
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Arvydas Laurinavicius,
Vilnius University, Lithuania

REVIEWED BY

Stanley Cohen,
Rutgers, The State University of New
Jersey, United States
Wei Wei,
Xi’an Polytechnic University, China

*CORRESPONDENCE

Hooman H. Rashidi

rashidh@ccf.org

Bo Hu

hub@ccf.org

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 23 December 2022
ACCEPTED 30 January 2023

PUBLISHED 14 February 2023

CITATION

Rashidi HH, Albahra S, Robertson S,
Tran NK and Hu B (2023) Common
statistical concepts in the supervised
Machine Learning arena.
Front. Oncol. 13:1130229.
doi: 10.3389/fonc.2023.1130229

COPYRIGHT

© 2023 Rashidi, Albahra, Robertson, Tran
and Hu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 14 February 2023

DOI 10.3389/fonc.2023.1130229
Common statistical concepts
in the supervised Machine
Learning arena

Hooman H. Rashidi1,2*, Samer Albahra1,2, Scott Robertson1,2,
Nam K. Tran3 and Bo Hu2,4*

1Pathology and Laboratory Medicine Institute (PLMI), Cleveland Clinic, Cleveland, OH, United States,
2PLMI’s Center for Artificial Intelligence & Data Science, Cleveland Clinic, Cleveland, OH, United States,
3Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States,
4Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
One of the core elements of Machine Learning (ML) is statistics and its embedded

foundational rules and without its appropriate integration, ML as we know would

not exist. Various aspects of ML platforms are based on statistical rules and most

notably the end results of the ML model performance cannot be objectively

assessed without appropriate statistical measurements. The scope of statistics

within the ML realm is rather broad and cannot be adequately covered in a single

review article. Therefore, here we will mainly focus on the common statistical

concepts that pertain to supervised ML (i.e. classification and regression) along

with their interdependencies and certain limitations.
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1 Introduction

Machine Learning (ML) is now starting to make a significant impact within the

healthcare domain in light of rapid developments in computational technologies and the

unprecedented growth of data within this space (1–5). This massive amount of data requires

enormous storage capacity and, more importantly, sophisticated methods to extract valuable

information, for which the ML algorithms play a key role in.

ML is under the umbrella of artificial intelligence and its foundation is based on the

disciplines of statistics and computer science, enabling it to identify inferences and

relationships from data through its computationally enhanced algorithms. ML algorithms

can be divided into three major categories: (i) supervised learning; (ii) unsupervised learning;

and (iii) reinforcement learning (Figure 1).

For supervised learning, the data contains “labeled” output (or target) variable(s). A

supervised ML model is then derived with the goal of predicting the output using the

remaining variables (i.e., features) within the dataset by uncovering or approximating the

relationship between them. Common supervised ML applications in healthcare include
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disease diagnosis (e.g. cancer), predicting treatment responses and

certain patient outcome measures.

In contrast, the unsupervised learning approach is based on

unlabeled data (i.e. no labeled output). An unsupervised learning

method aims to identify subgroups or clusters of the data with same

or similar patterns with little to no human intervention. It is also

sometimes referred to as clustering analysis. Some of the most

common unsupervised learning methods include k-means

clustering, hierarchical clustering, principal component analysis

(PCA) and anomaly detection. For more details on the

unsupervised methods such as PCA, we refer to other excellent

resources (6). The entities to be clustered could be either the

features (columns) or the subjects (rows) of the data. One

compelling application of unsupervised learning in healthcare is to

redefine diseases or disease subtypes by clustering patients, which is

related to certain precision medicine initiatives.

Lastly, reinforcement learning (RL) is a unique approach that

incorporates a sequential decision-making process which may share

certain features of both supervised and unsupervised learning. It

teaches the machine via trial and error to learn from past experiences

and adapt its actions in response to the environment, which ultimately

yields the greatest reward. Although reinforcement learning at this time

is not routinely used within the healthcare space, it will eventually

become a major part of certain tasks as the healthcare landscape

becomes increasingly more receptive to this approach. An emerging

research focus of RL in healthcare is dynamic treatment regimens,

which aim to identify optimal sequence of interventions for treating

patients based on their characteristics and medical histories (7).

In this article we will review the common statistical concepts

within the supervised ML (i.e. regression and classification) realm

along with their interplay and associated limitations. Hence, we will

start with the common supervised ML algorithms (regression and

classification) and their related statistics followed by study design

elements and practical considerations within healthcare applications.
2 Supervised Machine Learning:
General overview

The most common supervised ML models include regression and

classification (Figure 1). Regression deals with a continuous

numerical output (e.g., blood pressure or life expectancy) while
Frontiers in Oncology 02
classification is for categorical outputs (e.g., discrete classes such as

cancer versus normal tissue as seen in several oncology ML studies

which made use of histologic images of colon, prostate and breast

cancer cases). Note that the term of regression in ML varies slightly

from its use in statistics, where statistical regression may also refer to

some models for categorical output such as logistic regression.

The primary goal of supervised learning is to model a function

underlying the statistical relationship between a set of feature variables

(i.e. independent variables) and the output (i.e. target or dependent

variables). For simplicity, the supervised model can be formulated as

Y = f (X) + e

where Y denotes the output, X = (x1,⋯,xp) denotes a p-dimensional

vector of features, f represents the mathematical function that maps X to

Y, and e represents the random error (also known as irreducible error)

that is independent of X. Note that the true function f is typically

unknown in practice, and can be only estimated or approximated. The

above formula of supervised learning applies to most data formats (e.g.,

numerical tabular data, text and images). In applications with images or

text, certain feature extractionmethods are typically necessary to process

these non-numerical raw input data into numerical tabular format.

Regardless of the data, in short, the features (i.e. X) are mapped to the

target (i.e. Y) through some acquired mathematical function (i.e. f).

The core step of supervised learning is to estimate or learn the

function f based on independent samples of paired features and

outputs. For instance, we can denote such a data as (Xi, Yi), i=1,⋯,

n, with n being the sample size, and Xi and Yi being the feature and

output for the ith sample, respectively. In general, the optimal

function of f should be the one that minimizes the differences

between the observed outputs (yobs=Yi) and the predicted outputs

(ypred = f(Xi)) across all samples. Such a difference is formally defined

by a loss function in the ML literature. For regression models, the

quadratic loss function is the most common choice, which is defined

as on
i=1(yobs − ypred)

2 =on
i=1(Yi − f (Xi))

2. The quadratic loss is

essentially proportional to the mean squared error, MSE= 1
non

i=1(Yi

−f (Xi))
2, which is the average difference between the observed and

predicted outputs. MSE is easy to interpret and compute, and when

optimized it provides a good balance between bias and variance. For

classification models, a common loss function is the cross-entropy

loss −on
i=1½yobs   log ypred + (1 − yobs) log (1 − ypred)�, which is also

known as the negative log likelihood. The cross-entropy loss is

typically used in conjunction with the softmax function, a common

activation function for classification models that is often used in

certain deep learning image classification tasks.

