome

sequencing (WES). To determine the clinical significance of this

variant, we analyzed the possible molecular pathogenesis and

clinical phenotype of this family and provided appropriate

individual prevention strategies for all mutation carriers.
2 Methods and materials

2.1 Patients and samples

The subjects included in this study were a four-generation

family with LS in southern China. We collected 30 whole blood

samples and four CRC tissue samples and their clinical data from

Xiangya Hospital of Central South University (Changsha, Hunan,

China) from April 2015 to August 2020. After a complete analysis of

clinical information, we found that 30% (9 of 30) of the family

members affected with the disease. This study was approved by the

Ethics Committee of Xiangya School of Medicine, Central South

University. Informed consent with the tenets of the Declaration of

Helsinki was obtained from all participants or their guardians.
2.2 Whole-exome sequencing

Peripheral venous blood of III-14, and III-11, and III-15 was

obtained before the surgical treatment of CRC. Genomic DNA was

extracted from the whole blood sample. DNA fragments were

sequenced on the NovaSeq 6000 high-throughput platform

(Illumina, CA, USA). Single-nucleotide variant and insertion and

deletion queries were performed as previously described (23, 24).

The reference genome for WES was UCSC hg19, NCBI build 37.
2.3 DNA extraction and microsatellite
instability analysis

Genomic DNAwas isolated from blood samples of III-14 and III-

15 and tested for MSI. A five-marker panel including two

mononucleotide repeats (BAT25 and BAT26) and three

dinucleotide repeats (D2S123, D5S346, and D17S250), which is

recommended by the National Cancer Institute (NCI) Workshop

onMSI for Cancer Detection and Familial Predisposition, was used as
frontiersin.org
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previously described (25). Oligonucleotide primers were fluorescently

labeled, and PCR products were evaluated using the 3500DX Genetic

Analyzer. Tumors were classified as highly unstable (MSI-H) if at

least 40% of the markers showed instability (26).
2.4 Mismatch repair protein
immunohistochemistry

MMR protein expression was tested by IHC using MLH1

polyclonal antibody clones (Proteintech Group, #11697-1-AP),

MSH2 polyclonal antibody (Proteintech Group, #15520-1-AP),

MSH6 polyclonal antibody (Proteintech Group, #18120-1-AP), and

PMS2 polyclonal antibody (Affinity Group, #DF4351). The complete

absence of protein expression of any of the four proteins tested (0+ in

100% of cells) was considered deficient MMR (dMMR). Formalin-

fixed paraffin sections were stained for the abovementioned

antibodies using the streptavidin-peroxidase system (Zhong-shan

Goldenbridge Biotechnology, Beijing, China) as previously

described (27).
2.5 Splicing prediction

Different complementary online software for splicing

prediction were employed: Human Splicing Finder (HSF) (http://

www.umd.be/HSF3/HSF.shtml), Mutation taster (http://

www.mutationtaster .org/) , NetGene2 (https://services .

healthtech.dtu.dk), varSEAK (https://varseak.bio/index.php), and

SpliceAI (https://spliceailookup.broadinstitute.org/).
2.6 Phylogenetic analysis

Phylogenetic analysis was performed using the Molecular

Evo lu t i ona ry Gene t i c s Ana l y s i s (MEGA) so f twa r e

(www.megasoftware.net), and the evolutionary history was inferred

by the maximum likelihood method, with 1,000 bootstrap values.
2.7 Construction of the minigenes and
Sanger sequencing

A minigene splicing assay was performed to verify whether the

mutation affected splicing products. Wild‐type (WT) or mutant-

type (MT) plasmids encompassing exon 4, part of intron 4, and

exon 5 of the MSH2 gene were constructed by amplification with

genomic DNA from the affected patient II-9 using PrimeSTAR GXL

DNA Polymerase (Takara, cat. no. R050Q). The amplified

fragments were digested with Xho I (Takara, cat. no. 1094S) and

EcoR I (Takara, cat. no. 1040S) and then subcloned into the

multicloning sites of the pcDNA3.1 vector using Xho I and EcoR

I restriction sites.
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2.8 In vitro splicing assay