Once a loss function is chosen, it should be minimized with

respect to the function f, and the optimal solution is referred to as the

estimated or learned ML model. For clarification, we denote the

estimated model as f̂ in this paper to distinguish it from the true

function of f. Additionally, to deploy the model for future prediction,

it is necessary to evaluate its performance using appropriate statistical

measures. Various performance metrics have been proposed for ML

models including the coefficient of determination (R2) for regression

and the area under the curve (AUC) when analyzing a receiver

operating characteristics (ROC) curve for classification models (also

sometimes referred to as the C or Concordance statistics). Overall, the

choice of the performance metrics to use for evaluating a regression or

classification model depends on the specific problem and the goals of
FIGURE 1

Common categories of ML algorithms.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1130229
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rashidi et al. 10.3389/fonc.2023.1130229
the model. It is important to understand the limitations of each of the

performance measures since no single measure should be reviewed in

a vacuum. Ultimately, the choice of the performance measure should

also align with the goals of the study so that it can provide the most

useful information about the model’s true capabilities.

A major difference between the statistical performance measures in

classification model versus a regression model is the type of output

each produces. As noted, a classification model is used to predict a

categorical outcome such as a yes or no response, while a regression

model is used to predict a continuous numerical outcome. As a result,

the types of statistical metrics used to evaluate the performance of each

model are different. A classification model would use a confusion

matrix-based approach to calculate metrics such as accuracy, precision,

recall, and F1-score, while a regression model would use mean absolute

error, mean squared error, and R2 (further discussed below).
2.1 Statistics of regression models

2.1.1 Common regression algorithms
The simplest regression model is simple linear regression, which

only includes a single feature and aims to find a linear function of the
Frontiers in Oncology 03
feature that best predicts the dependent variable. Figure 2A shows an

example of simple linear regression that relates height (feature) to

weight (dependent variable). Although simple linear regression is not

commonly employed within ML, the statistical performance measures

within regression (i.e. R2, MSE, etc.) that are shared across many of

the specific regression algorithms are easiest to comprehend within

this method. Core elements within this method also enable us to

better visualize and explain the relationships between the output and

feature variables that are being assessed. A basic example looking at

the relationship between weight and height could be a great start to

better understand these core concepts and its associated model

performance measures such as R2. In this very simple example, we

will show the degree to which weight variation can be explained by

height. In other words, can a best fitted line that correlates weight and

height better represent this relationship than a line representing the

mean weight? If the summative difference between the individual

values of weight and height from the best fitted line is lower than the

collective difference of the individual values of weight from the weight

mean, then it could be deduced that the best fitted line can use the

height values to explain some of the variations in weight better than

the weight mean alone. The way we can show this mathematically is

by comparing the “sum of squares of residuals” (SSR) of the mean
B C

A

FIGURE 2

Linear regression and related statistics: (A) simple linear regression and the calculation of R2; (B) bias and variance tradeoff; (C) regularization concept:
pre- and post- regularization of fitted lines.
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versus the “sum of squares of residuals” of the fitted line. In the above

case, the SSR of mean will be greater than the SSR of the fitted line

which shows that some of the variation in the weights can be

explained by heights. The next question is how much of the weight

variation is explained by height, which is answered by the concept of

R2 (See Figure 2A) that is further described below in section

2.1.2 below.

A deeper dive into the linear regression algorithm along with

some more advanced methods such as local polynomial regression, k-

NN regression, support vector regression or neural network-based

regression will give us a better sense of their inner workings along

with their limitations.

Linear Regression. The linear regression assumes a parametric

linear function for the model, that is,

f (X) = b0 + b1x1 +⋯+bpxp

where b0 is the intercept and bj represents the slope associated with

feature xj, j = 1,⋯,p. Estimating the function f thus reduces to

estimating the unknown parameters b = (b0,⋯,bp) . In the case of a

single feature (i.e., p=1), this reduces to the simple linear regression

described above. The most common method to estimate b is to

minimize the sum of squared residuals (SSR) or the squared loss as

SSR(b) =o
n

i=1
(yi − f (Xi))

2 =o
n

i=1
(yi − XT

i b)
2 :

The minimization problem above has an explicit solution of b̂ =

(XTX)−1XTY , where X denotes the feature matrix of all subjects and

XT is its transpose. b̂ is called the least-square (LS) estimate in the

literature. When the random error e follows a Gaussian distribution N

(0, s2), the least-square estimate is also equivalent to the maximum

likelihood estimate, a more general principle in regression.

k-Nearest Neighbors. The kNN is a popular nonparametric

algorithm, which uses the data points closest to the query point to

make a prediction. kNN is a lazy learning algorithm as it does not

build a complex model prior to making a prediction. Instead, it uses

the training data and stores it in memory. When making a prediction

for a new query point with feature z, it searches through the training

data for the k nearest neighbors around z, computes their average, and

uses the average as the prediction. k should be a positive integer. The

closedness needs to be measured in the feature space excluding the

output. The most common distance measures used are Euclidean

Distance, Manhattan Distance and Minkowski Distance. For two data

points with features x = (x1,⋯,xp) and z = (z1,⋯,zp), the Minkowski

Distance is defined as (op
j=1 j xj − zj jq )

1
q , where q is the order

parameter that can be any real number in theory. In particular, q=1

is the Manhattan distance and q=2 is the Euclidean distance. Once the

k closest neighbors are found for z, its prediction is derived as the

mean outputs of these neighbors, that is, f (z) = 1
koi∈Nz

yi, where Nz

denotes the set of the k closest neighbors and yi denotes the outputs of

the ith subject in Nz.

The number of nearest neighbors (k) can be selected based on

certain cross validation approaches. The kNN algorithm is appealing

in practice for its simplicity. However, the fitted line is often jagged,

especially when k is small (Supplementary Figure 1).

Local Polynomial Regression. Local polynomial regression makes

no global assumption about the function f, but assumes it as a
Frontiers in Oncology 04
polynomial function in moving local neighborhoods. The idea is

based on the Taylor’s series expansion. For example, when the feature

is univariate (i.e., p=1), the local polynomial regression with an order

m can be expressed as

f (X) =o
m

j=0
aj(X − z)j

for any data X close to z, the query point of interest; a0 = f(z) and aj’s

are the unknown coefficients for the other polynomial terms. The

local polynomial regression can be estimated by generalizing the least-

square estimate for linear regression to minimizing the kernel-

weighted local sum of squared residuals as

SSR(f ,   z) =o
n

i=1
K(Xi,   z)(yi − f (Xi))

2,

where K(·,·) is a kernel function that assigns weights to the training

data points. The data points closer to z should get greater weights than

those further away from it. A commonly used kernel is the Gaussian

kernel, which has the function of

K(X,   z) =
1ffiffiffiffiffiffi
2p

p
s
exp ( −

j jX − z j j2
2s 2 ) :

If we assume that the function f is a constant (i.e., m=0) in the

neighborhood, the resulting estimate becomes the Nadaraya-Watson

estimate. The kNN algorithm can be viewed as a special Nadaraya-

Watson estimate, where the kernel function equals 1 for the k nearest

neighbors and equals 0 for the other data points. Supplementary

Figure 1 shows the fitted lines of the Nadaraya-Watson estimate and

the local polynomial regression with a degree of 3 (i.e., local cubic

regression). The local polynomial regression method is useful when

the underlying data is nonlinear and there is no applicable parametric

model. It can also be used to identify local patterns in the data which

may not be evident in a global model.

Support Vector Regression. Support vector regression (SVR) is an

extension of the Support Vector Machine (SVM) algorithm (used for

classification problems) that enables regression tasks. More details

about SVM are described in section 2.2.1. SVR uses similar principles

as SVM, but is used for continuous outputs.

Neural Network Regression. Neural network regression is based

on a network of artificial neurons that may use a variety of techniques

like back-propagation, dropout and adaptive learning to adjust

weights and thresholds in order to achieve the desired accuracy.

The weights and thresholds are adjusted using formulas such as the

Gradient Descent, the Adam Optimizer, and the root mean squared

error. These formulas are used to calculate the error between the

predicted and actual values and to update the weights and thresholds

accordingly. Neural network regression is an effective ML technique

that can be used to predict continuous values with great accuracy.

2.1.2 Performance metrics for regression
The most common statistical measures for evaluating the

performance of regression are Mean Absolute Error (MAE), Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), R2, and

adjusted R2.

The Mean Absolute Error (MAE) (related to the L1 loss) is

the average absolute difference between the predicted and observed
frontiersin.org
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(true) outputs. It is calculated asMAE = 1
non

i=1 j yi − ŷ i j, where yi and
ŷ i = f̂ (Xi) represent the observed (true) and predicted outputs for the

ith sample, respectively.

The Mean Squared Error (MSE) (also known as the L2 loss)

is calculated as the sum of the squared differences between the

predicted and observed outputs, divided by the number of samples,

MSE = 1
non

i=1(yi − ŷ i)
2. MSE is more sensitive to outliers than MAE,

as it penalizes large errors more heavily.

Root Mean Squared Error (RMSE) also known as the root mean

squared deviation is the square root of the MSE. It is commonly used

as it has the same units as the original data, making it easier to

interpret. MSE or RMSE can be used to compare the performance of

different regression models, with a lower value indicating a better fit.

However, it is important to note that they are sensitive to the scale of

the target variable. Thus, they are generally not applicable for

comparing the models with different target variables.

R2 is the coefficient of determination and defined as

R2 = 1 −
SSR

SSmean
= 1 −  o

n
i=1(yi −   by i)

2

on
i=1(yi − y)2

where y = 1
non

i=1yi is mean of all observed outputs and SSmean =

on
i=1(yi − y)2 is referred to as the sum of squares of the mean

(Figure 2A), which is equivalent to the sum of squared residuals

from the sample mean. Since SSmean is always greater than or equal

to SSR, R2 has a value between 0 and 1 and can be interpreted as the

proportion of the variance of the target variable that is explained by

the features in the model. In the case of a single feature, R2 is the

square of the Pearson correlation coefficient between the output and

the feature. A R2 of 0 indicates that the model does not explain any of

the variance in the output variable and a value of 1 indicates that the

model explains all of the variance. Overall, R2 is useful for assessing

the overall fit of a regression model, while MAE, MSE, and RMSE are

more useful for assessing the performance of a model on a particular

dataset. One limitation of R2 is that it will increase when extra features

are added into the model. Therefore, it may be not useful to compare

models with nested sets of features.

Adjusted R2 is a modification to account for this issue, which is

defined as

R2
adj = 1 −

SSR
n−p−1
SSmean
n−1

where n-p-1 and n-1 are the degrees of freedom for SSR and SSmean,

respectively. The adjusted R2 basically penalizes the models for adding

features not related with the output variable, which is thus less biased

than R2. The value of R2
adj is always less than or equal to R2.

2.1.3 Bias and variance trade-off and regularization
The bias-variance tradeoff is a central concept in supervised ML

studies. It states that an algorithm’s ability to generalize to unseen

data is a tradeoff between its complexity (variance) and its bias. Bias

refers to the error that is introduced by simplifying the model, while

variance refers to the error that is introduced by making the model

too complex. When an algorithm has low bias, it is generally more

complex (i.e. increased variance) and more likely to overfit the

training data. Conversely, when an algorithm has high bias (i.e. low

variance), it may be too simple and is more likely to underfit the
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training data (8). Mathematically, for the query data point with

feature z, the true and predicted outputs are f(z) and f̂ (z),

respectively, and the total expected error can be expressed as

E(f (z) − f̂ (z))2 = E(f (z) − Ef̂ (z) + Ef̂ (z) − f̂ (z))2 = (Ef̂ (z) −

f (z))2 + Var(f̂ (z)) = bias2 + variance,

where the first term represents the squared bias, and the second term

represents the variance of the prediction itself. As shown in Figure 2B,

as the model becomes more complex, the bias is reduced but the

variance increases. Thus the model deviates from the optimal spot

with the lowest total prediction error.

One popular method to strike a balance between the bias and

variance is regularization. Regularization addresses the bias-variance

tradeoff by adding a penalty to the loss function of a model to reduce

its variance at a sacrifice of a small amount of bias. Mathematically,

regularization for regression can be formulated as minimizing the

penalized sum of squared residuals,

o
n

i=1
(yi − f (xi))

2 + lR(b),

where l is the tuning parameter and R(b) is a penalty term. There are

three common penalty terms in practice: L2 norm of the parameters

with R(b) =op
j=1b

2
j for ridge regression, L1 norm with R(b) =

op
j=1jbjj for least absolute shrinkage and selection operator

(LASSO) (9), and a combination of L1 and L2 norms as l1op
j=1 j bj j

+l2op
j=1b

2
j for elastic net (10). The lambda parameters can be

selected with cross validation. When LASSO or elastic net is used,

some regression coefficients may be shrunken to zero so that they can

be also considered as feature selection procedures.

Regularization can help improve the generalization of a model,

making it more resilient to overfitting. Figure 2C shows that the

model without regularization fits the training data very well but has

large prediction errors when applied to the testing data. After

regularization, the model achieves more balanced performance

though the bias is larger for the training data.