The WT and MT plasmids were transfected into Human

Embryonic Kidney 293 cells (HEK293) and Hela cells using the

PolyJet Transfection kit (SignaGen Laboratories, MD, USA). After 48

h, RNA was extracted and reverse-transcribed into complementary

DNA (cDNA). Minigene constructs were validated (with PCR

products from exon 4 to exon 5) by Sanger sequencing analysis

with the universal primer (5′‐TATGTTTCAGGTTCAGGG‐3′;
Sangon Biotech).
3 Results

3.1 A four-generation Chinese family with
Lynch syndrome

We identified a four-generation Chinese pedigree with 81

members, of whom nine (II-4, II-6, II-8, II-10, III-11, III-14, III-

15, III-18, and III-40) were affected with colon cancer, and two (III-

14 and III-18) were affected with EC followed by colon cancer

(Figure 1). The proband, a 43-year-old man (III-15), was diagnosed

with left colonic carcinoma via colonoscopy and biopsy. No other

abnormalities or obstructions were observed. He subsequently

underwent formal resection of left hemicolon cancer and

anastomosis, with postoperative pathologic examination

confirmed a poorly differentiated, T4N2 adenocarcinoma.

His younger sister, a 39-year-old woman (III-18), was affected

with endometrial carcinoma 6 years ago and diagnosed with

right side colon carcinoma in a routine colonoscopy without

specific symptoms. She subsequently underwent subtotal

colectomy with ileo-rectal anastomosis, hysterectomy, and

bilateral salpingo-oophorectomy. The tumor was then identified

as moderately differentiated adenocarcinoma staging at T4N0,

with no abnormalities detected in the uterus or bilateral

salpingo-oophorectomy.

The elder sister (III-14) of the aforementioned two patients was

diagnosed with left hemicolon cancer at the age of 37 and

subsequently underwent a limited colectomy. Ten years later, she

received a transabdominal hysterectomy and bilateral salpingo-

oophorectomy due to endometrial carcinoma. Shortly thereafter,

a sessile polyp was discovered in her transverse colon during a

colonoscopy. Upon our recommendation, she underwent subtotal

colectomy with ileorectal anastomosis. The postoperative

pathological examination reported an intestinal mucous

adenocarcinoma, with invasion to the submucosa (T1N0). As

evidenced by their family history, in addition to the

abovementioned three patients, colon cancer has also affected

their eldest brother, mother, and three out of the four maternal

aunts. These patients have been definitively diagnosed with LS

according to the Amsterdam II/III criteria. The detailed

information of affected members or mutation carriers in this

pedigree is shown in Table 1.
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3.2 MSI-H was found in the pedigree

A number of studies have indicated that screening for LS is

imperative in patients with CRC, regardless of their age or

pathological stage (10, 28, 29). The identification of MSI, which

primarily relies on PCR analysis, serves as a crucial biomarker in the

management of CRC. Therefore, tumor and normal tissues from

patients III-15 and III-18 were obtained after surgery to assess MSI

status. For the five detection markers [two mononucleotides loci
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(BAT25 and BAT-26) and three dinucleotide loci (D2S123,

D17S250, and D5S346)] recommended by of the NCI of the

United States and National Comprehensive Cancer Network

(NCCN) guidelines, the detection results are shown in Figure 2.

The findings indicate that patients III-15 and III-18 are in the MSI-

H state, which is a predictive marker for resistance to 5-fluorouracil

(5-Fu); however, immune checkpoint blockades have demonstrated

durable response and sustained survival benefits (30).
FIGURE 1

A four-generation Chinese family with Lynch syndrome (LS). Squares represent men and circles represent women. A square or circle with a diagonal
line means dead, and vice versa means alive. Filled black symbols indicate members affected with colon cancer, whereas filled slant lines indicate
members affected with endometrial carcinoma and empty symbols are unaffected family members, and the red symbols indicate the c.793-1G>A
mutation in MSH2. The black arrow indicates the proband (III-15).
TABLE 1 Clinical characteristics of all the affected and mutation carriers of the LS family.

Family
ID

Sex Age Mutation Age at
Diagnosis

Colonic diagnosis (Diagnosed
Age)

Extra-Colonic diagnosis (Diagnosed
Age)

II-4 F 48
(Deceased)

Unknown colonic carcinoma(uncertain)

II-6 F 53
(Deceased)

Unknown colonic carcinoma(uncertain)

II-8 F 57
(Deceased)

Unknown colonic carcinoma(uncertain)

II-10 F 73 MT Lynch Syndrome
(49)

Adenocarcinoma (49)

III-11 M 56 MT Lynch Syndrome
(46)

Adenocarcinoma (46)

III-14 F 54 MT Lynch Syndrome
(37)

Adenocarcinoma (37) Endometrial carcinoma (47)

III-15 M 50 MT Lynch Syndrome
(43)

Adenocarcinoma (43)

III-18 F 46 MT Lynch Syndrome
(39)

Adenocarcinoma (31) Endometrial carcinoma (31)

III-20 F 52 MT Not yet penetrant

III-21 M 50 MT Not yet penetrant

III-29 M 48 MT Not yet penetrant

III-38 F 43 MT Not yet penetrant

III-40 F 46 MT Lynch Syndrome
(44)

Adenocarcinoma (44)

IV-11 F 31 MT Not yet penetrant

IV-12 M 30 MT Not yet penetrant
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3.3 The deficiency of MMR was found in
the pedigree

As described above, we determined MSI status by amplification

of specific microsatelilte repeats. To explore the underlying cause of

MSI-H states and confirm the above result of MSI detection, we also

detected the expression of MMR-related proteins (MLH1, MSH2,

MSH6, and PMS2) to further confirm the presence of MMR defects.

Hematoxylin-eosin (H&E) staining and IHC were performed on the

serial paraffin-embedded tumor tissue sections of III-14, III-15, and

III-18. The results revealed defective MSH2 and MSH6 in the tumor

nuclei of III-14 and III-18, whereas only MSH2 was defective in

tumor nuclei of III-15 (Figure 3), thus confirming the dMMR status

in III-14, III-15, and III-18. Previous research has described that

MSH2 can dimerize with MSH6, and the MSH2 mutation often

leads to in deficiency in both MSH2 and MSH6 protein expression,

whereas MSH6 gene mutation typically result in loss of MSH6

protein expression (31, 32); based on our IHC results, it is suggested

that LS of this pedigree might be caused by MSH2 mutation.
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3.4 A pathogenic splicing variant in MSH2
was found in the pedigree

To investigate the genetic factors underlying LS in this family,

WES was performed on individuals III-14, III-15, and III-18. All

variations are shown in Figure 4A. We focused our analysis on

functionally significant mutations located within exonic regions and

splicing sites.

A high frequency of variants was found in genes at high risk of

LS. In III-14, the total number of germline SNVs and InDels was

42,933 and 3,219, respectively. In III-15, they were 42,731 and

3,161, respectively; in III-18, the numbers were 42,925 and 3,193,

respectively. We also found mutations located in the coding and

splice regions of all these genes [MLH1, MSH2, MSH6, PMS2,

epithelial cell adhesion molecule (EPCAM), mutY homologue

(MUTYH), Phosphatase and tensin homolog (PTEN)] that may

be associated with the pathogenesis of LS depending on their

mutation type. Among these mutations, the genetic variant

occurring in all three patients is what we looking for. One same
FIGURE 2

MSI-H was found in the pedigree. Microsatellite analysis of the five reference markers BAT25, BAT26, D5S346, D2S123, and D17S250 in III-15 and III-
18. Tumor DNA (lane below) reveals new bands and a band shift compared with the corresponding genomic DNA (lane above).
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FIGURE 3

The deficiency of MMR was found in the pedigree. H&E and IHC staining was conducted on the serial paraffin embedding tumor tissue sections of III-14,
III-15, and III-18. The results indicate III-14: intestinal mucous adenocarcinoma, MLH1+, MSH2−, MSH6−, and PMS+; III-15: poorly differentiated
adenocarcinoma, MLH1+, MSH2−, MSH6+, and PMS+; III-18: moderately differentiated adenocarcinoma, MLH1+, MSH2−, MSH6−, and PMS+.
A