Other methods for optimizing the bias-variance tradeoff in

supervised learning tasks include the use of ensemble techniques,

early stopping, and feature selection. Additionally, hyperparameter

tuning with certain cross-validation tasks can also reduce overfitting

and improve the generalization performance of an ML model.
2.2 Statistics of classification

2.2.1 Common classification algorithms
Logistic Regression. Logistic regression is not typically used in

image or text classification tasks but arguably one of the most popular

methods for classification within the tabular data domain. It is used to

predict the probability of the output (e.g., the probability that a

patient has a cancer based on various features such as age, blood

pressure, and genomic mutations). The model estimates the

probability using the logistic function, which takes the following form:

P(X) =
exp (b0 + b1X1 +⋯+bpXp)

1 + exp (b0 + b1X1 +⋯+bpXp)
=

1

1 + exp( − XTb)

where P(X) represents the probability of the outcome occurring (e.g.

cancer diagnosis); X = (X1,⋯,Xp) and b = (b1,⋯,bp) represent the
frontiersin.org
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features and associated parameters as in linear regression. Figure 3A

illustrates the logistic function in the case of a single feature. An

equivalent transformation of the logistic model is to express it in terms

of log-transformed odds as log P(X)
1−P(X) = b0 + b1X1 +⋯+bpXp, where

each b parameter can be interpreted as log-odds ratio of the associated

feature, a measurement widely used in the medicine literature. In the

case that the output is a multi-class (i.e., more than two classes)

variable, the logistic model has two common extensions, multinomial

logistic regression and ordinal logistic regression, where the latter is

tailored to the output variable whose classes have a natural order (e.g.,

mild, moderate and severe conditions).

k-Nearest-Neighbors. The kNN algorithm can be used for both

regression and classification tasks. This is a type of instance-based

learning where the model is trained by storing the grouped training

data and making predictions based on the k nearest neighbors. To

make a prediction for a new sample, the algorithm calculates the

distance between the new sample and each of the stored training

samples according to their features, and determines the k closest

samples. The prediction is then based on the majority class of the k

nearest neighbors (Figure 3B).

Naïve Bayes. Naive Bayes classifiers are a collection of

classification algorithms that use the Bayes theorem. Following the

Bayes theorem, the conditional probability of the output Y given the

feature X = (X1,⋯,Xp) can be written as p(Y jX) = p(Y ,X)
p(X) = p(X jY)p(Y)

p(X) :

The naïve Bayes methods namely make a naïve assumption that the

features are independent of each other. Under this assumption, the

above expression can be further decomposed as

p(Y jX) = p(X jY)p(Y)
p(X)

=
p(X1 jY)… p(Xp jY)p(Y)

p(X1)… p(XP)
:
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Different naïve Bayes classifiers differ mainly at the distribution of

the features given the output (i.e., p(Xj|Y), j = 1,⋯,p). Depending on

the distributions applied, common classifiers include Gaussian naïve

Bayes, multinomial naïve Bayes and Bernoulli naïve Bayes classifiers.

Despite the incorrect assumption of features being independent of

each other, naive Bayes classifiers can sometimes produce reasonable

results, especially for simple tasks. However, their performance has

been shown to be inferior to some of the other well-established

algorithms for more complex tasks.

Decision Tree Based Methods. These methods can be used for

both classification and regression tasks. A decision tree is a model that

partitions the feature space into distinct regions hierarchically. A

classification decision tree starts with a root node, which is then

divided into a left child and a right child. Each child node is further

split to create successive partition. A child node that cannot be

subdivided is ultimately called a leaf node (Figure 3C), where the

final class label is assigned. The construction of a tree requires

determining the feature to split and the split cut-off value at each

node, a termination rule and how to label each terminal node.

Impurity measures such as cross-entropy and Gini index are

common criteria to determine these elements. Once a tree is

constructed, predictions can be made by following the set of split

rules from the root to the leaves. The size of the tree (i.e., the number

of nodes) represents the complexity of the model. A very large tree

may overfit the data, for which tree pruning will be needed.

A single classification tree is rarely used in practice since it can be

highly variable. The more advanced tree-based methods may

overcome these limitations; these include ensemble methods such

as the bootstrap aggregating (bagging) approach, random forest (RF)

and gradient boosting machine (GBM). Bagging constructs a large
B
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FIGURE 3

Common ML classification algorithms: (A) logistic regression; (B) k-nearest neighbor (k=3); (C) random forest; (D) support vector machine.
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number of trees with bootstrapped samples from the data, and a

classification will be made by aggregating over the results from

individual trees based on a majority vote (11). Random forest is

very similar to bagging (12). Namely, RF grows trees by introducing

randomness to the modeling process. Before each node is split, RF

randomly selects a subset of features as candidates instead of

searching all features. This introduces a wider diversity and the

trees in RF become more independent than those in bagging.

Boosting is another powerful ensemble method (13). Unlike

bagging and RF that construct a larger number of trees in parallel,

boosting (as seen in GBM) creates multiple trees sequentially. Each

tree is grown based on the information from previously grown trees

(i.e., weak learners) in order to reduce the errors from the previous

trees, which can ultimately lead to a better performing model (i.e., a

boosted tree). Boosting sometimes yield very reasonable models,

especially for unbalanced data sets. However, their limited number

of tuning parameters may sometimes make boosting more prone to

overfitting compared to RF that uses a larger number of parameters

for tuning and model optimization (1).

Support Vector Machine (SVM). The central idea of support

vector machines is to identify a hyperplane as a boundary to separate

the output classes as wide as possible. When there are only two

features, the separating hyperplane reduces to a linear line

(Figure 3D). The separation is maximized by increasing the margin

on either side of the line. However, in many cases, it is impossible to

find such a linear hyperplane that perfectly separates the two output

classes in the original feature space. Fortunately, a powerful highlight

of SVM is to project the data into a higher dimensional space using a

nonlinear kernel (i.e. a mathematical “function”) and then search a

separating hyperplane in the newly projected space. The resulting

hyperplane will be nonlinear when transformed back to the original

feature space. This classic use case of Kernels (e.g. the RBF kernel) as

seen in SVM, ultimately enhances the algorithm’s capability offinding

a linear decision boundary for tasks that would have otherwise not

been separable in lower dimensions. The overall process may also

help to improve the final model’s performance in several ways which

include, separability, dimensionality reduction, regularization, and

computational efficiency.

Common choices of the kernel function in SVMs include:
Fron
• Polynomial kernel with order q: K(x, x′)=(1 + 〈x, x′〉)q ,
• Radial basis kernel: K(x, x′)=exp(−g||x−x′||2) ,
• Neural network kernel: K(x, x′)=tanh(k1||x−x

′||+k2) .
SVM can yield highly accurate prediction using the flexible kernel

functions. By introducing a cost parameter to loosen the perfectness

of separation, SVM is also relatively robust to outliers. However,

training SVMs could be computationally expensive on large datasets.

It can also be viewed by some as a black box approach (especially

incorporating certain kernels) since the separation of classes may not

be intuitive.

Neural Network. Neural networks are increasingly being used in

both regression and classification tasks. These are inspired by the

structure and interplays between human neurons and typically

include an input layer (receiving the raw input data), hidden layers

and an output layer (producing the final output of the model). Two

major neural networks used regularly within medicine include the
tiers in Oncology 07
Multilayer perceptron (MLP) and the convolutional neural network

(CNN). MLPs are typically used for tasks involving structured data

(i.e. tabular numerical data), while CNNs are better suited for tasks

involving unstructured data, such as images for classification or object

detection tasks. These CNN deep neural network approaches are

sometimes also referred to as deep learning.

2.2.2 Convolutional neural networks
and object detection

As noted, a CNN is a special neural network with different specific

layers (i.e. input layer, convolutional layer, pooling layer, and full-

connected layer). Figure 5A illustrates the architecture of the CNN.

The convolutional layer is the core building block of the CNN, and

there could be a series of convolutional layers present. When stacked

on top of each other, convolutional layers can detect a hierarchy of

imaging features and patterns. These features are then pooled and fed

into the fully connected layers of artificial neurons for various

classification tasks.

Although, these black box neural network methods may be hard

to understand, their inner workings are very much based on some

traditional statistical concepts. For example, in a CNN, the logit

function (AKA sigmoid function) is used to map the input values to a

0 to 1 range and typically serves as the last step before the final output

of a CNN. This function is used to calculate the probability of each

class and to assign the class (e.g. 0 class or class 1) with the highest

probability to the final output. Notably, the logit function in a CNN

and the logistic regression algorithm are related in the sense that both

use the logistic function (AKA sigmoid function) as noted above

which enables both to acquire and assign the relationship between the

input variables and the output variable.

In recent years, with the development of deep learning, CNN-

based models have made great breakthroughs and have become the

gold standard for most image-based tasks (14). The Image-based ML

tasks can be categorized as image classification, image generation,

object detection and image segmentation.

Image classification involves training a neural network to assign

an input image to a specific class or category based on the whole

image. For example, an image classification model might be trained to

recognize various types of cancer (such as colon, breast, and prostate

cancer). The model would be trained on a large dataset of labeled

images from colon, breast, and prostate cancer which will then allow

the CNN to learn and recognize patterns and features in the images

that are characteristic to each of the assigned classes (colon, breast,

and prostate). The end result is the trained model that will be able to

classify new images based on their shared characteristics to the labeled

target class.

Object detection is related to image classification, but its goal is to

identify and locate objects within an image (rather than a global

analysis or classification of the image). This involves identifying the

location and bounding box of each object in the image, as well as

classifying each object into a specific class. An example of an object

detection model within medicine is one that can detect and identify

various individual white blood cells (e.g. neutrophils, lymphocytes,

monocytes, eosinophils and basophils) in the peripheral blood (15).

Performance measures for object detection and image

classification have some similarities, but also have some key

differences. Additionally, the type of image classification (binary
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versus multi-class) may also influence certain performance measures

which will need to be accounted for (further discussed below).

2.2.3 Performance metrics for binary classification
Regardless, if it’s an image or tabular data task, the performance of

a classification model within these studies can be evaluated using

numeric metrics (e.g. accuracy, etc.) along with graphical

representations (e.g. the ROC curve, etc.).

The performance measures of a classification ML model are

derived from a confusion matrix-based approach. A confusion

matrix tabulates the predicted outputs as they relate to the observed

(true class) outputs, yielding the numbers of true positive, true

negative, false positive, and false negative predictions made by the

model (Figure 4A). A true positive (TP) prediction is when the model

correctly predicts that a given sample belongs to a positive class while

a true negative (TN) prediction is when the model correctly predicts

that a given sample belongs to a negative class. However, the model

will likely also make some mistakes since no ML model is perfect. The

mistakes are presented as the false positive and the false negative

predictions. A false positive (FP) prediction is when the model

incorrectly predicts that a given sample belongs to a positive class,

when it actually belongs to a negative class while a false negative (FN)

prediction is when the model incorrectly predicts that a given sample

belongs to a negative class, when it actually belongs to a positive class.

The numbers of TP, TN, FP and FN cases are then used to

calculate several key statistical performance measures (accuracy,

precision, sensitivity, specificity, F1, etc.) that display the model’s

ability to distinguish between the positive and negative cases

(Table 1). The first metric is accuracy, which is the percentage of

correct predictions (i.e. (TP + TN)/(TP + TN + FP + FN)). While the

meaning of accuracy is very intuitive, it has a major drawback for
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imbalanced datasets, especially when one output class is much more

common than the other class. In this case, accuracy mainly depends

on the performance for the biggest output class, and a naive model

that predicts all data into the dominant class could display a high

accuracy. The balanced accuracy is a better alternative for imbalanced

datasets, which gives equal weights to the classes. It is defined as an

average of the percentages of correct predictions in each class.

Other metrics that can be directly computed from the four

components of the confusion matrix include sensitivity (also

referred to as positive recall or true positive rate), specificity (also

referred the true negative rate), positive predictive value (PPV, also

referred to as precision) and negative predictive value (NPV), each

measuring a particular aspect of the model’s prediction performance.

Sensitivity is the proportion of correct predictions among those who

are truly positive (i.e. true positive rate), while the specificity is the

proportion of correct predictions among the true negatives (true

negative rate). The balanced accuracy (mentioned above) is essentially

the average of sensitivity and specificity for binary classification. PPV

and NPV are the correct proportions among the predicted positives

and negatives, respectively. The F1 score is a metric reflecting the

overall performance, which is calculated as the harmonic mean of

recall (sensitivity) and precision (PPV). By its definition, the F1 score

varies with class swapping, and it has nothing to do with the number

of correctly predicted negatives. These metrics all have values in the

range between 0 and 1, with higher values representing better

performances for that particular metric.

The Matthew’s correlation coefficient (MCC) and the Cohen’s

kappa are two other metrics for the overall performance of an ML

model. MCC is a considered a reliable and balanced statistical metric

in the sense that it produces a high score only if the prediction yields

good results in all of the four components of the confusion
B
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FIGURE 4

(A) Convolution neural network architecture concept; (B) concept of intersection over union (IoU) for object detection.
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matrix (16). The Cohen’s kappa is another metric that has become

increasingly popular (17). Both MCC and kappa have values between

-1 and 1. Values close to 1 indicate good agreement and a value of 0

implies that the classification model is basically equivalent to

complete random guess. Negative values indicate the classifier is

even worse than chance, which may imply certain major errors in

the model development process.