B C

FIGURE 4

A pathogenic splicing variant in MSH2 was found in the pedigree. (A) The landscape of all types of variations in the three probands. The columns in
the first circle indicated the number of SNVs per Mb. The second circle indicated the number of variations (SNV + indel) per Mb. The three circles
outside indicated the number of indels per Mb, the number of SNVs per Mb, and the number of variation per Mb. (B) Sanger sequencing of the
MSH2 gene showing a pathogenic splicing mutation c.793-1G>A in the affected members in the pedigree. (C) The conservation of the mutation in
MSH2 across species.
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splicing mutation (c.793-1G>A) was found in the three patients,

which might be the heterozygous pathogenic variant and have not

previously described in the MSH2 gene [NCBI reference sequence

NM_000251.2]. The basic information of this mutation is shown in

Table 2, and Sanger sequencing confirmed this mutation in three

family members (Figure 4B).

Furthermore, we identified that this mutation is located at the

splicing donor site and disrupts the normal splicing of the pre-

mRNA, resulting in an aberrant MSH2 protein. In addition, through

utilization of MEGA software, we observed high conservation of this

mutation across multiple species (Figure 4C). These results indicate

that the mutation may play an essential role in the function of the

MSH2 protein.
3.5 Functional prediction of the intronic
variant C.793-1G>A

The intronic variant C.793-1G>A is located in a highly

conserved 3′ splicing acceptor site. To assess the impact of the

c.793-1G>A mutation on splicing process in silico, we analyzed WT

and MT 3′ splice site (3SS) located in the intron 4 using the HSF,

NetGene2, varSEAK, and SpliceAI prediction websites. As shown in

Table 3, whereas all four programs recognized the WT 3SS as an

acceptor site, none identified MT 3SS as such.

The HSF algorithm showed a DCV of −32.13% (CVWT = 86.74

vs. CV mutant = 58.87). Furthermore, MaxEnt, the MaxEnt

algorithm for HSF, also demonstrated a DCV of −84.54%. On the

basis of the SpliceAI online tool, we observed that the variant results

in a loss of confidence score for the original splicing site and

generates a new site with its confidence score. Both HSF and

SpliceAI algorithms indicate that the delta coefficients of variation

(DCV) values suggest disruption of the acceptor site, which

probably activates an intronic cryptic acceptor site, suggesting

that the mutation affects splicing.

The online tool varSEAK not only predicts the generation of a

new splicing site but also further predicts two scenarios: 1-bp

deletion to the left of exon 5 or 51-bp retention to the right of

intron 4 (Figure 5A). In contrast, NetGene2 only predicts the
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disappearance of the original acceptor site. Functional prediction

of this variant was conducted through bioinformatic tool to predict

splicing signals. The results indicate that this variant leads to loss of

the original splicing site and may generate a new splicing site and

then construct two different types of aberrant splicing mRNA.

We conducted further protein-level analysis of the two aberrant

splicing products mentioned above. After a 1-bp deletion on the left

side of exon 5, c.793del p.Val265Leufs*9 generates an early

termination codon PTC in exon 5 that may undergo nonsense-

mediated mRNA horizontal degradation, leading to a truncated

protein of 272 amino acid (aa) in length. After intron 4 right lagging

51 bp, c.792_793ins51bp p.Val265Asnfs*15 in intron 4 produces

the early termination codon PTC, which may also produce a further

truncated protein of 278aa in length (Figure 5B). We hypothesized

that this variant may impact the splicing of MSH2, leading to

aberrant protein structure and function, thereby contributing to the

development of LS in this family.
3.6 Function study verified the aberrant
splicing products caused by
C.793-1G>A mutation

To analyze the effect of the intron donor site mutation on the

MSH2 mRNA splicing, an in vitro transcription assay was

conducted. The splicing pattern of WT and MT plasmids was

illustrated (Figure 6A) and confirmed by Sanger sequencing

(Figure 6B). The WT minigene is 2,005 bp long and encompasses

DNA regions comprising exon 4 (147 bp), part of intron 4 (1,708

bp), and exon 5 (150 bp). A full-length 457-bp Real Time (RT)–

PCR product (partial plasmid sequence 160 bp and target gene 297

bp, named band a) was expressed and detected in HEK293 cells,

which includes: exon 4 and exon 5, as expected (Figure 6C).