These metrics provide a summary of the model’s performance

and can also be useful for comparing the performance of different

models, highlighting areas where the model is performing well (e.g.

high sensitivity) in certain tasks and poorly in others (e.g. low

specificity). This confusion matrix approach can also be applied

(with slight modification) to a multi-class approach such as in

distinguishing colon versus breast versus prostate cancer cases

(discussed in more detail in the multi-class section below).

It is also important to note that except for sensitivity and

specificity, many of these performance metrics are prevalence

dependent. Additionally, it is essential that we do not evaluate these

in a vacuum since there are key interdependencies between many of

these performance measures. For example, certain performance

measures trend in similar directions with changing thresholds (e.g.

sensitivity and negative predictive value move together in one

direction while specificity and precision move together in another

direction with a changing model threshold). Additionally, certain

values follow opposite trends (e.g. increased sensitivity is usually at

the cost of a decreased specificity and increased negative predictive

value is usually at the cost of the deteriorating positive

predictive value).

For classification algorithms that generate probabilities but not

direct labels for the output variable (e.g., logistic regression), a cut-off

threshold is needed for the final output prediction. A naïve choice

would be 0.5 (which is the default choice for many ML models at

baseline), that is, a case is predicted if the probability is greater than

0.5. In theory, we can choose any cut-off value between 0 and 1. A

higher threshold (>0.5) will usually reduce the FP rate while a lower
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threshold (<0.5) will usually reduce the FN rate. In practice, the choice

of the optimal cut-off value may depend on the study goals. For

example, a low cut-off may be applied to a diagnostic test for a deadly

disease to reduce the false negative rate. In contrast, a high cut-off may

be used if the test is risky and costly.

If one wishes to evaluate the classifier without having to select a

specific threshold, such an evaluation can be achieved and visualized

using the ROC curve (Figure 4B). A ROC curve is constructed by

computing the sensitivities and specificities at many possible cut-off

values, and then plotting the sensitivities against one minus the

specificities (i.e. the false positive rate; FPR). The area under the

ROC curve (ROC-AUC) is a commonly used metric to evaluate the

classification model’s global performance, which reflects the overall

ability of the model to separate the output classes. The ROC-AUC

score ranges from 0 to 1, with a value of 1 indicating perfect

performance and a value of 0.5 indicating random or no

discriminatory power. Generally, the closer to 1 you get the better.

It is important to note that the interpretation of ROC-AUC scores will

depend on the specific context and goals of the model. In some cases,

a lower ROC-AUC score (e.g. 0.75) may still be acceptable if it meets

the needs of the application. In other cases, a higher ROC-AUC score

(e.g. 0.9) may be required in order to achieve acceptable performance.

Like the other performance measures, ROC-AUC should not be

used as the only performance measure since it too has its

shortcomings. One major limitation of using ROC curve is the

impact of class imbalance. For instance, a classification model can

easily get a high AUC for a rare case scenario even with a very low true

positive rate. A complement is the precision-recall (PR) curve

(Figure 4C). In contrast to the ROC-AUC in which the better

performing models gravitate to the top left of the ROC curve, the

goal in PR curve optimization is to get close to the top-right corner of

the curve.

In addition to the confusion matrix-based performance metrics

noted above, in many cases it becomes vital to also assess the accuracy

of the actual underlying probability score (a non-confusion matrix
TABLE 1 Evaluation metrics for binary classification based on the confusion matrix.

Metric Formula

Accuracy TP + TN
TP + TN + FP + FN

Sensitivity/recall* TP
TP + FN

Specificity* TN
TN + FP

Precision/positive predictive value TP
TP + FP

Negative predictive value TN
TN + FN

Balanced accuracy (Sensitivity + Specificity)/2

F1 score 2
Precision−1 + Recall−1

=
TP

TP + 0:5(FP + TN)

Matthews Correlation Coefficient TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

p

Cohen’s Kappa Oberserved   accuary − expected   accruacy
1 − expeceted   accuracy

=
2� (TP � TN − FP � FN)

(TP + FP)(TN + FP) + (TP + FN)(TN + FN)
*Are Independent of the prevalence rate of the output.
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measure) that was ultimately used to render the outcome. A

calibration curve and Brier score can fulfil this purpose. Calibration

is examined by comparing the distribution of the predicted

probabilities with that of the observed or empirical probabilities.

This can be achieved by plotting them in quantile buckets, yielding a

calibration curve (Figure 4D). Miscalibration occurs if the calibration

curve deviates significantly from the diagonal line. Note that not all

classification models are able to generate probabilities for prediction.

Another measure that can complement the calibration curve is the

Brier score. The Brier score is a measure of the accuracy of

probabilistic predictions. It is defined as the mean squared

difference between the predicted probabilities and the actual

outcomes, where 0 is a perfect score and higher values indicate

worse calibration.

2.2.4 Performance metrics for
multi-class classification

The performance metrics for binary classification can be readily

extended to multiclass classification. The confusion matrix for multi-

class classification expands to a K-by-K matrix with K being the

number of classes. Supplementary Figure 2 shows a confusion matrix

for a multiclass classification example with K=3 classes (specifically

distinguishing colon, prostate and breast cancer). The extensions of

the performance metrics based on the confusion matrix generally

follow three different approaches noted below (18).

The “micro” approach computes the metrics globally. For example,

the accuracy is the overall percentage of correct prediction, which is the

ratio of the sum of diagonal elements of the confusion matrix over the

total sample size. The “macro” approach starts by decomposing the

multiclass classification into K independent binary classifications, each

for separating one particular class from the rest classes. This is referred

to as “one versus rest” (OvR) approach in the literature.

Correspondingly, the K-by-K confusion matrix can be transformed

into K 2-by-2 confusion matrices, one for each binary classification

(Supplementary Figure 2). The macro metric is basically the mean of

the metrics derived from these K matrices. For example, the

sensitivities are 0.56, 0.5 and 0.73 for classifying colon, prostate and

breast, respectively. The macro sensitivity is then (0.56 + 0.5+0.73)/3 =

0.6. The “weighted” approach is similar to the macro approach, but the

mean over all classes is weighted by the frequency (or prevalence rate)

of each class. Thus, the weighted sensitivity for this example is 0.59 (see

Supplementary Figure 2).

The F1 score for multiclass classification has the same formula as

for binary classification and relies on the recall and precision being

used. For instance, the macro F1 score is the harmonic mean of the

macro average recall and the macro average precision. The Matthew’s

correlation coefficient (MCC) and the Cohen’s kappa can be

computed directly from the K-by-K confusion matrix for multiclass

classification. MCC and Cohen’s kappa share the same numerator

(Supplementary Table 1), but kappa has a smaller denominator and is

usually greater than MCC.

ROC and PR curves can be constructed for multiclass

classification using two approaches. The first approach is to follow

the OvR principle to create multiple curves for K binary classification,

each for classifying one class against the rest. The area under the curve

is then the average of the areas of the individual ROC or PR curves.

The other approach is referred to as “one versus one”, which creates
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corresponding curves for all pairwise combinations of classes. The

areas under these curves are then averaged.

In contrast to the aforementioned general classification tasks,

certain ML approaches (e.g. object detection) may require their own

unique set of performance measures.

2.2.5 Performance metrics for object detection
In object detection, the goal is to accurately identify and locate the

object of interest within an image. This might involve identifying the

location and bounding box of each object in the image, as well as

classifying each object into a specific category. In general, evaluating

the overall classification in object detection can employ the same

metrics for binary or multi-class classification, however in many cases

certain confusion matrix elements (e.g. true negative cases) may not

be readily available due to the intrinsic nature of this approach.

Regarding object localization, a common measure is the average

precision (AP: calculated as the area under the PR curve) at

different intersection over union (IoU) thresholds (described

below). The mean average precision (mAP: calculated by averaging

the AP over all objects and/or thresholds) is then used to quantify the

model’s accuracy at identifying and locating the objects within

an image.

The metric of intersection over union (IoU) is considered to be

the gold standard for evaluating object localization in the literature.

The localization of an object is typically quantified as a bounding box

that provides the coordinates of that object. The shape of the

bounding box can be rectangular, circular or even irregular. IoU

essentially measures the degree of overlap between the predicted box

and the ground truth (see Figure 5B). It is calculated as the area of the

intersection/overlap divided by the area of the union. IoU ranges

between 0 and 1 with 0 for no overlap and 1 for perfect overlap. For a

given threshold a, the detection is said to have a true positive if

IoU>a, and a false positive if IoU≤a. A false negative detection is

when the ground truth is not detected.

In addit ion to the importance of the context and

interdependencies of the above performance measures, the

reliability of each of these rendered metrics is also an essential step

for any ML model assessment task. In general, the reliability of the

performance measures is directly tied to the sample size (i.e. larger

sample size are more reliable than smaller ones). There are a variety of

ways to assess the reliability of the above performance measures but

the most common ones within ML are the confidence interval and the

p-value (described below).
3 Reliability assessment of the
performance metrics

While it is intuitive to rank ML models based on a given

performance metric, one should also consider the statistical

reliability and uncertainty in estimating the metric. Confidence

intervals (CI) are commonly used to quantify such reliability in ML

studies. For instance, a 95% confidence interval imply that the true

metric will fall into this interval with a 95% probability. The

computation of the 95% confidence intervals is generally expressed as

½Metric estimate − 1:96� SE, Metric estimate + 1:96� SE�
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when the distribution of the metric follows or approximates a

Gaussian distribution. SE represents the standard error of the

metric estimate, and 1.96 is the quantile from the standard

Gaussian distribution. Other quantiles may be used for different

confidence intervals. The form of SE depends on the metric being

used. For example, the SE of the R2 statistic for regression can be

computed as SER2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2(1−R2)2(N−p−1)

(N2−1)(N+3)

q
(19). For accuracy, the SE can

be computed as SEacc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Accuracy(1−Accuracy)

N

q
, and this SE formula also

applies to other classification metrics expressed as proportions (e.g.,

sensitivity and specificity). In some cases, the sampling distribution of

the evaluation metric is no longer Gaussian (e.g., a small sample size),

for which the bootstrap resampling method can be used to compute

the confidence intervals (20). A larger sample size usually yields a

smaller SE and thus a narrower confidence interval, implying a more

precise estimate.

In hypothetical scenario 1 with a sample size of 100

(Supplementary Figure 3), model 1a has an accuracy of 82% (95%

CI, 73.05% - 88.97%) and the accuracy for model 2a is 86% (95% CI,

77.63% - 92.13%). Although model 2a has a higher accuracy, its

confidence interval contains 82%, the accuracy of model 1a.

Therefore, model 2a’s improved performance over model 1a is not

statistically significant. On the contrary, in scenario 2 with a much

larger sample size of 10000, the 95% CI for the accuracy of model 2b

shrinks to [85.3%, 86.67%], where its lower bound is greater than the

upper bound of the CI for model 1b (82.75%). In this case, it can be

said that model 2b’s improved performance over model 1b is

statistically significant.

The formal comparison of a performance metric between two

models can also be formulated as a statistical hypothesis testing
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problem, where the null hypothesis states that the two models have

same performance, and the alternative hypothesis indicates that two

models have different performance (two-sided test) or one is better

than the other (one-sided test). A p-value less than the prespecified

type I error, usually 0.05, rejects the null hypothesis and the alternative

hypothesis is then concluded with statistical significance. A p-value

greater than 0.05 indicates insufficient evidence to reject the null

hypothesis. However, since the two competing models are trained on

the same dataset, their performance metrics are correlated with an

unknown correlation structure. Therefore, there are usually no

dependable closed forms to compute the p-value, and the standard

paired t-test or chi-squared test is usually not the best approach.

However, in some cases when needed, the p-value can be derived from

the 95% CI with certain limitations (21). There are also some recent

developments based on cross validation or Bootstrap to derive p-values

for comparing performance metrics of different ML models (22–24).
4 Practical considerations

4.1 Data preprocessing

Real-world data forML are often noisy and contain missingness and

much redundant information. Without appropriate data preprocessing,

it could be very difficult to successfully train an optimized and

generalizable ML model. Some common preprocessing steps include

data cleaning, normalization, transformation, and dimension reduction.

Data cleaning typically addresses inconsistencies, outliers, missing

values, etc. Highly skewed features sometimes also need to be

transformed or discretized. Normalization is performed to scale the
B
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FIGURE 5

Performance metrics for binary classification: (A) confusion matrix concept; (B) ROC curve concept (C) precision-recall curve concept; (D) calibration
curve example.
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numerical features so that their values are at the samemagnitude, which

is a prerequisite for many ML models such as the nearest neighbor

approach and neural networks. Dimension reduction involves removing

multicollinearity and redundant features, which may help reduce the

noise that could have deteriorated the model’s performance. Data

preprocessing is very important because it can have a significant

impact on the statistical performance of a model. Ultimately, the

appropriate data preprocessing steps can help improve the

generalizability of the ML model of interest.
4.2 Model generalizability
and cross validation

One of the major challenges of supervised learning is overfitting,

in which case a model yields very satisfactory or even perfect

performance on the trained data but performs poorly when applied

to yet-unseen data. In other words, the model has low generalizability.