The sequencing results revealed that WT band a was generated

through normal splicing, whereas band b had 1-bp deletion on the

left side of exon 5, and band c retained 51 bp on the right side of

intron 4 (Figure 6D). The same result was observed in Hela cells,

which is consistent with the results predicted by the varSEAK tool.
TABLE 2 Basic information of splicing mutation c.793-1G>A in MSH2.

SNP Position
(GRCh38.p12)

Gene Frequency in
gnomAD

Mutation
mode

Mutation type cDNA altera-
tion

Protein altera-
tion

rs863225397 Chr2:47414268 MSH2 — Het Splice Acceptor
variant

c.793-1G>A ——
TABLE 3 Bioinformatic prediction of the effect of the c.793-1G>A mutation on splicing process.

Intron Nucleotide change 5’ Splice site
Bioinformatic splicing prediction

HSF SpliceAI VarSEAK NetGene2

Intron4 c.793-1G>A
ttaattttagGTTGCA
!ttaattttaaGTTGC A

WT site broken
10.35-1.6
(-84.54%)

WT site
Loss

1 WT site broken -39.51%

WT site broken

NEW site
-2.15-5.8

(+369.77%)
NEW site
gain

0.92 NEW site 11.28%
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Consistent with previous bioinformatic prediction, the

minigene construct containing the C.793-1G>A mutation

produced two predominant RT-PCR products. In one case, band

b exhibited a size similar to the WT band a. This was owing to the
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mutation producing a new acceptor site (consisted of the A mutated

from G at the end of intron 4, with the G at start of exon 5

coincidently) on the left side of exon 5, resulting in a 1-bp deletion

on the left side of exon 5. In the other situation, a new acceptor site
A B

FIGURE 5

Functional prediction of the intronic variant C.793-1G>A. (A) Schematic representation of splicing models in bioinformatic analysis. The normal MSH2
gene transcribing and splicing process to generate complete mRNA. The variant causes the loss of the original splicing site and may generate a new
splicing site and then construct two different types of aberrant splicing mRNA product. (B) Schematic representation of translation by the normal and
aberrant splicing products. The two aberrant splicing mRNA products resulting in truncated proteins of 272aa and 278aa in length, respectively.
A

B

D

C

FIGURE 6

Function study verified the aberrant splicing products caused by C.793-1G>A mutation. (A) Schematic illustration of the pcDNA3.1 MSH2 c.793-1G>A
minigene. (B) Sanger sequencing confirmed the successful construction of wt and mt plasmids. (C) Gel electrophoresis of the RT-PCR product of
minigene transcripts in HEK293T and Hela cells. (D) Sanger sequencing analysis of alternatively splicing products. The letter a, b, c means the RT-
PCR product of the WT or MT plasmids.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1131011
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1131011
(a new AG motifs was recognized at 51 bp from end intron 4) was

identified on the right side of intron 4, resulting in a 51-bp

extension on the right side of intron 4 and yielding a significantly

larger band c compared to the WT band a. This finding

corroborated our bioinformatic predictions.
4 Discussion

LS is a well-established inherited condition caused by defective

DNAMMR, and the mean age of CRC diagnosis in patients with LS is

44~61 years (7, 10, 33). Recent research has shown that patients with

LS are typically diagnosed with CRC at an average age of 50.7 (34).

The MMR gene group comprises crucial genes that maintain genome

stability in cells. Defects in these genes lead to the failure of timely and

effective correction of oncogene-related mutations, thereby promoting

tumor susceptibility. Among the MMR genes, MSH2 is the most

commonly occurring variant gene, and splicing represents the least

variable type among MSH2 mutations (35). In this research, we have

identified a pathogenic germline splicing site mutation.

As the NCCN guidelines recommended, LS evaluation should

be considered for patients with a PREMM1,2,6 score of ≥5%.

Actually, the proband and the other two patients all scored ≥50%

in PREMM1,2,6; therefore, it is imperative to screen for LS.