Ideally, to obtain an accurate understanding of the model’s

performance, the model should be evaluated on an independent

dataset, which is referred to as a test or generalization set in the

literature. However, in many cases, researchers don’t have immediate

access to such additional data. A heuristic solution is to split the

available single dataset into two separate datasets (one used for the

training and initial validation and the other used for the

generalization test). Typical recommendations for the split ratio are

60%-40%, 70%-30% or 80%-20%, depending on a multitude of factors

include but are not limited to the number of classes and target class

sizes. The split can be completely random or be stratified by the

output to maintain same distribution of the outcome in the training

and initial validation test sets. The ML model is then estimated from

the training set (e.g. random 70% in the 70%-30% split noted above).

Once training is completed, the model is applied to the features in the

validation test dataset (e.g. remaining 30% in the 70%-30% split noted

above). The predictions made by the algorithm are then compared to

the known outcomes of the validation test dataset to assess the model

performance. Such an approach is referred to as internal validation.

While this approach is conceptually simple and easy to implement,

the sample sizes for both the training and initial validation test sets

can be significantly reduced after split, especially for small datasets,

and then the results may depend on a particular split of the dataset.

To further enhance the reliability of the performance metrics, cross

validation can be integrated within this “train-test split” process.

The classic k-fold cross validation (CV) randomly divides the

dataset into k groups of approximately equal size. The model is then

trained on k-1 folds of the data, and the left-out fold is used to

evaluate the model performance. This procedure is repeated k times

so that each fold is treated as a validation set once. The k-fold CV

results are then averaged across the k test sets. For example a k-fold

CV of 10 will have trained 10 separate “train-test split”models whose

initial validation performances are then averaged to get a better sense

of the model’s true capabilities. Some research has shown that k=10

yields similar performance to leave-one-out cross validation which is

the most extreme approach (i.e., k=sample size minus 1) (25). In

summary, cross validation provides an estimate of the performance of

a model on unseen data and it is a fundamental step in the model

selection and hyperparameter tuning process within machine
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learning. It also allows to identify if a model is overfitting or

underfitting by comparing the performance on the training and

validation test sets. Such cross validation allows for a more robust

estimation of model’s true capability by averaging its statistical

performance on several different train-test split versions of the data

(as noted above which results in a better representation of the final

model’s true performance, i.e. more likely generalizable and less

chance of being overfitted).

Although this helps the generalization of the ML model, but for

small to intermediate datasets (which is a great deal of datasets within

medical studies), this process by itself is insufficient to declare a model

generalizable. For such cases (small to intermediate datasets),

additional testing (i.e. secondary and tertiary generalization test

sets) is a necessity to render such models as potentially generalizable.
4.3 Model selection

Due to the rapid growth of computing power, investigators

nowadays are able to build multiple supervised ML models for a

given dataset efficiently. Modern automated ML (AutoML) platforms

such as Auto-Keras (26) and MILO-ML (27) can generate thousands

of ML models based on various combinations of algorithms, tuning

parameters, and pipelines without human intervention. However,

selecting a final best model remains a complex question to address.

While there are multiple evaluation metrics available as described in

Section 2, they measure the ML model performance from different

perspectives and thus there is not a single metric translatable to all

studies. The choice of the evaluation metric should depend on the

specific aims of each study, and sometimes it may rely on multiple

metrics. In practice, in addition to the performance metrics, there

could be other competing factors such as the complexity and cost to

deploy and maintain the model. Thus, a comprehensive examination

is required for any model selection.
4.4 Sample size determination for
supervised ML

No consensus has been established about how to determine the

best sample size for supervised learning (28–30). Various “rules of

thumb” have been proposed and debated. However, for regression-

based supervised models, some recent studies developed guidelines

and statistical formulas for calculating the sample sizes based on

specific prediction metrics through internal validation (28, 29, 31).

Simulation can be also used to estimate prediction performance by

varying the sample sizes, and a final sample size is determined as the

number achieving a desired performance (e.g., 80% accuracy).

Another generic approach for binary classification is to fit an

inverse power law model to points of a given learning curve created

using the available data (32). The fitted model is then used to predict

the classifier’s performance for larger sample sizes. Additionally, the

data sample size can drastically change the statistical reliability of the

ML model’s performance measures (e.g. accuracy of a model based on

1 million cases will have a much tighter 95% CI than one that was

based on 1000 cases). Therefore, for more limited data studies,

additional test sets (i.e. secondary and tertiary testing) is a must
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since without which the chance of developing an overfitted (not

generalizable) ML model is drastically increased (33).
5 Discussion

ML has become a significant integrated component of healthcare

in recent years. Many supervised ML models have been developed for

early detection of cancer, disease diagnosis and prediction of patient

outcomes. These ML algorithms are able to read all kinds of features

in healthcare, including patient demographics, clinical information,

laboratory tests, genetic variants, texts, and medical images (e.g.

histology and radiology images). Advanced ML models can further

integrate features from these different domains for multi-modality

analysis. ML models are also being transferred into wearable devices

and smartphones, which enables patient care activities outside of the

hospitals such as in outpatient or at-home settings (3).

However, the development of ML tools in healthcare is no trivial

task and faces many challenges. One major challenge is the access to

high quality data. Most healthcare data are acquired from patients,

which are governed by stringent regulations such the Health

Information Portability and Accountability Act (HIPAA) in the

United States and the General Data Protection Regulation (GDPR)

in Europe. Even when such data are available, investigators need to

submit appropriate proposals to regulatory committees (e.g.,

institutional review board) to ensure adequate protection of the

data and patient privacy before conducting research. A recent

report from the US Government Accountability Office identifies

data availability as a main barrier to the application of AI or ML in

healthcare (34). The issue of data availability also has significant

impact on the generalization of ML models. Most studies use a single

dataset for model development and validation. Although as discussed

earlier, internal cross-validation may reduce the risk of overfitting to

some extent, an external validation (i.e. secondary and tertiary

generalization testing) is essential in most cases to examine the true

generalization performance of the ML model. A related issue is data

heterogeneity in the sense that the same set of variables from different

datasets or even different institutions could be measured differently,

leading to unsuccessful reproducibility of the ML models in practice

(35). Furthermore, data quality issues such as missingness or

measurement error often require a large amount of effort to

preprocess the data. Another challenge is the computational cost,

especially for studies with large sample sizes, where significance

computing resources (e.g., memory, graphical and computer

processing units, and storage) are demanded. One solution could be

the use of synthetic data to expedite and enhance the various

challenges described above. Our advancements in computational
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sciences are now enabling us to create synthetic datasets that can

mimic the performance of their real data counterparts.

ML and AI have the great potentials to improve and transform

healthcare in the near future. ML will not only improve patient care

outcomes, but can also help significantly reduce the healthcare cost and

improve healthcare system operational activities. By understanding the

ML concepts, algorithms, and the related statistical performance

metrics, along with the opportunities and challenges, all healthcare

professionals and researchers will be able to play pivotal roles within

this coming transformation.
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