Subsequently, the PCR-based MSI detection and IHC-based

MMR protein expression analysis was performed. These results

were consistent with the WES, all indicating that the disease-

causing mutation locates at MSH2.

In this four-generation family, we identified a splicing site

mutation C.793-1G>A in MSH2 by WES. Previously, this mutation

was just listed in a Swedish study among 369 mutations without any

further description (36). Interestingly, we suppose that this mutation

might happen in multi races, and it is worthy of more attention. In

our research, we found the dominant inherited pathogenic mutation

in southern China; more than that, certain bioinformatic analysis

reveals that this mutation site was relatively conserved among species.

Previous research has described that certainMMR protein expression

deficiencies indicate a pathogenic mutation of the corresponding

MMR genes. In this research, IHC confirmed that MSH2 and MSH6

were defective in III-14 and III-18, and MSH2 was defective in III-15,

both indicating pathogenic MSH2 mutation. The MSI testing also

proved the MSI-H of III-15 and III-18, which was caused by the

functional deficiency of MSH2.

The majority of MMR gene variants detected in patients with LS

are truncating mutations, which are generally classified as pathogenic

(21). Conserved sites at exon/intron junctions or in the introns play a

critical role to ensuring proper splicing. Mutations affecting these

conserved splicing sites may result in abnormal RNA splicing

products, leading to dysfunctional protein products and ultimately

causing disease (37). Previously, a germline variant c.2635-3delC within

the splice acceptor site of exon 16 in the MSH2 gene, which affects

normal splicing and might be a cause of LS (38). Similarly, multiple

variants of splicing acceptor located in dinucleotides at each end of the

intron have been found in the MSH2 gene (39) but have not yet been

identified in multiple family members in a relatively large pedigree and

also lack identification in cancer cells through plasmid transfect.
Frontiers in Oncology 09
Through this research, we have identified a mutation located at the

acceptor splicing site of intron 4 and close to exon 5 within the MSH2

gene. This mutation has the potential to significantly impact normal

splicing of MSH2. To investigate this further, we conducted aMinigene

experiment by constructing a plasmid using pcDNA3.1 as the carrier,

transfected it into HEK293 cells and Hela cells, respectively. We then

extracted RNA samples to determine the effect on gene expression. Our

results showed that mutation c.793-1G>A will affect the normal

splicing of mRNA and may produce two aberrant RNA splicing: 1-

bp deletion on the left side of exon 5 and 51-bp retention on the right

side of intron 4, which may produce two kinds of truncated protein. As

indicated by the MMR gene variant classification criteria (https://

www.insight-group.org/criteria/), the mutation c.793-1G>A in MSH2

definitely results in a splicing aberration, and disrupting MSH2 protein

expression should be classified to class 5 (pathogenic). In the future, we

will further investigate the impact of this mutation on MSH2 protein

domain and function, as well as elucidate the precise mechanism

underlying LS.

In this research, we have noticed that the C.793-1G>A

mutation is a pathogenic variant and might cause relatively

early-onset cancer and is susceptible to EC in female mutation

carriers. Given these characteristics, we recommended genetic

testing for most family members and pay close attention to the

mutation carriers. For the carriers, we prefer earlier and more

regularly recommended colonoscopy every 1 year beginning at age

20 for IV-11 and IV-12. The female carriers were educated

regarding the symptoms of endometrial and ovarian cancer, and

the endometrial biopsy and EC screening were recommended

every 1 year beginning at 30 (III-20, III-38, III-40, and IV-11).

Risk-reducing surgery is also applicable for patients with LS or

mutation carriers at high-risk ages (6). Individuals with LS who

develop CRC are recommended to undergo a total abdominal

colectomy with an ileorectal anastomosis due to the high risk for

second primary CRCs as well as prophylactic hysterectomy and

bilateral salpingo-oophorectomy in female carriers due to the risk

of endometrial and ovarian cancer (33, 40).

In summary, these findings provide some clinical and

functional evidence that the C.793-1G>A variant of MSH2 gene

can contribute to LS and can be further studied as a potential target

for the diagnosis and treatment of colon cancer.
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